8.1_二元一次方程组教案
- 格式:doc
- 大小:142.00 KB
- 文档页数:6
人教版七年级数学下册8.1《二元一次方程组》教案一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章的第一节内容,主要介绍了二元一次方程组的概念、解法和应用。
本节内容是学生继学习一元一次方程之后,进一步研究二元一次方程,培养学生解决实际问题的能力,为后续学习更复杂的方程组打下基础。
二. 学情分析学生在之前的学习中已经掌握了一元一次方程的知识,具备了一定的数学思维能力和问题解决能力。
但七年级的学生在逻辑思维和抽象思维方面仍在发展过程中,因此,在教学过程中,需要教师引导学生逐步理解二元一次方程组的概念,并通过实际例子让学生感受方程组在解决实际问题中的作用。
三. 教学目标1.理解二元一次方程组的概念,掌握二元一次方程组的解法;2.能够运用二元一次方程组解决实际问题;3.培养学生的合作交流能力和抽象思维能力。
四. 教学重难点1.重点:二元一次方程组的概念,解法及应用;2.难点:二元一次方程组的解法,以及如何将实际问题转化为方程组问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题,提高学生的数学思维能力和实际问题解决能力。
六. 教学准备1.准备相关案例和练习题;2.准备课件和教学素材;3.准备小组讨论的安排。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引入二元一次方程组的概念。
2.呈现(10分钟)呈现二元一次方程组的定义和性质,引导学生理解并能够描述二元一次方程组。
3.操练(10分钟)通过一些简单的例子,让学生练习解二元一次方程组,引导学生掌握解题方法。
4.巩固(10分钟)让学生分组讨论,分析并解决一些实际问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为方程组问题,提高学生的问题解决能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
人教版义务教育课程标准教科书七年级下册
8.1二元一次方程组教学设计
责任学校十街中学责任教师祁小娟
一、教材分析
1、地位作用:《二元一次方程组》是新人教版教材七年级下册第八章《二元一次方程组》的第一节。
本章在学生对一元一次方程已有认识的基础上,对二元一次方程组进行讨论。
涉及求多个未知数的问题是普遍存在的,而方程组是解决这些问题的有力工具。
本节作为“二元一次方程组”的起始课,又是一节概念课,对激发学生学习方程组的兴趣,获得解决实际问题的基本方法具有十分重要的作用,又是学习三元一次方程组的基础,起到承上启下的作用。
2、教学目标:
1、掌握二元一次方程、二元一次方程组及其解的概念;
2、会初步根据实际问题列出二元一次方程组,并尝试找出简单的二元一次方程组的解。
目标分析:
通过二元一次方程与一元一次方程概念的比较,用类比的方法学习二元一次方程、二元一次方程组及其解的概念。
经历把实际问题转化为二元一次方程组问题的过程,体会二元一次方程组是刻画现实世界中含有两个未知数问题的有效数学模型。
3、教学重、难点
教学重点:①了解二元一次方程、二元一次方程组及其解的概念;②能根据实际问题列出二元一次方程组。
教学难点:由一元向多元的过渡,找出简单的二元一次方程组的解。
突破难点的方法:学生自主探索——教师引导的方法。
二、教学准备:多媒体课件
三、教学过程。
教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。
相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。
2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。
四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。
1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。
3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。
8.1 二元一次方程组一、教学目标:1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.二、教学重难点:教学难点:弄懂二元一次方程组解的含义知识重点:二元一次方程、二元一次方程组及其解的含义。
三、创设情境,导入课题幻灯:古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.方案一:算术方法把兔子都看成鸡,则多出94-35 × 2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,进而鸡有35-12=23只.或类似的也可以先求鸡的数量.35×4-94=46,46÷2=23方案二:列一元一次方程解设有x只鸡,则有(35-x)只兔.根据题意,得2x十4(35-x)=94.(解方程略)教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?四、分析问题(一)讨论二元一次方程、二元一次方程组的概念师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)方案三:设有x 只鸡,y 只兔,依题意得x +y=35,①2x +4y=94.②针对学生列出的这两个方程,提出如下问题:(1)、你能给这两个方程起个名字吗?(2)为什么叫二元一次方程呢?(3)什么样的方程叫二元一次方程呢?结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?⎩⎨⎧=+=+944235y x y x 定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.(二)讨论二元一次方程、二元一次方程组的解的概念探究活动:满足x +y=35的值有哪些?请填入表中:教师启发:(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?(3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为⎩⎨⎧==by a x师:那么什么是二元一次方程组的解呢?学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做⎩⎨⎧=+=+944235y x y x 的解记为:⎩⎨⎧==1223y x 注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”. 议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢? 巩固新知:例1 下列各对数值中是二元一次方程x +2y=2的解是( )A ⎩⎨⎧==02y xB ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x解法分析:将A 、B,C,D 中各对数值逐一代人方程检验是否满足方程,选A,B,C.变式:其中是二元一次方程组⎩⎨⎧-=+=+2222y x y x 解是( ) 解法分析:在例1的基础上,进一步检验A 、B 、C 中各对值是否满足方程2x +y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.例2(教材102页练习)五、小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.本节课学习了哪些内容?你有哪些收获?(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)六、布置作业1、必做题:教科书102页习题8.1第1、2题.2、选做题:教科书102页习题8.1第3题.3、备选题:(1)根据下列语句,列出二元一次方程:①甲数的一半与乙数的32的和为11 ②甲数和乙数的2倍的差为17(2)方程x +2y=7在自然数范围内的解( )A 有无数个B 有一个C 有两个D 有三个(3)若mx +y=1是关于x,y 的二元一次方程,那么m的值应是( )A.m ≠OB. m=0C. m 是正有理数D. m 是负有理数(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?。
8.1 二元一次方程组 教案【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b=⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】(2015春•桃园县校级期末)下列各方程中,是二元一次方程的是( )A .=y+5xB .3x+2y=2x+2yC .x=y 2+1D .【答案】D .类型二、二元一次方程的解2.(2016春•吴兴区期末)下列数组中,是二元一次方程x+y=7的解的是( )A .B .C .D .【思路点拨】二元一次方程x+y=7的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【答案】B【解析】解:A 、把x=﹣2,y=5代入方程,左边=﹣2+5≠右边,所以不是方程的解;故本选项错误;B 、把x=3,y=4代入方程,左边=右边=7,所以是方程的解;故本选项正确;C 、把x=﹣1,y=7代入方程,左边=6≠右边,所以不是方程的解;故本选项错误;D 、把x=﹣2,y=﹣5代入方程,左边=﹣7≠右边,所以不是方程的解.故本选项错误. 故选B .【总结升华】考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.【高清课堂:二元一次方程组的概念409142 例2(2)】举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解. 【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4.(2015春•道外区期末)下列各方程组中,属于二元一次方程组的是( )A .B .C .D .【答案】C .【解析】解:A 是二元二次方程组,故A 不是二元一次方程组;B 是三元一次方程组,故B 不是二元一次方程组;C 是二元一次方程组,故C 是二元一次方程组;D 不是整式方程,故D 不是二元一次方程组;【总结升华】本题考查了二元一次方程组,含有两个未知数,且每个未知数的次数都是1的方程式二元一次方程,两个二元一次方程组成的方程组.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解.(2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】 解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x-5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组. 注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。
8.1 二元一次方程组第一课时教课方案23 中宋运美教学目标重点难点知识技术1、使学生掌握二元一次方程、二元一次方程组的观点。
2、使学生认识二元一次方程、二元一次方程组的解的含义。
数学思虑1、经过学习二元一次方程、二元一次方程组的观点让学生体验方程组的特色。
2、认识二元一次方程、二元一次方程组的解的含义同时学会研究问题的方法。
解决问题1、会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
2、会查验一对数是不是方程组的解。
感情态度经过研究实质问题,领会数学的应用价值,提升剖析问题、解决问题的能力。
是学生认识到一对数一定同时知足两个二元一次方程,才是相应的二元一次方程组的解。
掌握查验一对数是不是某个二元一次方程的解的书写格式。
理解二元一次方程组的解的含义。
教课过程:问题与情境师生行为设计企图一、提出问题由学生独立思虑学生对这两个问题1、文具盒中有红、后,回答以下问题:的猜想会有多种答案,黄两种颜色彩笔共10 (1)发问:假如将为下一步理解二元一次支,请猜一猜,红色、题中的未知量用未知数方程的解的不独一性作黄色彩笔各多少支?表示能够获取什么方准备。
2、篮球联赛中每场程?思虑取的两个问题竞赛都要分出输赢,在(2)你获取的两个指引学生初步领会二元一次竞赛中,甲队共参方程是一元一次方程加了 10 场竞赛,你知道吗?与一元一次方程比甲队胜、负场数分别是较有何异同?你给它起多少吗?个什么名字较适合?二、研究新识,解决问题二元一次方程的概念:(1)联合方程学生要点关注学生x y 10 , x y 22 的对“元”及“次”的理命名,理解并掌握二元解。
一次方程的观点。
(2)练一练:判断以下方程中,哪一些是二元一次方程,哪一些不是?并说明原因( 1)2x 5y 10学生独立思虑,然后再分组沟通,教师深( 2)2x y z 1(3)1y 20入小组,参加活动,关注、学生可否理解观点,x( 4)x2x 2x 0 并紧扣观点解决问题。
8.1 二元一次方程组教学目标:1、理解二元一次方程、二元一次方程组以及它们的解的概念:(1)理解二元一次方程的概念;(2)理解在同一个方程组相同的字母必须表示相同的量;(3)了解二元一次方程与二元一次方程组的关系;(4)二元一次方程(组)的解的概念;(5)理解方程组的解与方程组的关系,能正确检验一组未知数的值是否是方程组的解;(6)掌握方程组的解的读法、表示法(7)理解二元一次方程的解与二元一次方程组的解的区别;(8)已知一个二元一次方程,能用其中一个未知数表示另一个未知数。
2、体会实际问题中常会遇到有多个未知量互相依赖互相影响的现象,二元一次方程组就是反映现实世界中的两个未知量之间的关系的一种有效模型教学重点、难点:二元一次方程,二元一次方程组及其解的含义教学过程:一、 问题探究,概念学习:思考问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。
某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?解法一:可用我们学过的一元一次方程解决,设胜了x 场,则有 2(10)16x x +-= 解法二:引言中的问题包含了哪些必须同时满足的条件?设胜了x 场,负了y 场,你能用方程把这些条件表示出来吗?显然这两个条件可以用方程 10216x y x y +=+= 来表示。
探究1:这两个方程有什么特点?与一元一次方程有什么不同?定义1:像前面列出的方程这样,每个方程都有两个未知数,并且含有未知数的项的次数都是1.像这样的整式方程,我们把它叫做二元一次方程.上面的问题中包含两个必须同时满足的条件,也就是未知数x,y 必须同时满足方程10216x y x y +=+=,把这两个二元一次方程合在一起,写成10216x y x y +=⎧⎨+=⎩就组成了一个方程组. 定义2:这个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个整式方程,像这样的方程组叫做二元一次方程组。
(1)x+y=11;(2)m+1=2;(3)x2+y=5;(4)3x-π=11;(5) -5x=4y+2;(6)7+a=2b+11c(7)2713xy;(8)4xy+5=0.方法归纳:判断一个方程是否为二元一次方程的方法:一看原方程是否是整式方程且只含有两个未知数;二看整理化简后的方程是否具备两个未知数的系数都不为0,且含未知数的项的次数都是1.典例精析例 1. 已知|m-1|x|m|+y2n-1=3是二元一次方程,则m+n=________.方法总结:未知数的次数都是1,未知数的系数不为0。
针对训练1.若x2m-1+5y3n-2m =7是二元一次方程,则m=____,n=____.2.下列方程组是二元一次方程组的是()探究点2:二元一次方程组的解问题1:什么叫二元一次方程的解?问题2:你已知下面三对数值:0,2,xy2,3,xy1,5,xy哪几对是方程2x-y=7的解?哪几对是方程x+2y=-4的解?问题3:方程组,2742x yx y的解是什么?问题4:由此归纳总结出二元一次方程组的解的定义典例精析例2.若2,3xy是方程x-ky=1的解,则k的值为.例3.加工某种产品须经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、二道工序所完成的件数相等?请列出符合题意的二元一次方程组.方法总结:读懂题意,结合实际,找到等量关系,根据等量关系设未知数列方程。
针对训练根据以下对话,可以求得小红所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本课堂练习1.下列不是二元一次方程组的是( )2.二元一次方程组的解是( )3.关于x、y的方程ax2+bx+2y=3是一个二元一次方程,则a、b的值分别为()A.a=0且b=0B.a=0或b=0C.a=0且b≠0D.a≠0且b≠04.小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x张,2元的贺卡y张,那么可列方程组()5.已知,13xy是方程2x-4y+2a=3的一组解,则a=____.6.若方程2x2m+3+3y3n-7=0 是关于x、y的二元一次方程,则m=______,n=______.方法总结:紧扣二元一次方程的概念解题。