实数单元复习
- 格式:docx
- 大小:260.94 KB
- 文档页数:8
实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
第3章 《实数》复习训练卷一、选择题。
1.下列实数:227,3.14159265,-80.6,03π无理数的个数是( ) A .1个 B .2个 C .3个 D .4个2.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数:③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A .1B .2C .3D .43.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±44.若一个正数的两个平方根为1a +和27a -,则这个正数是( )A .2B .3C .8D .9 5.有下列说法:(1)﹣3(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有( )A .1个B .2个C .3个D .4个6.2020年3月14日,是全球首个“国际圆周率日(πDay )”.国际圆周率日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的中国古代科学巨匠,该成果领先世界一千多年.以下关于“圆周率”的四个命题,错误的是( )A .圆周率是一个大于3而小于4的无理数B .圆周率是一个近似数C .圆周率是一个与圆的大小无关的常数D .圆周率等于该圆的周长与直径的比值7.依据图中呈现的运算关系,可知m n +=( ).A .-4040B .4040C .-2020D .202081的结果是介于下列哪两个数之间( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间9.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .2C .2D .±210.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .B .16C .)24D .)44二、填空题。
实数复习及习题.docx知识要点:-。
平⽅根和⽴⽅根类型项⽬7^平⽅根⽴⽅根被开⽅数⾮负数任意实数符号表⽰ ± y[al/a 性质—个正数有两个平⽅根,且互为相反数;零的平⽅根为零;负数没有平⽅根; —个正数有⼀个正的⽴⽅根;⼀个负数有⼀个负的⽴⽅根;零的⽴⽅根是零;重要结论 (亦⼫=a(p. > 0) 圧科如0) ri [- a(a < 0) 阿=a ^ = a= -\[a⼆.实数有理数和⽆理数统称为实数.1. 实数的分类有理数:有限⼩数或⽆限循环⼩数⽆理数:⽆限不循环⼩数正数按与0的⼤⼩关系分:实数< 0负数2. 实数与数轴上的点⼀⼀对应.数轴上的任何⼀个点都対应⼀个实数,反之任何⼀个实数都能在数轴上找到⼀个点A/Z 对应.三、实数⼤⼩的⽐较对于数轴上的任意两个点,右边的点所表⽰的实数总是⽐左边的点表⽰的实数⼤.⽌实数⼤于0,负实数⼩于0,两个负数,绝对值⼤的反⽽⼩.四. 实数的运算:数4的相反数是⼀a ; —个正实数的绝对值是它本⾝;⼀个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成⽴.实数混合运算的运算顺序:先乘⽅、开⽅、再乘除,最后算加减?同级运算按从左到右顺序进⾏,有括号先算括号⾥.实数复习按定义分: 实数五.实数的⼤⼩的⽐较:有理数⼤⼩的⽐较法则在实数范围内仍然成⽴。
法则1.实数和数轴上的点⼀⼀对应,在数轴上表⽰的两个数,右边的数总⽐左边的数⼤;法则2.正数⼤于0, 0⼤于负数,⽌数⼤于⼀切负数,两个负数⽐较,绝对值⼤的反⽽⼩;法则3.两个数⽐较⼤⼩常见的⽅法有:求差法,求商法,倒数法,估算法,平⽅法。
例题分析J ⽆-3 + ^3 — |x| + 121、x-3求⽦⼙的值.练习1.已知y = &-2 + - x + 3,求严的平⽅根。
练习2?若勿3— 7和哥3⼙+ 4互为相反数,求x+y的值。
2、已知〃是满⾜不等式-巧X < ------2的最⼤整数.求』什"的平⽅根.3、已知a是怖的整数部分,&是它的⼒澈部分,求° f 1 b + 3 f 的值.练习:已知5 + TH的⼒澈部分为a, 5- VH的⼩数部分为b,则⾊+b的值是_______ ; a—b的值是__________4、阅读理解,回答问题.在解决数学问题的过程⼬,有时会遇到⽐较两数⼈⼩的问题,解决这类问题的关键是根据命题的题设和结论特征,采川相应办法,其中巧川“作差法”是解决此类问题的⼀种⾏之有效的⽅法:若 a —b>0,则 a 〉b ;若 a —b=0,则 a = b ;若 a —b<0,则 a 〈b.例如:在⽐较m2 + l 与m2的⼤⼩时,⼩东同学的作法是:T (陀$ +1)⼀(叨⼻)=叨2 * ] _ ⾎2 = 1 >:.m 2+1 > ^2.请你参考⼩东同学的作法,⽐较⼈⼩:4$ ----------- (2 + 练习: a 在数轴上的位置如图所⽰,则丄卫*的⼤⼩关系是:a.----- * ----- ? ------------------- * ---------------------------------- > -1 a 05、L 2? 知 a 、b ['两⾜ +8 + |b — = 0解关于x 的⽅程 @ + 2)兀+沪=么-1练习:设a 、b 、c 都是实数’且满⾜(2_拧+』/+⼼+以+ * +別=0 求代数式 2a-3b-c 的值。
实数复习一、知识梳理1.平方根(1)算术平方根的定义:一个正数x的平方等于a,即_____,那么这个正数x就叫做a 的________.0的算术平方根是_____。
(2)平方根的定义:如果一个数x的平方等于a,即_____,那么这个数x就叫做a的_______。
(3)平方根的性质:一个正数有_____个平方根,它们________;0只有_____个平方根,它是_____;负数_____平方根。
(4)开平方:求一个数a的________的运算,叫做开平方。
2.立方根(1)立方根的定义:如果一个数x的_____等于a,即_____,那么这个数x就叫做a的立方根。
(2)立方根的性质:每个数a都只有_____个立方根。
正数的立方根是_____;0的立方根是_____;负数的立方根是_____。
(3)开立方:求一个数a的________的运算叫做开立方。
3.实数(1)无理数的定义:无限不循环小数叫做_____。
(2)实数的定义:_____和_____统称实数。
(3)实数的分类:①按定义分:________________________;②按性质分:________________________。
(4)实数与数轴上的点的对应关系:_____与数轴上的点是_____对应的。
(5)有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义_____。
4.实数的运算:(1)实数的加、减、乘、除、乘方运算和_______一样,而且有理数的运算律对__________仍然适用。
(2)两个非负数的算术平方根的积等于这两个数积的算术平方根,算术平方根的商等于这两个数商的算术平方根,用式子表示为__________;__________。
考点(1 ) 平方根、立方根的定义与性质1 (1)下列各数是否有平方根?若有,求出其平方根;若没有,说明理由。
①641②(-2)2 ③(-1)3 (2)下列各数是否有立方根?若有,求出其立方根。
实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。
二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。
三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。
四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。
五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。
第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。
二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。
三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。
四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。
五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。
第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。
二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。
北师大八上第二章《实数》单元复习
班级: 姓名: 座号:
类型一.有关概念的识别 【知识点一】算术平方根
1.若一个数的算术平方根是7,那么这个数是 ;
2.9的算术平方根是 ;3.2)3
2
(的算术平方根是 ; 【知识点二】平方根 1.
121
4
的平方根是_________; 2. (-41)2的算术平方根是_________;
3. 一个正数的平方根是2a -1与-a +2,则a =_____,这个正数是________;
4. 4的值等于_________,4的平方根为_________;
5. (-4)2
的平方根是_________,算术平方根是_________. 6. 2)2(-的化简结果是 ( ) A.2
B.-2
C.2或-2
D.4
7. 下列式子中,正确的是 ( )
A.55-=-
B.-6.3=-0.6
C.2)13(-=13
D.36=±6 【知识点三】立方根
1、下列说法正确的是( )
A.任意数a 的平方根有2个,它们互为相反数;
B.任意数a 的立方根有1个;
C.-3是27的负的立方根
D.(-1)2
的立方根是-1 2.下列说法中,不正确的是( )
A 、-1的立方是-1
B 、-1的立方根是-1
C 、-1的平方是1
D 、-1的平方根是-1 3、下列判断正确的是( )
A 、64的立方根是±4
B 、(-1)1-的立方根是1
C 、64的立方根是2
D 、如果3
a =a ,则a =0
4.()33
7-的正确结果是 ( )
C
B
A
A、7
B、-7
C、±7
D、无意义
5.某数的立方根是它本身,这样的数有()
A、1个
B、2个
C、3个
D、4个【知识点四】无理数、实数
1. (1
与下列哪些数相乘,结果是有理数?
A.
. C
D
E.
问题的答案是(只需填字母):;
(2相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示) .
2.
下面几个数:0.23&&,
1.010010001…,
,3π,
22
7
理数的个数有()
A、1
B、2
C、3
D、4
3. 下列各数-2、、3.14159、、()2、、中无理数有
4. 设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根。
其中,所有正确说法的序号是【】
(A) ①④ (B) ②③ (C) ①②④(D) ①③④
的倒数是;的相反数是;的倒数是。
【知识点五】最简二次根式
1. 下列根式中不是最简二次根式的是().
A. B. C. D.
2. y>0)是二次根式,那么,化为最简二次根式是().
2-0
3
π
5
1
38
26810
A
(y>0) B y>0) C y>0) D .以上都不对
3. 下列根式中,是最简二次根式的是( )
【知识点六】同类二次根式
1. 下列各组二次根式中是同类二次根式的是( )
A .21
12与
B .2718与
C .3
13与 D .5445与 2. 已知二次根式与是同类二次根式,则的α值可以是( )
A 、5
B 、6
C 、7
D 、8
3. )
4. 下列二次根式中,不能与
合并的是( )
A .
B .
C .
D .
5. 是同类二次根式的是( ).
A .①和②
B .②和③
C .①和④
D .③和④ 类型二.性质概念应用类
【知识点七】二次根式的双重非负性
1. ) A. 它是一个非负数 B. 它是一个无理数 C. 它是最简二次根式 D. 它的最小值为3
2. 2(5)|1|0b c +++=,那么a+b-c 的值为___________。
3. 下列四个式子中,x 的取值范围为x≥2的是【 】
A
B C
4.
x 的取值范围是( )
A .x >0
B .x >3
C .x ≥3
D .x ≤3
5.
在式子
11,,x 2x 3-- x 可以取2和3的是【 】 A .1x 2- B .1x 3
- C
.D
6. 若y =﹣2,则(x +y )y
=
7. 要使式子有意义,则m
的取值范围是( )
A .m
>﹣1
B . m ≥﹣1
C . m
>﹣1且m ≠1 D . m ≥﹣1且m ≠1
【知识点八】2a = 1. 化简(2=____ 2
= 2.化简:的结果为( )
A 、4—2a
B 、0
C 、2a —4
D 、4
(0)
||(0)a a a a a ≥⎧==⎨-<⎩
1. 若a <1,化简1=( )
A .a ﹣2
B .2﹣a
C .a
D .﹣a
2. 实数a 在数轴上的位置如图所示,则24a-()+2
11a-()化简后为( )
A .7
B .﹣7
C .2a ﹣15
D .无法确定
3. 化简二次根式3a -,结果是【 】
A 、a a -
B 、a a --
C 、a a -
D 、a a 4. 把二次根式a a
-
1
化简,正确的结果是( ) A. -a
B. --a
C. -a
D. a
5. 计算:(13-)0+(3
1)-1-2)5(--|-1|
2
1a -+
【知识点十】估算、整数部分、小数部分、比较大小 1.
请将5
22
、这三个数用“>”连结起来 2.
1的值在【 】
A .2到3之间
B .3到4之间
C .4到5之间
D .5到6之间 3.
a =,则下列结论正确的是( )
A. 4.5 5.0a <<
B. 5.0 5.5a <<
C.5.5 6.0a <<
D. 6.0 6.5a << 4. 比较大小:
(填“>”、“=”或“<”) 5. (填“>”、“=”或“<”) 6.
a ,小数部分为
b ,求a 2-b 2的值
【知识点十一】数形结合
1. 点A
在数轴上表示的数为,点B 在数轴上表示的数为则A ,B 两点的距离为______
2.如图,数轴上与1
A ,
B ,点B 关于点A 的对称点为
C , 设点C 表示的数为x ,则x -=【 】
A B . C . D .2
3. 如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │
的结果等于( )
A .-2b
B .2b
C .-2a
D .2a 4. 如图,在数轴上,两点之间表示整数的点有
个.
类型四.计算类
【知识点十二】二次根式的计算
2332A B ,O
C A
B
1
o
a A B
1.计算:=+312 ;计算:=-⨯263_______________.
2. 计算:1)21
(2
4
8-+-
=________ 计算)13)(13(-+=___________ 3. 计算
3的结果是
的值是
4. 下列计算正确的是( )
A
、= B 、 C 、 D
5. 的结果是( )
A .3
B .-3
C .6.
】
A .﹣1
B .1
C .4-
D .7 7.计算
的结果是( ) A .6
B .4
C .2
D .12
8. 计算:
9.
20102632=⋅224=-3=-}483
1
375(12-+363+⎛÷ ⎝02)+
类型五.实数应用题
1.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个
面积为这两个图形的面积之和的正方形,问边长应为多少cm?
2.已知三角形的三边a、b、c的长分别为45cm、80cm、125cm,求这个三角形的周长和面积
类型六. 探究类试题
1.如图所示,某计算装置有一数据入口A和一运算结果的
出口B,下表给出的是小红输入的数字及所得的运算
结果:
若小红输入的数为48,输出的结果应为多少?若小红输入的数字为a,你能用a 表示输出结果吗?
2.探究题:阅读下列解题过程:
请回答下列问题:
(1)
(2)、利用上面所提供的解法,请化简:
+L
22
1⨯
===
-
22
1⨯
===
-
=()2
n≥。