Torture Tests A Quantitative Analysis for the Robustness of Knowledge-Based Systems
- 格式:pdf
- 大小:129.90 KB
- 文档页数:16
分析化学名词解释1. 定性分析(qualitative analysis):是鉴定试样由哪些元素、离子、基团或化合物组成,即确定物质的组成。
2. 定量分析(quantitative analysis):是测定试样中某一或某些组分的量,有时是测定所有成分。
3. 滴定分析法(titrimetric analysis):又称容量分析(volumetric analysis)。
是将一种已知准确浓度的试剂溶液(标准溶液),滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量关系定量反应为止,然后根据所加的试剂溶液的浓度和体积,计算出被测物质的量。
4. 重量分析法(gravimetric analysis method):是通过称量物质的某种称量形式的质量来确定被测组分含量的一种定量分析方法。
5. 色谱法(chromatography):是根据混合物中各组分在两相分配系数的不同进行分离,而后逐个分析。
6. 仪器分析(instrumental analysis):是使用较特殊的仪器进行分析的方法,是以物质的物理或物理化学性质为基础的分析方法。
7. 准确度(accuracy):是指测量值与真值接近的程度。
———用误差衡量8. 精密度(precision):是平行测量的各测量值之间互相接近的程度。
9. 绝对误差(absolute error):测量值与真值之差。
δ=X-μ10.相对误差(relative error):绝对误差δ与真值μ的比值。
(相对误差用Er表示)11.回收实验:当采用所建方法测出试样中某组分含量后,可在几份相同试样(n≥5)中加入适量待测组分的纯品,以相同条件进行测定,计算回收率。
12.空白试验(blank test):在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析实验,称为空白实验。
13.有效数字(significant figure):是指在分析工作中实际上能测量到的数字。
什么是定量研究?定量研究一般是为了对特定研究对象的总体得出统计结果而进行的。
定性研究具有探索性、诊断性和预测性等特点,它并不追求精确的结论,而只是了解问题之所在,摸清情况,得出感性认识。
定性研究的主要方法包括:与几个人面谈的小组访问,要求详细回答的深度访问,以及各种投影技术等。
在定量研究中,信息都是用某种数字来表示的。
在对这些数字进行处理、分析时,首先要明确这些信息资料是依据何种尺度进行测定、加工的,史蒂文斯(S. S. Stevens)将尺度分为四种类型,即名义尺度、顺序尺度、间距尺度和比例尺度。
[编辑]定量研究的四种测定尺度及特征名义尺度所使用的数值,用于表现它是否属于同一个人或物。
顺序尺度所使用的数值的大小,是与研究对象的特定顺序相对应的。
例如,给社会阶层中的上上层、中上层、中层、中下层、下下层等分别标为“5、4、3、2、1”或者“3、2.5、2、1.5、1”就属于这一类。
只是其中表示上上层的5与表示中上层的4的差距,和表示中上层的4与表示中层的3的差距,并不一定是相等的。
5、4、3 等是任意加上去的符号,如果记为 100、50、10 也无妨。
间距尺度所使用的数值,不仅表示测定对象所具有的量的多少,还表示它们大小的程度即间隔的大小。
不过,这种尺度中的原点可以是任意设定的,但并不意味着该事物的量为“无”。
例如,O°C 为绝对温度273°K,华氏32°F。
名义尺度和顺序尺度的数值不能进行加减乘除,但间距尺度的数值是可以进行加减运算的。
然而,由于原点是任意设定的,所以不能进行乘除运算。
例如,5℃和 10℃之间的差,可以说与15℃和20℃之间的差是相同的,都是5°C。
但不能说 20℃就是比5℃高4倍的温度。
比例尺度的意义是绝对的,即它有着含义为“无”量的原点0。
长度、重量、时间等都是比例尺度测定的范围。
比例尺度测定值的差和比都是可以比较的。
例如:5分钟与10 分钟之间的差和10分钟与15分钟之间的差都是5 分钟,10 分钟是2分钟的5倍。
常用药品检验与分析专业英语中国药典:Chinese Pharmacopoeia,ChP美国药典:The United States Pharmacopoeia,USP美国国家处方集:The National Formulary,NF英国药典:British Pharmacopoeia,BP欧洲药典:European Pharmacopoeia,Ph.Eup国际药典:The International Pharmacopoeia,Ph.Int释药系统:drug delivery system,DDS良好药品实验研究规范:Good Laboratory Practice,GLP良好药品生产规范:Good Manufacture Practice,GMP良好药品供应规范:Good Supply Practice,GSP良好药品临床试验规范:Good Clinical Practice,GCP分析质量管理:Analytical Quality Control,AQC药物的鉴别试验identification test一般鉴别试验general identification test专属鉴别试验specific identification test灵敏度sensitivity最低检出量minimum detectable quantity最低检出浓度minimum detectable concentration炽灼残渣residue on ignition定性分析:qualitative analysis定量分析:quantitative analysis质量控制:quality control(QC)容量滴定法:volumetric precipitation method 重量分析法:gravimetric analysis精密度:precision标准偏差:standard deviation,SD orS相对标准偏差:relative standard deviation,RSD 变异系数:coefficient of variation,CV批内精密度:within-run precision日内精密度:within-day precision批间精密度:between-run precision日间精密度:day to day precision准确度:accuracy定量限:limit of quantitation,LOQ检测限:limit of detection,LOD选择性:selectivity专属性:specificity线性与范围:linearity and range重现性:ruggedness耐用性:robustness误差传递:propagation of error空白试验:blank test对照试验:contrast test平行测定:replicate determination继沉淀:postprecipitation共沉淀:coprecipitation化学因数:chemical factor色谱法(层析法):chromatography固定相:stationary phase流动相:mobile phase差示热分析法:differential thermal analysis,DTA 氧瓶燃烧法:oxygen flask combustion method治疗药物浓度监测:therapeutic drug monitoring,TDM 液-液提取法:liquid-liquid extraction,LLE液-固提取法:liquid-solid extraction LSE标准溶液:standard solution碘量法:iodimetry溴酸钾法:potassium bromate method重铬酸钾法:potassium dichromate method高锰酸钾法:potassium permanganate method平板色谱法:plane chromatography纸色谱法:paper chromatography薄层色谱法:thin layer chromatography,TLC分配色谱法:partition chromatography吸附色谱法:adsorpion chromaography离子交换色谱法:ion exchange chromatography,IEC 分配系数:distribution cofficient交联度:degree of cross linking交换容量:exchange capacity薄层板:thin layer plate展开剂:developing solvent ,developer相对比移值:relative Rf, Rr。
定量研究方法英语Quantitative research methods are a cornerstone of empirical inquiry, providing a systematic approach to understanding phenomena through numerical data. These methods are characterized by their objectivity, structured design, and the use of statistical tools to analyze and interpret data.In quantitative research, the process begins with the formulation of a hypothesis or research question. This is followed by the development of a research design that specifies the population of interest, the sample to be studied, and the variables to be measured. The design may take the form of experiments, surveys, or observational studies, each with its own set of protocols to ensure the validity and reliability of the findings.Data collection in quantitative research is typically done through standardized instruments such as questionnaires, tests, or direct observation. These instruments are chosen or developed to ensure that they accurately measure the constructs of interest and that they are administered in a consistent manner across all participants.Once data is collected, it is analyzed using statistical techniques. Descriptive statistics are used to summarize the data, while inferential statistics are employed to test hypotheses and make inferences about the population fromwhich the sample was drawn. The choice of statistical tests depends on the nature of the data and the research questions being addressed.Quantitative research methods are widely used across various disciplines, including psychology, education, economics, and public health. They are particularly valuable for identifying patterns, trends, and relationships within large datasets and for making predictions based on empirical evidence.However, it is important to recognize the limitations of quantitative research. These methods may not be suitable for exploring complex phenomena that are not easily quantifiable or for understanding the subjective experiences of individuals. Moreover, the reliance on numerical data can sometimes lead to an oversimplification of reality, ignoring the richness and complexity of human behavior.In conclusion, quantitative research methods offer a powerful toolkit for scientific inquiry, enabling researchers to test theories, evaluate interventions, and inform policy decisions with empirical evidence. Yet, they should be complemented with qualitative approaches to provide a more comprehensive understanding of the phenomena under investigation.。
第一章绪论分析化学:analytical chemistry 定性分析:qualitative analysis 定量分析:quantitative analysis 物理分析:physical analysis 物理化学分析:physico-chemical analysis 仪器分析法:instrumental analysis 流动注射分析法:flow injectionanalysis ;FIA 顺序注射分析法:sequentical injection analysis;SIA 化学计量学:chemometrics第二章误差的分析数据处理绝对误差:absolute error 相对误差:relative error 系统误差:systematic error 可定误差:determinate error 随机误差:accidental error 不可定误差:indeterminate error 准确度:accuracy 精确度:precision 偏差:debiation ,d 平均偏差:average debiation 相对平均偏差:relative average debiation 标准偏差(标准差):standerd deviation;S相对平均偏差:relatibe standard deviation;RSD变异系数:coefficient of variation误差传递:propagation of error有效数字:significant figure置信水平:confidence level显著性水平:level of significance合并标准偏差(组合标准差):pooled standard debiation 舍弃商:rejection quotient ;Q化学定量分析第三章滴定分析概论滴定分析法:titrametric analysis 滴定:titration容量分析法:volumetric analysis 化学计量点:stoichiometric point 等当点:equivalent point 电荷平衡:charge balance 电荷平衡式:charge balance equation质量平衡:mass balance 物料平衡:material balance 质量平衡式:mass balance equation 第四章酸碱滴定法酸碱滴定法:acid-base titrations 质子自递反应:autoprotolysis reaction质子自递常数:autoprotolysis constant质子条件式:proton balance equation 酸碱指示剂:acid-base indicator 指示剂常数:indicator constant 变色范围:colour change interval 混合指示剂:mixed indicator 双指示剂滴定法:double indicator titration 第五章非水滴定法非水滴定法:nonaqueous titrations 质子溶剂:protonic solvent 酸性溶剂:acid solvent 碱性溶剂:basic solvent 两性溶剂:amphototeric solvent 无质子溶剂:aprotic solvent 均化效应:differentiating effect 区分性溶剂:differentiating solvent 离子化:ionization 离解:dissociation 结晶紫:crystal violet萘酚苯甲醇:a -naphthalphenol benzyl alcohol奎哪啶红:quinadinered 百里酚蓝:thymol blue 偶氮紫:azo violet 溴酚蓝:bromophenol blue第六章配位滴定法配位滴定法:compleximetry 乙二胺四乙酸:ethylenediamine tetraacetic acid,EDTA 螯合物:chelate compound 金属指示剂:metal lochrome indcator第七章氧化还原滴定法氧化还原滴定法:oxidation-reduction titration 碘量法:iodimetry溴量法:bromimetry ] 溴量法:bromine method 铈量法:cerimetry 高锰酸钾法:potassium permanganate method 条件电位:conditional potential 溴酸钾法:potassium bromate method 硫酸铈法:cerium sulphate method 偏高碘酸:metaperiodic acid 高碘酸盐:periodate 亚硝酸钠法:sodium nitrite method 重氮化反应:diazotization reaction 重氮化滴定法:diazotization titration 亚硝基化反应:nitrozation reaction 亚硝基化滴定法:nitrozation titration 外指示剂:external indicator 外指示剂:outside indicator 重铬酸钾法:potassium dichromate method第八章沉淀滴定法沉淀滴定法:precipitation titration 容量滴定法:volumetric precipitation method 银量法:argentometric method第九章重量分析法重量分析法:gravimetric analysis 挥发法:volatilization method 引湿水(湿存水):water of hydroscopicity 包埋(藏)水:occluded water 吸入水:water of imbibition 结晶水:water of crystallization 组成水:water of composition 液- 液萃取法:liquid-liquid extration溶剂萃取法:solvent extration 反萃取:counter extraction 分配系数:partition coefficient 分配比:distribution ratio 离子对(离子缔合物):ion pair 沉淀形式:precipitation forms 称量形式:weighing forms《分析化学》下册仪器分析概述物理分析:physical analysis 物理化学分析:physicochemical analysis 仪器分析:instrumental analysis第十章电位法及永停滴定法电化学分析:electrochemical analysis 电解法:electrolytic analysis method 电重量法:electtogravimetry 库仑法:coulometry 库仑滴定法:coulometric titration 电导法:conductometry 电导分析法:conductometric analysis 电导滴定法:conductometric titration 电位法:potentiometry 直接电位法:dirext potentiometry 电位滴定法:potentiometric titration 伏安法:voltammetry 极谱法:polarography 溶出法:stripping method 电流滴定法:amperometric titration 化学双电层:chemical double layer 相界电位:phase boundary potential 金属电极电位:electrode potential 化学电池:chemical cell 液接界面:liquid junction boundary 原电池:galvanic cell 电解池:electrolytic cell 负极:cathrode 正极:anode 电池电动势:eletromotive force 指示电极:indicator electrode 参比电极:reference electroade 标准氢电极:standard hydrogen electrode 一级参比电极:primary reference electrode 饱和甘汞电极:standard calomel electrode 银-氯化银电极:silver silver-chloride electrode 液接界面:liquid junction boundary 不对称电位:asymmetry potential表观PH值:apparent PH 复合PH 电极:combination PHelectrode 离子选择电极:ion selective electrode 敏感器:sensor晶体电极:crystalline electrodes 均相膜电极:homogeneous membranceelectrodes 非均相膜电极:heterog eneous membrance electrodes 非晶体电极:non- crystalline electrodes 刚性基质电极:rigid matrix electrode 流流体载动电极:electrode with a mobile carrier 气敏电极:gas sensing electrodes 酶电极:enzyme electrodes 金属氧化物半导体场效应晶体管:MOSFET 离子选择场效应管:ISFET 总离子强度调节缓冲剂:total ion strength adjustment buffer,TISAB 永停滴定法:dead-stop titration 双电流滴定法(双安培滴定法):double amperometric titration第十一章光谱分析法概论普朗克常数:Plank constant 电磁波谱:electromagnetic spectrum 光谱:spectrum 光谱分析法:spectroscopic analysis 原子发射光谱法:atomic emission spectroscopy 质量谱:mass spectrum 质谱法:mass spectroscopy,MS第十二章紫外-可见分光光度法紫外-可见分光光度法:ultraviolet and visible spectrophotometry;UV-vis 肩峰:shoulder peak 末端吸收:end absorbtion 生色团:chromophore 助色团:auxochrome红移:red shift 长移:bathochromic shift 短移:hypsochromic shift 蓝(紫)移:blue shift 增色效应(浓色效应):hyperchromic effect 减色效应(淡色效应):hypochromic effect 强带:strong band 弱带:weak band 吸收带:absorption band 透光率:transmitance,T 吸光度:absorbance谱带宽度:band width 杂散光:stray light 噪声:noise 暗噪声:dark noise 散粒噪声:signal shot noise 闪耀光栅:blazed grating 全息光栅:holographic graaing 光二极管阵列检测器:photodiode array detector 偏最小二乘法:partial least squares method ,PLS 褶合光谱法:convolution spectrometry 褶合变换:convolution transform,CT 离散小波变换:wavelet transform,WT 多尺度细化分析:multiscale analysis 供电子取代基:electron donating group 吸电子取代基:electron with-drawing group第十三章荧光分析法荧光:fluorescence 荧光分析法:fluorometryX- 射线荧光分析法:X-ray fulorometry 原子荧光分析法:atomic fluorometry 分子荧光分析法:molecular fluorometry 振动弛豫:vibrational relexation 内转换:internal conversion 外转换:external conversion 体系间跨越:intersystem crossing 激发光谱:excitation spectrum 荧光光谱:fluorescence spectrum 斯托克斯位移:Stokes shift 荧光寿命:fluorescence life time 荧光效率:fluorescence efficiency 荧光量子产率:fluorescence quantum yield 荧光熄灭法:fluorescence quemching method 散射光:scattering light 瑞利光:Reyleith scanttering light 拉曼光:Ramanscattering light 第十四章红外分光光度法红外线:infrared ray,IR 中红外吸收光谱:mid-infrared absorption spectrum,Mid-IR 远红外光谱:Far-IR 微波谱:microwave spectrum,MV红外吸收光谱法:infrared spectroscopy 红外分光光度法:infrared spectrophotometry 振动形式:mode of vibration伸缩振动:stretching vibration对称伸缩振动:symmetrical stretching vibration不对称伸缩振动:asymmetrical stretching vibration 弯曲振动:bending vibration 变形振动:formation vibration面内弯曲振动:in-pla ne ben di ng vibratio n, 3剪式振动:scissori ng vibratio n, S面内摇摆振动:面外弯曲振动:面外摇摆振动:rock ing vibrati on, pout-of-plane bending vibration, 丫wagging vibration, 3蜷曲振动:twisting vibration , T对称变形振动:symmetrical deformation vibration , S s不对称变形振动:asymmetrical deformation vibration, S as 特征吸收峰:charateristic avsorption band特征频率:characteristic frequency相关吸收峰:correlation absorption band杂化影响:hybridization affect环大小效应:ring size effect吸收峰的强度:intensity of absorption band环折叠振动:ring prckering vibration第十五章原子吸收分光光度法原子光谱法:atomic spectroscopy原子吸收分光光度法:atomic absorption spectrophotometry,AAS原子发射分光光度法:atomic emmsion spectrophotometry,AES原子荧光分光光度法:atomic fluorescence spectrophotometry,AFS第十六章核磁共振波谱法核磁共振:nuclear magnetic resonance,NMR 核磁共振波谱:NMRspectrum 核磁共振波谱法:NMRspectroscopy扫场:swept field扫频:seept frequency连续波核磁共振:continuous wave NMR,CWNMRFourier 变换NMR:PFT-NMR,FT-NMR二维核磁共振谱:2D-NMR质子核磁共振谱:proton magnetic resonance spectrum,PMR氢谱:1H-NMR 碳-13 核磁共振谱:13C-NMRspectrum,13CNMR自旋角动量:spin angular momentum 磁旋比:magnetogyric ratio 磁量子数:magnetic quantum number,m 进动:precession 弛豫历程:relaxation mechanism 局部抗磁屏蔽:local diamagnetic shielding 屏蔽常数:shielding constant 化学位移:chemical shift 国际纯粹与应用化学协会:IUPAC 磁各向异性:magnetic anisotropy 远程屏蔽效应:long range shielding effect 结面:nodal plane 自旋-自旋偶合:spin-spin coupling 自旋-自旋分裂:spin=spin splitting单峰:singlet,s双峰:doublet,d三重峰:triplet,t四重峰:quartet五重峰:quintet六重峰:sextet偕偶:geminal coupling邻偶:vicinal coupling远程偶合:long range coupling磁等价:magnetic eqivalence自旋系统:spin system一级光谱:first order spectrum 二级光谱(二级图谱):second order spectrumC-H 光谱:C-H correlated spectroscopy,C-H COSY第十七章质谱法质谱分析法:mass spectrometry质谱:massspectrum,MS棒图:bar graph选择离子检测:selected ion monitoring ,SIM直接进样:direct probe inlet ,DPI接口:interface气相色谱-质谱联用:gas chromatography-mass spectrometry,GC-MS 高效液相色谱-质谱high performance liquid chromatography-mass spectrometry,HPLC-MS联用电子轰击离子源:electron impact source,EI离子峰:quasi-molecular ions化学离子源:chemical ionization source,CI场电离:field ionization,FI场解析:field desorptiion,FD 快速原子轰击离子源:fast stom bombardment ,FAB质量分析器:mass analyzer 磁质谱仪:magnetic-sector mass spectrometer 四极杆质谱仪(四极质谱仪):quadrupole mass spectrometer 原子质量单位:amu 离子丰度:ion abundance相对丰度(相对强度):relative avundance 基峰:base peak 质量范围:mass range 分辨率:resolution 灵敏度:sensitivity 信噪比:S/N 分子离子:molecular ion 碎片离子:fragment ion 同位素离子:isotopic ion 亚稳离子:metastable ion 亚稳峰:metastable peak 母离子:paren ion 子离子:daughter 含奇数个电子的离子:odd electron 含偶数个电子的离子:even eletron,EE 均裂:homolytic cleavage 异裂(非均裂):heterolytic cleavage半均裂:hemi-homolysis cleavage 重排:rearragement 分子量:MWa—裂解:a -cleavage第十八章色谱分析法概论色谱法(层析法):chromatography 固定相:stationary phase 流动相:mobile phase 超临界流体色谱法:SFC 高效毛细管电泳法:high performance capillary electroporesis,HPEC 气相色谱法:gas chromatography,GC 液相色谱法:liquid cromatography,LC 超临界流体色谱法:supercritical fluid chromatography,SFC 气- 固色谱法:GSC 气- 液色谱法:GLC 液- 固色谱法:LSC 液- 液色谱法:LLC柱色谱法:column chromatography填充柱:packed column 毛细管柱:capillary column 微填充柱:icrobore packed column 高效液相色谱法:high performance liquid chromatography,HPLC 平板色谱法:planar 平板色谱法:plane chromatography 纸色谱法:paper chromatography 薄层色谱法:thin layer chromatography,TLC 薄膜色谱法;thiin film chomatography 毛细管电泳法:capillary electrophoresis,CE 分配色谱法:partition chromatography 吸附色谱法:adsorpion chromaography 离子交换色谱法:ion exchange chromatography,IEC 空间排阻色谱法:steric exclusion chromatography,SEC 亲和色谱法:affinity chromatography 分配系数:distribution cofficient 狭义分配系数:partition coefficient 凝胶色谱法:gel chromatography 凝胶渗透色谱法:gel permeation chromatography,GPC 凝胶过滤色谱法:gel filtration chromatography,GFC 渗透系数:permeation coefficien;Kp 化学键合相色谱法:chemically bonded-phase chromatography 分配系数:distribution coefficient 靛菁绿:indocyanine 气相色谱-傅立叶变换红外光谱:GC-FTIR第十九章经典液相色谱法薄层色谱法:TLC 吸附:adsorption 活化:activation 脱活性:deactivation 交联度:degree of cross linking 交换容量:exchange capacity 薄层板:thin layer plate 展开剂:developing solvent ,developer 临界胶束浓度:criticak micolle concentration ,CMC 相对比移值:relative Rf, Rr 分离度:resolution ,R 分离数:separation number,SN煅石膏:Gypsum 羧甲基纤维素钠:CMC-Na 吸收光谱联用:TLC-UV 薄层色谱-荧光联用:TLC-F。
定量分析的英文名词解释Quantitative Analysis: An English Term ExplanationIntroductionThe field of quantitative analysis is a methodical approach that involves the examination and interpretation of data using mathematical and statistical techniques. It plays a crucial role in various disciplines, including finance, economics, business management, and scientific research. This article aims to provide a comprehensive explanation of the English term "quantitative analysis" by exploring its definitions, applications, and key components.Defining Quantitative AnalysisQuantitative analysis refers to the systematic process of analyzing numerical data to uncover patterns, relationships, and trends. Unlike qualitative analysis, which focuses on subjective observations and interpretations, quantitative analysis utilizes objective measurements and mathematical calculations to derive meaningful insights. By quantifying data through statistical models and mathematical formulas, this analytical approach enables researchers and decision-makers to make informed judgments based on empirical evidence.Applications of Quantitative Analysis1. Financial Analysis:Quantitative analysis plays a vital role in the field of finance. Analysts utilize various quantitative techniques to assess investments, evaluate risk, and make strategic decisions. For instance, by using financial ratios and mathematical models, analysts can analyze the performance and stability of companies, determine the fair value of stocks, and predict future market trends.2. Economics:Economists heavily rely on quantitative analysis to study economic phenomena and formulate economic policies. By analyzing economic indicators such as GDP, inflation rates, and unemployment rates, economists can assess the health of economies, predict future trends, and propose effective strategies for economic growth.3. Market Research:Quantitative analysis is widely used in market research to gather and interpret consumer data. Surveys and questionnaires are designed to collect quantitative data, which is then analyzed to understand consumer preferences, behavior patterns, and market trends. Statistical techniques, such as regression analysis and hypothesis testing, enable researchers to identify correlations, test hypotheses, and make predictions.Components of Quantitative Analysis1. Data Collection:The first step in quantitative analysis involves collecting relevant data. This can be done through various methods, such as surveys, experiments, or secondary data sources. It is crucial to ensure the accuracy, reliability, and representativeness of the data collected, as the quality of the analysis heavily relies on the quality of the data.2. Data Analysis:Once the data is collected, it is processed and analyzed using statistical techniques and mathematical models. Descriptive statistics, such as mean, median, and standard deviation, provide insights into the central tendencies and variability of the data. Inferential statistics allow researchers to draw conclusions and make predictions based on a sample of data.3. Data Interpretation:The final step of quantitative analysis involves interpreting the results. This requires critically evaluating the findings, identifying patterns or relationships, and drawing meaningful conclusions. Proper interpretation of quantitative analysis is essential to ensure that the insights gained from the data are relevant, valid, and actionable.ConclusionQuantitative analysis is a valuable tool used across various disciplines to analyze numerical data and derive meaningful insights. Its applications extend to finance, economics, market research, and beyond. By utilizing mathematical and statistical techniques, researchers and decision-makers can make informed judgments based on empirical evidence. Understanding the components and applications of quantitative analysis is essential for those who seek to effectively analyze and interpret numerical data.。
药物分析英文词汇adsorbent 吸附剂adsorption 吸附affinity chromatography 亲和色谱法aliquot (一)份alkalinity 碱度alumina 氧化铝ambient temperature 室温ammonium thiocyanate 硫氰酸铵药物分析英语词汇analytical quality control(AQC)分析质量控制Abbe refractometer 阿贝折射仪anhydrous substance 干燥品 absorbance 吸收度anionic surfactant titration 阴离子表面活性剂滴定法absorbance ratio 吸收度比值absorption 吸收antibiotics-microbial test 抗生素微生物检定法absorption curve 吸收曲线absorption spectrum 吸收光谱 antioxidant 抗氧剂 absorptivity 吸收系数 appendix 附录 accuracy 准确度 application of sample 点样 acid-dye colorimetry 酸性染料比色法area normalization method 面积归一化法acidimetry 酸量法 argentimetry 银量法 acid-insoluble ash 酸不溶性灰分 arsenic 砷 acidity 酸度 arsenic stain 砷斑 activity 活度 ascending development 上行展开additive 添加剂ash-free filter paper 无灰滤纸(定量滤纸)additivity 加和性adjusted retention time 调整保留时间assay 含量测定assay tolerance 含量限度 bromate titration 溴酸盐滴定法atmospheric pressure ionization(API) 大气压离子化bromimetry 溴量法bromocresol green 溴甲酚绿 attenuation 衰减bromocresol purple 溴甲酚紫 back extraction 反萃取bromophenol blue 溴酚蓝 back titration 回滴法bromothymol blue 溴麝香草酚蓝 bacterial endotoxins test 细菌内毒素检查法bulk drug, pharmaceutical product 原料药band absorption 谱带吸收buret 滴定管 baseline correction 基线校正by-product 副产物 baseline drift 基线漂移calibration curve 校正曲线 batch, lot 批calomel electrode 甘汞电极 batch(lot) number 批号calorimetry 量热分析 Benttendorff method 白田道夫(检砷)法capacity factor 容量因子capillary zone electrophoresis (CZE) 毛细管区带电泳between day (day to day, inter-day) precision 日间精密度capillary gas chromatography 毛细管气相色谱法between run (inter-run) precision 批间精密度carrier gas 载气 biotransformation 生物转化cation-exchange resin 阳离子交换树脂bioavailability test 生物利用度试验ceri(o)metry 铈量法 bioequivalence test 生物等效试验characteristics, description 性状 biopharmaceutical analysis 体内药物分析,生物药物分析check valve 单向阀chemical shift 化学位移 blank test 空白试验chelate compound 鳌合物 boiling range 沸程chemically bonded phase 化学键合相British Pharmacopeia (BP) 英国药典chemical equivalent 化学当量 coefficient of distribution 分配系数Chinese Pharmacopeia (ChP) 中国药典coefficient of variation 变异系数color change interval (指示剂)变色范围Chinese material medicine 中成药Chinese materia medica 中药学 color reaction 显色反应 Chinese materia medica preparation 中药制剂colorimetric analysis 比色分析colorimetry 比色法 Chinese Pharmaceutical Association (CPA) 中国药学会column capacity 柱容量column dead volume 柱死体积 chiral 手性的column efficiency 柱效 chiral stationary phase (CSP) 手性固定相column interstitial volume 柱隙体积chiral separation 手性分离column outlet pressure 柱出口压 chirality 手性column temperature 柱温 chiral carbon atom 手性碳原子column pressure 柱压 chromatogram 色谱图column volume 柱体积 chromatography 色谱法column overload 柱超载 chromatographic column 色谱柱column switching 柱切换 chromatographic condition 色谱条件committee of drug evaluation 药品审评委员会chromatographic data processor 色谱数据处理机comparative test 比较试验 chromatographic work station 色谱工作站completeness of solution 溶液的澄清度clarity 澄清度compound medicines 复方药 clathrate, inclusion compound 包合物computer-aided pharmaceutical analysis 计算机辅助药物分析 clearance 清除率concentration-time curve 浓度,时间曲线clinical pharmacy 临床药学confidence interval 置信区间 deflection point 拐点confidence level 置信水平 degassing 脱气 confidence limit 置信限deionized water 去离子水 congealing point 凝点 deliquescence 潮解 congo red 刚果红(指示剂) depressor substances test 降压物质检查法content uniformity 装量差异derivative spectrophotometry 导数分光光度法controlled trial 对照试验correlation coefficient 相关系数 derivatization 衍生化 contrast test 对照试验 descending development 下行展开counter ion 反离子(平衡离子)desiccant 干燥剂 cresol red 甲酚红(指示剂)detection 检查 crucible 坩埚detector 检测器crude drug 生药developer, developing reagent 展开剂crystal violet 结晶紫(指示剂) cuvette, cell 比色池 developing chamber 展开室 cyanide 氰化物deviation 偏差 cyclodextrin 环糊精 dextrose 右旋糖,葡萄糖 cylinder, graduate cylinder, measuring cylinder 量筒diastereoisomer 非对映异构体diazotization 重氮化 cylinder-plate assay 管碟测定法2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法daughter ion (质谱)子离子dead space 死体积 differential scanning calorimetry (DSC) 差示扫描热量法dead-stop titration 永停滴定法differential spectrophotometry 差示分光光度法dead time 死时间decolorization 脱色 differential thermal analysis (DTA) 差示热分析decomposition point 分解点differentiating solvent 区分性溶剂 deflection 偏差diffusion 扩散 electrophoresis 电泳digestion 消化 electrospray interface 电喷雾接口diphastic titration 双相滴定electromigration injection 电迁移进样disintegration test 崩解试验dispersion 分散度 elimination 消除 dissolubility 溶解度 eluate 洗脱液 dissolution test 溶出度检查 elution 洗脱 distilling range 馏程emission spectrochemical analysis 发射光谱分析distribution chromatography 分配色谱enantiomer 对映体 distribution coefficient 分配系数 end absorption 末端吸收 dose 剂量 end point correction 终点校正 drug control institutions 药检机构 endogenous substances 内源性物质drug quality control 药品质量控制enzyme immunoassay(EIA) 酶免疫分析drug release 药物释放度drug standard 药品标准 enzyme drug 酶类药物 drying to constant weight 干燥至恒重enzyme induction 酶诱导enzyme inhibition 酶抑制 dual wavelength spectrophotometry 双波长分光光度法eosin sodium 曙红钠(指示剂) duplicate test 重复试验 epimer 差向异构体 effective constituent 有效成分 equilibrium constant 平衡常数effective plate number 有效板数 equivalence point 等当点 efficiency of column 柱效 error in volumetric analysis 容量分析误差electron capture detector 电子捕获检测器excitation spectrum 激发光谱 electron impact ionization 电子轰击离子化exclusion chromatography 排阻色谱法expiration date 失效期 fluorescence polarization immunoassay(FPIA) external standard method 外标法荧光偏振免疫分析 extract 提取物fluorescent agent 荧光剂 extraction gravimetry 提取重量法fluorescence spectrophotometry 荧光分光光度法extraction titration 提取容量法extrapolated method 外插法,外推法fluorescence detection 荧光检测器factor 系数,因数,因子 fluorimetyr 荧光分析法 feature 特征 foreign odor 异臭Fehling’s reaction 费林反应 foreign pigment 有色杂质 field disorption ionization 场解吸离子化formulary 处方集fraction 馏分 field ionization 场致离子化freezing test 结冻试验filter 过滤,滤光片funnel 漏斗 filtration 过滤fused peaks, overlapped peaks 重叠峰fineness of the particles 颗粒细度fused silica 熔融石英 flame ionization detector(FID) 火焰离子化检测器gas chromatography(GC) 气相色谱法flame emission spectrum 火焰发射光谱gas-liquid chromatography(GLC) 气液色谱法flask 烧瓶gas purifier 气体净化器 flow cell 流通池gel filtration chromatography 凝胶过滤色谱法flow injection analysis 流动注射分析gel permeation chromatography 凝胶渗透色谱法flow rate 流速fluorescamine 荧胺 general identification test 一般鉴别试验fluorescence immunoassay(FIA) 荧光免疫分析general notices (药典)凡例general requirements (药典)通则 hydrophilicity 亲水性hydrophobicity 疏水性 good clinical practices(GCP) 药品临床管理规范hydroscopic 吸湿的hydroxyl value 羟值 good laboratory practices(GLP) 药品实验室管理规范hyperchromic effect 浓色效应 good manufacturing practices(GMP) 药品生产质量管理hypochromic effect 淡色效应规范identification 鉴别 good supply practices(GSP) 药品供应管理规范ignition to constant weight 灼烧至恒重gradient elution 梯度洗脱immobile phase 固定相 grating 光栅immunoassay 免疫测定 gravimetric method 重量法impurity 杂质 Gutzeit test 古蔡(检砷)法inactivation 失活 half peak width 半峰宽index 索引 [halide] disk method, wafer method, pellet method 压片法indicator 指示剂 head-space concentrating injector 顶空浓缩进样器indicator electrode 指示电极inhibitor 抑制剂 heavy metal 重金属injecting septum 进样隔膜胶垫 heat conductivity 热导率injection valve 进样阀 height equivalent to a theoretical plate 理论塔板高度instrumental analysis 仪器分析 height of an effective plate 有效塔板高度insulin assay 胰岛素生物检定法integrator 积分仪 high-performance liquid chromatography (HPLC) 高效液相色谱法 intercept 截距 high-performance thin-layer chromatography (HPTLC) interface 接口高效薄层色谱法interference filter 干涉滤光片 hydrate 水合物intermediate 中间体 hydrolysis 水解internal standard substance 内标物质Kjeldahl method for nitrogen 凯氏定氮法international unit(IU) 国际单位 Kober reagent 科伯试剂 in vitro 体外Kovats retention index 科瓦茨保留指数in vivo 体内labelled amount 标示量 iodide 碘化物leading peak 前延峰 iodoform reaction 碘仿反应least square method 最小二乘法 iodometry 碘量法leveling effect 均化效应 ion-exchange cellulose 离子交换纤维素licensed pharmacist 执业药师 ion pair chromatography 离子对色谱limit control 限量控制limit of detection(LOD) 检测限 ion suppression 离子抑制limit of quantitation(LOQ) 定量限ionic strength 离子强度limit test (杂质)限度(或限量)试验ion-pairing agent 离子对试剂ionization 电离,离子化 limutus amebocyte lysate(LAL) 鲎试验ionization region 离子化区linearity and range 线性及范围 irreversible indicator 不可逆指示剂linearity scanning 线性扫描 irreversible potential 不可逆电位liquid chromatograph/mass spectrometer (LC/MS) 液质联用仪isoabsorptive point 等吸收点litmus paper 石蕊试纸 isocratic elution 等溶剂组成洗脱loss on drying 干燥失重 isoelectric point 等电点low pressure gradient pump 低压梯度泵isoosmotic solution 等渗溶液isotherm 等温线 luminescence 发光 Karl Fischer titration 卡尔?费歇尔滴定lyophilization 冷冻干燥main constituent 主成分 kinematic viscosity 运动黏度make-up gas 尾吹气maltol reaction 麦牙酚试验 microsyringe 微量注射器Marquis test 马奎斯试验 migration time 迁移时间 mass analyzer detector 质量分析检测器millipore filtration 微孔过滤minimum fill 最低装量 mass spectrometric analysis 质谱分析mobile phase 流动相modifier 改性剂,调节剂 mass spectrum 质谱图molecular formula 分子式 mean deviation 平均偏差monitor 检测,监测 measuring flask, volumetric flask 量瓶monochromator 单色器 measuring pipet(te) 刻度吸量管monographs 正文 medicinal herb 草药mortar 研钵 melting point 熔点moving belt interface 传送带接口melting range 熔距multidimensional detection 多维检测metabolite 代谢物multiple linear regression 多元线性回归metastable ion 亚稳离子methyl orange 甲基橙multivariate calibration 多元校正 methyl red 甲基红natural product 天然产物 micellar chromatography 胶束色谱法Nessler glasses(tube) 奈斯勒比色管micellar electrokinetic capillary chromatography(MECC, Nessler’s reagent 碱性碘化汞钾试液MEKC) 胶束电动毛细管色谱法micelle 胶束neutralization 中和 microanalysis 微量分析nitrogen content 总氮量 microcrystal 微晶nonaqueous acid-base titration 非水酸碱滴定microdialysis 微透析micropacked column 微型填充柱 nonprescription drug, over the counter drugs (OTC drugs)非处方药 microsome 微粒体nonproprietary name, generic name 非专有名nonspecific impurity 一般杂质 orthogonal test 正交试验non-volatile matter 不挥发物 orthophenanthroline 邻二氮菲 normal phase 正相 outlier 可疑数据,逸出值 normalization 归一化法 overtones 倍频峰,泛频峰 notice 凡例 oxidation-reduction titration 氧化还原滴定nujol mull method 石蜡糊法oxygen flask combustion 氧瓶燃烧octadecylsilane chemically bonded silica 十八烷基硅烷键合硅胶packed column 填充柱 octylsilane 辛(烷)基硅烷packing material 色谱柱填料 odorless 无臭palladium ion colorimetry 钯离子比色法official name 法定名official specifications 法定标准 parallel analysis 平行分析 official test 法定试验 parent ion 母离子on-column detector 柱上检测器 particulate matter 不溶性微粒 on-column injection 柱头进样 partition coefficient 分配系数 on-line degasser 在线脱气设备 parts per million (ppm) 百万分之几on the dried basis 按干燥品计pattern recognition 模式识别 opalescence 乳浊peak symmetry 峰不对称性 open tubular column 开管色谱柱peak valley 峰谷 optical activity 光学活性peak width at half height 半峰宽 optical isomerism 旋光异构percent transmittance 透光百分率optical purity 光学纯度optimization function 优化函数 pH indicator absorbance ratio method pH指示剂吸光度比值法organic volatile impurities 有机挥发性杂质pharmaceutical analysis 药物分析orthogonal function spectrophotometry 正交函数分光光度法 pharmacopeia 药典pharmacy 药学 prescription drug 处方药phenolphthalein 酚酞 pretreatment 预处理 photodiode arraydetector(DAD) 光电二极管阵列检测器primary standard 基准物质principal component analysis 主成分分析photometer 光度计pipeclay triangle 泥三角programmed temperature gas chromatography 程序升温气相色谱法 pipet(te) 吸移管,精密量取prototype drug 原型药物 planar chromatography 平板色谱法provisions for new drug approval 新药审批办法plate storage rack 薄层板贮箱purification 纯化 polarimeter 旋光计purity 纯度 polarimetry 旋光测定法pyrogen 热原 polarity 极性pycnometric method 比重瓶法polyacrylamide gel 聚丙酰胺凝胶quality control(QC) 质量控制 polydextran gel 葡聚糖凝胶quality evaluation 质量评价 polystyrene gel 聚苯乙烯凝胶quality standard 质量标准 polystyrene film 聚苯乙烯薄膜quantitative determination 定量测定porous polymer beads 高分子多孔小球quantitative analysis 定量分析 post-column derivatization 柱后衍生化quasi-molecular ion 准分子离子 potentiometer 电位计 racemization 消旋化 potentiometric titration 电位滴定法radioimmunoassay 放射免疫分析法precipitation form 沉淀形式 random sampling 随机抽样 precision 精密度rational use of drug 合理用药 pre-column derivatization 柱前衍生化readily carbonizable substance 易炭化物preparation 制剂 reagent sprayer 试剂喷雾器recovery 回收率 safety 安全性reference electrode 参比电极 Sakaguchi test 坂口试验 refractive index 折光指数 salt bridge 盐桥 related substance 有关物质 salting out 盐析 relative density 相对密度 sample applicator 点样器 relative intensity 相对强度 sample application 点样 repeatability 重复性 sample on-line pretreatment 试样在线预处理replicate determination 平行测定sampling 取样 reproducibility 重现性saponification value 皂化值 residual basic hydrolysis method 剩余碱水解法saturated calomel electrode(SCE) 饱和甘汞电极residual liquid junction potential 残余液接电位selectivity 选择性 residual titration 剩余滴定 separatory funnel 分液漏斗 residue on ignition 炽灼残渣 shoulder peak 肩峰 resolution 分辨率,分离度signal to noise ratio 信噪比 response time 响应时间significant difference 显著性差异 retention 保留 significant figure 有效数字 reversed phase chromatography 反相色谱法significant level 显著性水平significant testing 显著性检验 reverse osmosis 反渗透silanophilic interaction 亲硅羟基作用rider peak 驼峰rinse 清洗,淋洗 silica gel 硅胶 robustness 可靠性,稳定性 silver chloride electrode 氯化银电极routine analysis 常规分析similarity 相似性 round 修约(数字)simultaneous equations method 解线性方程组法ruggedness 耐用性size exclusion chromatography(SEC) 空间排阻色谱法 standard deviation 标准差standardization 标定 sodium dodecylsulfate, SDS 十二烷基硫酸钠standard operating procedure(SOP) 标准操作规程sodium hexanesulfonate 己烷磺酸钠standard substance 标准品stationary phase coating 固定相涂布sodium taurocholate 牛璜胆酸钠sodium tetraphenylborate 四苯硼钠starch indicator 淀粉指示剂statistical error 统计误差 sodium thiosulphate 硫代硫酸钠sterility test 无菌试验 solid-phase extraction 固相萃取stirring bar 搅拌棒 solubility 溶解度stock solution 储备液 solvent front 溶剂前沿stoichiometric point 化学计量点 solvophobic interaction 疏溶剂作用storage 贮藏 specific absorbance 吸收系数stray light 杂散光 specification 规格substituent 取代基 specificity 专属性substrate 底物 specific rotation 比旋度sulfate 硫酸盐 specific weight 比重sulphated ash 硫酸盐灰分 spiked 加入标准的supercritical fluid chromatography(SFC) 超临界流体色谱法 split injection 分流进样support 载体(担体) splitless injection 无分流进样suspension 悬浊液 spray reagent (平板色谱中的)显色剂swelling degree 膨胀度 spreader 铺板机symmetry factor 对称因子 stability 稳定性syringe pump 注射泵 standard color solution 标准比色液systematic error 系统误差system model 系统模型 thymol 百里酚(麝香草酚)(指示剂)system suitability 系统适用性thymolphthalein 百里酚酞(麝香草酚酞)(指示剂)tablet 片剂tailing factor 拖尾因子 thymolsulfonphthalein ( thymol blue) 百里酚蓝(麝香草酚蓝)(指示剂) tailing peak 拖尾峰titer, titre 滴定度 tailing-suppressing reagent 扫尾剂time-resolved fluoroimmunoassay 时间分辨荧光免疫法test of hypothesis 假设检验titrant 滴定剂 test solution(TS) 试液titration error 滴定误差 tetrazolium colorimetry 四氮唑比色法titrimetric analysis 滴定分析法 therapeutic drug monitoring(TDM) 治疗药物监测tolerance 容许限toluene distillation method 甲苯蒸馏法thermal analysis 热分析法thermal conductivity detector 热导检测器toluidine blue 甲苯胺蓝(指示剂)thermocouple detector 热电偶检测器total ash 总灰分total quality control(TQC) 全面质量控制thermogravimetric analysis(TGA) 热重分析法traditional drugs 传统药 thermospray interface 热喷雾接口traditional Chinese medicine 中药The United States Pharmacopoeia(USP) 美国药典transfer pipet 移液管 The Pharmacopoeia of Japan(JP) 日本药局方turbidance 混浊turbidimetric assay 浊度测定法 thin layer chromatography(TLC) 薄层色谱法turbidimetry 比浊法turbidity 浊度 thiochrome reaction 硫色素反应ultracentrifugation 超速离心 three-dimensional chromatogram 三维色谱图ultrasonic mixer 超生混合器ultraviolet irradiation 紫外线照射 xylenol orange 二甲酚橙(指示剂) undue toxicity 异常毒性zigzag scanning 锯齿扫描 uniform design 均匀设计zone electrophoresis 区带电泳 uniformity of dosage units 含量均匀度zwitterions 两性离子 uniformity of volume 装量均匀性(装量差异)zymolysis 酶解作用uniformity of weight 重量均匀性(片重差异)validity 可靠性variance 方差versus …对…,…与…的关系曲线viscosity 粘度volatile oil determination apparatus 挥发油测定器volatilization 挥发法volumetric analysis 容量分析volumetric solution(VS) 滴定液vortex mixer 涡旋混合器watch glass 表面皿wave length 波长wave number 波数weighing bottle 称量瓶weighing form 称量形式weights 砝码well-closed container 密闭容器xylene cyanol blue FF 二甲苯蓝FF(指示剂)。
q. (electric quantity) 电量q-factor q因数(抗阻比因数,谐振线路或线圈的定格,z/r,或简称q)qt (quart) 夸脱(1/4加仑)quadrangle ①四角形②四角器quadrangular arm-sling 四角臂吊带quadrangular mitella 四角臂吊带puadrant ①象限仪②象限quadrate 正方形quadri- 四,四倍quadrivalent element 四价元素quadrupole residual gas analyser 四极残余气体分析仪qualification ①合格②规格qualification test 合格试验,鉴定试验qualimeter x射线透度计,x射线硬度计(测x射线之硬度)qualitative analysis 定性分析quality ①性质,质量②规格quality certificate 品质证明书quality claim 品质索赔quality inspection 品质检验quality specification 质量说明书quantifier 计量器quantimet 定量电视显微镜quantimeter x射线放射量计(测量由球管产生的x射线量)quantitative 定量的,数量的quantitative autoradiography 定量放射自显影术,定量自体放射照像术quantitative cytophotomety 定量细胞光度学quantitative determination 定量测定quantitative filter paper 定量滤纸quantitative fluorometer 定量荧光计quantitative microscope 定量显微镜quantitive 定量的,数量的quantity 数量,参量quantity claim 数量索赔quantity of electricity 电量quantity of heat 热量quantivalence 化合价,原子价quantizer ①数字转换器②量化器③编码器quantometer ①光量计②光谱分析计③辐射强度测量器quantorecorder ①光量计②辐射强度测定计1uantum ①量子②定量quantum biology 量子生物学quantum constant 量子常数quantum mechanics 量子力学quantum number 量子数quanrantine ①检疫期②检疫所quanrt (abbr. qt.) 夸脱(四分之一加仑)quarter ①季度②一刻钟③四分之一quartz 石英,水晶(即二氧化硅)quartz crystal 石英晶体1uartz filter 石英滤波器quartz glass 石英玻璃quartz lamp 石英灯quartz oscillator 石英振荡器quartz prism 石英棱镜quartz thermometer 石英温度计quartz transducer 石英换能器,石英传感器quasi- 半,似,拟,准quasiconductor 半导体quasi-insulator 准绝缘体quasi-monochromatic 准单色的quasi-static 似稳的,准静态的quench circuit 猝灭电路quenchometer 冷却速度试验器quernstone 磨石query 询问,质问quest 探索,寻找question 问题,探究quick 快的,迅速的quick access memory 快速存取存储器quick freeze chamber 快速冷冻室quicklime 生石灰,氧化钙quick-loading cassette 快速换片暗盒quick-silver 汞,水银quinhydrone electrode (醌)氢醌电极quotation 估价单,报价单quotation date 报价日期quote 开价,报价,开估价单qutient 商数,系数q wave q波(心电图)r (①reaumur temperature scale ②registered trademark ③ro-entgen) ①列氏温度计②注册商标③伦琴(x线量单位)ra (radium) 镭rabbet ①插孔,塞孔②槽,凹部rabbet cage 兔笼rabbit-ear antenna (电视)兔耳形天线(室内用)r-acg (right-apexcardiongram) 右心尖搏动图rachi- 脊柱rachial 脊柱的rachialbuminimeter 脑脊液白蛋白定量器,脊髓液蛋白计rachigraph 脊柱描记器rachio- 脊柱rachiometer 脊柱弯度计rachiotome 脊椎刀,椎骨刀rachitome 脊椎刀,椎骨刀rack 支架,格栅rack mounting 支架安装rad 拉德(辐射吸收剂量单位)radar 雷达radar therapy apparatus 射频治疗机radi (radiographic inspection) x射线检查radiability x射线透过性radiable x射线可透的radiac 放射性检测仪器,剂量探测仪radiacmeter ①剂量计②核辐射测定器radiagraph 活动焰切机radial grating 射线光栅radian 弧度radiant 放射的,辐射的radiant energy 辐射能radiant flux 辐射通量radiant heat lamp 辐射热灯radiant matter 辐射质radiant warmer 辐射加温器radiate ①辐射状②辐射,发光radiathermy 短波透热法radiation ①辐射,放射②放射疗法radiation counter 放射线计算器radiation distribution computer 放射线分布指示计算机radiation dose 辐身射剂量radiation equipment 放射线设备radiation heating apparatus 辐射热仪radiation monitor 放射检测器radiation protecting equipment x射线防护设备radiation survey meter 辐射测试仪radiation therapy 放射疗法,辐射疗法radiation trap 辐射捕集器,辐射护墙radiator ①放射器,辐射器②散热器radical ①根,基②基本的radio ①无线电设备②射电的,射频的radio- ①放射,辐射②无线电radioactive 放射性的radioactive carbon 放射性碳radioactive cobalt 放射性钴radioactive constant 放射性常数radioactive contaminant 放射性污染物radioactive decay 放射性衰变radioactive disintegration 放射性元素蜕变radioactive element 放射性元素radioactive emanation 放射性射气radioactive indicator 放射性示踪剂radioactive isotope 放射性同位素radioactive isotope renography 放射性同位素肾造影术radioactive marker 放射性标记物radioactive sample 放射性样品radioactive source 放射源radioactive tracer 放射性同位素示踪剂radioactivity 放射性,辐射性radioactor 镭疗器radioautogram ①自动射线摄影②放射性同位素示踪图③无线电传真radioautograph 放射自显影术radioautography 放射自显影术radiobroadcasting 无线电广播,用无线电传送radiocalcium 放射性钙,射钙radiocarbon 放射性炭,射炭radiocardiogram 放射心电图radiocardiography 放射心电描记法radiochemistry 放射化学radiochlorine 放射性氯,射氯radiochromatogram camera 放射色谱图摄影机radiochrometer ①x射线透度计②放射色谱计radiocinematograph x射线电影装置,x射线活动摄影机radiocinematography x射线活动照像术radiocirculography 放射血循环描记术radiocobalt 放射性钴,射钴radiode 镭插入器,镭锭仪(装镭锭用于治疗的仪器)radiodiagnosis 放射诊断,x射线诊断radiodiaphane 镭透照镜(进行镭透照检查的仪器)radio ecg transmission 无线电遥控心电图传送radioelectrocardiogram(abbr. recg) 放射心电图radioelectrocardiograph (abbr. recg) 放射心电图机radioelectrocardiography 放射心电图描记法radioelectroencephalogram(abbr. reeg)放射脑电图radioelectroencephalograph (abbr. reeg) 放射脑电图描记器radioelectromyogram (abbr. remg) 放射肌电图radioelectromyograph (abbr. remg) 放射肌电图描记器radioelectrophysiologram 放射电生理描记图radioelectrophysiolograph 放射电生理描记器radioelectrophysiolography 放射电生理描记术radio element 放射性元素radioencephalogram (abbr. reg) 放射脑电图radioencephalograph 放射脑电图机radioencephalography 放射脑电图描记法fadio-frequency 射频,无线电频率radio-frequency accelerator 高频加速器radio-frequency pacemaker 射频起搏器(心)radiogen 放射物质radiogram x射线照片radiograph x射线照片radiographer 放射照像技术员radiographic 放射照像的radiographic contrast x射线照像对比radiographic equipment x射线照像装置radiographic negative x射线底片radiographic sensitivity 抗射线感光度radiographic stereometry 立体x射线片测定法radiograph microfilm reducer 35毫米显微胶片摄影缩微器radiography x射线照像术radiography cone x射线摄影孔radiography of fistula 瘘管造影术radiography of lacrimal duct 泪道造影术radiography of parotids 腮腺造影术radiography unit x射线机radio-immunity 放射免疫radioimmunoassay (abbr. ria) 放射免疫测定(法)radioimmunoassay centrifuge 放射免疫测定离心机radioimmunoassay system 放射免疫分析仪radioimmunoelectrophoresis 放射免疫电泳(法)radioiodine 放射性碘,射碘(常用131i)radioisotope (abbr. ri) 放射性同位素radioisotope diagnostic unit 放射性同位素诊断仪radioisotope dynamic functiontesting unit 放射性同位素动态功能测定仪radioisotope generator 放射性同位素发生器radioisotope renogram apparatus 肾放射图仪radioisotope renogram examination apparatus 放射性同位素肾图仪radioisotope renograph 放射性同位素肾图检查仪radioisotope renography 放射性同位素肾图检查radioisotope scanning (放射性)同位素扫描radioisotope teletherapy unit 放射性同位素深部治疗机radioknife 高频手术刀(10mhz以上)kradiokymography x射线动态摄影术,x射线记波照像术radiolead 放射性铅,射铅radiolocator 无线电定位器radiologic(al) 放射性的,放射学的radiological apparatus x射线机radiologist 放射科医师radiology 放射学radiolucency 射线透射性,x射线可透性radiolus 探子radiometer ①辐射仪②放射量测定仪radiometry 放射性测量radiomicrometer 测微辐射计,辐射微量计radiomovies 电视电影,电视影片radionuclide 放射性核素radionuclide brain imager 放射性核素脑部摄像机radionuclide image intensifier 放射性核素影像增强器radionuclide imaging 放射性核素造影术radiopadcity x射线不透性radioparency x射线可透性,射线可透性radioparent x射线可透的,射线可透的radioparent sternal blade x射线可透胸骨刀radiophosphorus 放射性磷,射磷radiophotography x射线照像术radiophotoscanning 放射照像扫描术radioprotector 辐射防护装置radioplmonography 放射肺换气率测定法radiosclerometer x射线透度计,x射线硬度计radioscope ①x射线透视屏②放射探测仪③放射镜radioscopy 放射检查,x射线透视检查,荧光屏检查radio set ①收音机②无线电台radiostereoscope x射线实体透视镜radiostereoscopy x 射线实体透视检查,x射线脏器检查法radiosterilization 辐射消毒,放射性消毒radiosurgery 放射外科学,镭外科学(以镭锭进行外科治疗)radiotelemetry 无线电遥测术radiotelescope 电望远镜,无线电望远镜radiotelevisor 电视接收机radiotherapeutics 放射疗法radiotherapy 放射疗法radiotherapy equipment 放射治疗设备radiotherapy linear accelerator 放疗用直线加速器radiotherapy simulator 放射治疗模拟定位机radiothyroxine 放射性甲状腺素radiotomy 断层x射线照像术,体层x射线照像术radiotracer 放射性示踪元素radiotransmitter 无线电发报机radiotransparent x射线可透的,透x射线的radiovision 电视radio wave 无线电波radium (abbr. ra) 镭radium applicator 施镭器radium cannon 镭管cadium container 镭容器radium emanation 镭射气radium needle 镭针nadiumotherapy 镭疗法radium-plaque adaptometer 镭板适应计radium recovery service 镭换置设施radium tube 镭管radius ①桡骨②半径radiuscope 眼晶状体半径测量仪radius splint 桡骨夹板radon (abbr. rn) 氡,镭射气radon container 氡容器rafting 合金,熔合物rail 轨道,导轨railway 铁路,轨道railway catheter 槽式导管rain 雨raincoat 雨衣raise 提高,增加,举起ram (radioactivity monitoring) 放射性监测ramp ①接线夹②斜面,滑行台rancidify 酸败random 无规则的,任意的,随机的random access memory 随机存取存储器(计算机)randomization 随机取样,随机化(统计学)randomness 随机性random number 随机数random sampling 随机抽样random zero sphygmomanometer 随遇零点血压计range ①范围,幅度②度盘,标度range-finder 测距器range indicator 距离指示器range of accommodation 调节幅度range of audibility 可听范围range of vision 视力范围ranger 测距仪rank 排列,分类,序列rankine's apparatus 兰金氏气体粘度计rapid film 快速软片rapid perforation awl 快速钻颅用穿刺锥rare 稀有的,珍贵的rare-earth intensifying screen 稀土元素增感屏rasion 锉刮,锉磨(用锉刀锉磨药物)rasp 锉raspatory 骨锉,骨刮raster 光栅,屏面ratch/ratlat ratchet 棘轮。
化学分析计量CHEMICAL ANALYSIS AND METERAGE第22卷,第5期2013年9月V ol. 22,No. 5Sept. 20139doi :10.3969/j.issn.1008–6145.2013.05.002酸水解同位素稀释质谱法测量基因组DNA 含量*张玲,陈大舟,武利庆,高运华,汤桦,王晶 刘新海 (中国计量科学研究院,北京 100013) (中国医学科学院整形外科医院,北京 100144)摘要 建立了测量噬菌体λ基因组DNA 含量的方法。
样品添加同位素标记碱基内标之后,用体积分数为88%的甲酸溶液在170℃水解30 min ,解离出的核酸碱基通过反向柱分离,电喷雾四级杆质谱法测定,用多反应监测模式分别检测碱基及其同位素标记物的母离子和碎片子离子,从而建立了基因组DNA 水解–同位素稀释质谱法测量长片段核酸含量的方法,并将DNA 浓度溯源至碱基浓度。
方法的线性范围为1~1 000 μg /g ,检出限可低至100 ng /g 。
测定的λDNA 含量标准物质为(2.51±0.06)μg /支 (k =2),该方法可用于长片段核酸含量标准物质定值。
关键词 噬菌体λDNA ;核酸碱基;核苷酸;高效液相色谱法;同位素稀释质谱法中图分类号:O657.6 文献标识码:A 文章编号:1008–6145(2013)05–0009–05Accurate Quantitation of Genome DNA Mass Concentration by Acid Hydrolysis–Isotope Dilution Mass SpectrometryZhang Ling ,Chen Dazhou, Wu Liqing, Gao Yunhua, Tang Hua, Wang Jing(National Institute of Metrology, Beijing 100013, China )Liu Xinhai(Plastic Surgical Hospital, Chinese Academy of Medical Science, Beijing 100144,China )Abstract The method for determining genomic DNA mass content in phage was set up. Phage λ genome DNA samples were added by isotope labeled nucleic bases internal standard , t hen hydrolyzed in 88% formic acid solution for 30 min under 170℃. The DNA hydrolysis products nucleic bases were separated in C 18 reverse phase column and analyzed by electrospray quadrupore isotope dilution mass spectrometry (HPLC–IDMS) by multiple reaction monitoring mode to scan parent ion and product ion of nucleic bases and the isotope labeled nucleic bases. The method was established for traceability of the genomic DNA to 4 nucleic bases mass content. The method linear range was 1–1 000 μg /g, and the detection limit could be as low as 100 ng /g. The DNA mass content in each vial was measure d (2.51±0.06) μg (k =2). This method could be used as a primary method for determining DNA mass as a reference material.Keywords phage λDNA; nucleic acid base; nucleotide; high performance liquid chromatography; isotope dilution mass spectrometry含量测量是核酸测量的首要问题,世界工业先进国家计量机构均已针对核酸含量测量开展了基础研究和应用研究。
qualitative and quantitative analysis
"Qualitative analysis"(定性分析)和"Quantitative analysis"(定量分析)是两种在不同领域中使用的分析方法,用于研究和理解数据或信息。
以下是它们的中文解释:
1.定性分析(Qualitative Analysis):
•定义:定性分析是一种研究和描述事物特征、性质、特征、质量或性质的方法。
它主要关注非数值性质,例如颜色、形
状、质地、味道等。
•应用领域:定性分析常用于社会科学、人文学科、心理学等领域,以及化学中对化合物性质的描述等。
2.定量分析(Quantitative Analysis):
•定义:定量分析是一种以数值为基础,通过测量和计算数据的数量,以便获得准确数值结果的分析方法。
它主要关注数
量、度量和统计。
•应用领域:定量分析在自然科学、工程、经济学等领域中广泛应用,例如在化学中测量溶液中溶质的浓度、在统计学中对
数据进行数值分析等。
这两种分析方法在研究中通常是相辅相成的。
定性分析提供了对问题或现象的深入理解,而定量分析则提供了具体的数值和量化结果,使研究更为精确和可比较。
在实际研究中,研究者常常会综合使用这两种方法,以更全面地了解研究对象。
Torture tests:a quantitative analysis for the robustnessof Knowledge-Based SystemsPerry Groot1,Frank van Harmelen1,and Annette ten Teije21Division of Mathematics and Computer Science,Faculty of Sciences,Vrije Universiteit, De Boelelaan1081A,1081HV Amsterdam,the Netherlands.E-mail:perry,frankh@cs.vu.nl.2Department of Computer Science,Universiteit Utrecht,PO Box80.089,Padualaan14, 3508TB Utrecht,the Netherlands.E-mail:annette@cs.uu.nl.Abstract.The overall aim of this paper is to provide a general setting for quan-titative quality measures of Knowledge-Based System behavior which is widelyapplicable to many Knowledge-Based Systems.We propose a general approachthat we call“degradation studies”:an analysis of how system output degradesas a function of degrading system input,such as incomplete or incorrect inputs.Such degradation studies avoid a number of problems that have plagued earlierattempts at defining such quality measures because they do not require a compar-ison between different(and often incomparable)systems,and they are entirelyindependent of the internal workings of the particular Knowledge-Based Systemat hand.To show the feasibility of our approach,we have applied it in a specific case-study.We have taken a large and realistic vegetation-classification system,andhave analyzed its behavior under various varieties of missing input.This case-study shows that degradation studies can reveal interesting and surprising prop-erties of the system under study.1MotivationWhen asked about the essential differences between Knowledge-Based Systems(KBSs) and“conventional software”,one often hears the claim that KBSs can deal with incom-plete,incorrect and uncertain knowledge and data,whereas conventional software is typically very brittle in these respects(see e.g.[Hayes-Roth,1984]for a very early for-mulation of this claim).Although,nowadays researchers no longer view this distinction as either necessary or sufficient to define a KBS,it is believed that the ability of KBSs to deal with missing or invalid data is an essential dimension of KBS validation.There has been both practical experience and theoretical analysis over many years to back up the mentioned claim.As an example of practical experience,we cite[Preece et al.,1997]:in a number of verification exercises,errors were found in the knowledge-base of KBSs which were nevertheless still functioning at acceptable levels.As an ex-ample of theoretical analysis,we point to our own work[tenTeije&vanHarmelen, 1996,tenTeije&vanHarmelen,1997]where we proved that for a large class of diagnos-tic systems the computed set of diagnoses degrades gracefully and predictably when either the system input(observations)or the knowledge-base degrades in quality.However,until now,the analysis of the robustness of KBSs in the face of incom-plete,incorrect or uncertain knowledge and data has been limited to such practical experience and qualitative analysis.Little or no attempt has been made at a quanti-tative analysis of the proclaimed robustness of KBSs.A recent special issue of a journal was dedicated to methods for Evaluating Knowledge-Based Systems[Menzies&van-Harmelen,1999].None of the papers in that special issue performed any quantitative analysis on the quality of Knowledge Based Systems.The editorial of this special issue lists only a hand-full of quantitative evaluation studies that have been performed over a decade or more of KBS research.In fact,one paper in that special issue[Shadbolt et al.,1999]even seems to suggest that global qualitative evaluations are about as much as we can expect from KBS evaluation projects.Finally,one of the reviewers of this paper even remarked that”For a long time,the KA community has decried the lack of good evaluation metrics to measure the quality of the KA process and of the resulting knowledge bases.”We consider this a serious defect in the study of KBSs,particularly since such robustness is often proclaimed as a unique characteristic of KBSs.The central claim of this paper is that a quantitative analysis of the robustness of KBSs is both possible and useful.To argue this claim,we present a case-study in which we perform such a quantita-tive analysis for a particular KBS.In section2we describe our approach to measuring robustness by degradation studies,and we give definitions for the basic notions in-volved in such degradation studies.In subsequent sections,we apply this approach in a case-study.Section3describes the KBS which we subjected to a degradation study and section4describes and analyzes the results that we obtained in this study.Section 6summarizes the main points of the paper and looks at future steps to be taken.2Approach and foundational definitionsIn this section we describe our approach to measuring robustness by degradation stud-ies,and we give definitions for the basic notions involved in such degradation studies. Our aim is to define a very general set of notions that can be widely used in future degradation studies.We regard this section as a central contribution of this paper:the definitions in this section should form the basis of similar analyzes by other researchers and practitioners.2.1Robustness and degradationThe IEEE Standard Glossary of Software Engineering Terminology[IEEE,1990]gives the following definition for robustness:Informal Definition1(Robustness).The degree to which a system or component can function correctly in the presence of invalid inputs or stressful environmental condi-tions.In other words,robustness of a KBS is concerned with the way in which the quality of the KBS output degrades as a function of a decrease in the quality of the KBS input. This definition immediately leads to the idea of degradation studies:Informal Definition2(Degradation Study).In a degradation study we gradually de-crease the quality of the KBS input,and measure how the KBS output quality decreases as a result.2.2Output qualityOf course,we must be more precise about the rather vague notion of“quality”of the KBS input and output.Concerning the KBS output,we assume that this is always a set of answers.In fact,for many typical KBS tasks,this is a realistic assumption:a set of consistent classes in a classification task,a set of likely hypotheses in a diagnostic task, a set of potential designs in a configuration task,etc i.More explicitly stated:Assumption1.For the KBSs that we consider we assume that their output can be in-terpreted as a discrete set of answers.Under this assumption,we will define two measures for KBS output quality.Let correct(I)be the set of all correct answers for a given input I,and output(I)be the set of actually computed answers for the input I.Definition1(Recall).The recall(I)of a KBS for a given input I is defined as:recall Icorrect I out put Iout put IIn other words:the precision is the fraction of computed answers that are actually correct.In the case out put I(i.e.when the system returns no output),we define:if out put I then precision I1if correct I0otherwise.This reflects the intuition that the only correct answer in this case is the empty set.We will simply write recall and precision when we mean the average of recall(I j) and precision(I j)over a given set of inputs I1I n.It is a widely known fact in information retrieval that in general it is very hard to achieve both a high precision and a high recall.In general,a high recall must be paid for with a low precision.Consider for example a trivial system which always returns all candidate answers.By inspecting the definitions above,it can be easily seen that such a system would have a recall of1,but a precision close to0.There are two very attractive aspects to these definitions for the“quality of out-put”.First of all,these definitions are well known from the literature on information retrieval(e.g.[Salton&McGill,1983]),and have proven to be useful,informative and intuitive measures in many studies in thatfield and elsewhere(see for instance[Fischer &Schumann,1997]for an application of these measures to deduction-based software component retrieval).Secondly,these measures are completely general,and make no commitment to either the task or the domain of the KBS that we wish to study.Con-sequently,the approach proposed in this paper can be directly applied to other KBSs, even when they are very different from the one that we happen to have chosen in our own case-study.The above definitions are in fact gradual versions of the classical notions of sound-ness and completeness:recall corresponds to the degree of completeness of the system, and precision corresponds to the degree of soundness of the system.These measures provide a quantitative angle on our earlier work[vanHarmelen&tenTeije,1998]which was strictly qualitative.2.3Input qualityUnfortunately,the definition of input quality cannot in our view be defined in an equally generic manner.Our case-study is concerned with a classification task,and our input quality measures are directly based on this task-type,such as missing and incomplete observations.We expect that each task-type will come with its own measure for input quality.Notice that we have already taken a step further than in[vanHarmelen&tenTeije, 1998].In that paper we did not commit to any definition of quality on input or output, and only demanded that whatever the definition was,it should respect a partial ordering. In this paper on degradation testing,we commit to a specific definition of output quality, while leaving input quality open to be defined for each specific application.2.4Comparing robustnessThe only notion that is still left undefined is some ordering on robustness:when do we call a system more robust or less robust than another?Unlike output quality(where we have given a single widely applicable definition)and input quality(whose definition is deliberately left open to depend on the task-type),we have not been able to determine a good answer to this question.Instead,we offer a number of competing definitions: Definition3(Monotonicity).A robust system will show a monotonically decreasing output quality as a function of deteriorating input quality.The motivation for this property is that a system whose output quality oscillates as a function of input quality is much less predictable than a system with monotonically decreasing output quality.This demand corresponds precisely to the usual demand on anytime algorithms that their output quality monotonically increases with increasing run-time [Dean &Boddy,1988].Definition 4(Quality Value).A system S 1is more robust than a system S 2for a set of inputs,if everywhere on that input set the output quality of S 1is higher than the output quality of S 2.Definition 5(Rate of Quality Change).A system S 1is more robust than a system S 2for a set of inputs,if everywhere on that input set the output quality of S 1decreases more slowly than the output quality of S 2.Definition 6(Integral of Quality Value).A system S 1is more robust than a system S 2for a set of inputs,if on that input set the integral of the output quality of S 1is larger than the same integral for S 2.Formally speaking,definition 4compares the output quality of two systems (and is concerned with which system produces the best output),while definition 5com-pares the first derivative of the output quality of the systems (and is therefore concerned with which system produces the most stable output).Definition 6compares the overall quality of the output quality over an entire interval even when neither system always dominates the other (as required in definition 4).These definitions are illustrated in figure 1iiS 1S 2000.20.20.40.40.60.60.80.811input quality o u t p u t q u a l i t y (b)paring robustness of systems.In figure 1(a),system S 1is more robust on for example the interval [0.1,0.3]ac-cording to definition 4,since on that interval its output quality is always higher thanthat of S2.However,according to definition5,S2is the more robust of the two,sinceits output quality decreases more gradually(reading the graph from right to left).Defi-nition6allows to take a more overall perspective:it takes the size of the area under the output quality graph as measure of the overall quality.Under this definition,S1is morerobust on the entire interval[0,1],since the value of10out put quality d input quality is larger for S1than for S2.Note that the situation is rather different infigure1(b).Although the output quality again increases from0to1over the same interval,thecomparisons between S1and S2on various subintervals are very different.At the current point in our research,we simply propose each of these definitions asreasonable,without claiming superiority of any definition in all cases.In fact,we believe that under different pragmatic circumstances,different definitions will be preferable:if steep drops in system performance are to be avoided,the second definition is prefer-able.If one is interested in upholding output quality as long as possible in the face of declining input,the other two definitions may be preferred.3Example Knowledge-Based SystemAn essential aspect of our proposed approach to measuring robustness through degra-dation experiments is that it is entirely independent of the particular problem-solving method employed by the KBS under study.All that is required is a description of the functional I/O-relation of the system iii.To emphasize this point,we will describe the particular KBS that we used in our case-study only in terms of its functionality,and refrain from describing the underlying problem-solving method.For our case-study we have used a classification system for commonly occurring vegetation in Southern Germany.The plant-classification system was created with the D3Shell-Kit which is a tool for the development of KBSs.We will not discuss this tool here but refer to a number of publications about D3[Puppe et al.,1996,Puppe et al., 1994].It is also possible to download a demo-version of the software from the URL rmatik.uni-wuerzburg.de.The plant-classification system that we studied can have40different observables as input and has93different plant-names as output.The knowledge base consists of 7586rules.Furthermore,with the system we received150test-cases.Each of these cases consisted of the set of observations for that case(color and shape offlowers, leafs,stem,etc.),together with the(supposedly correct)answer for these observations as given by a human expert.Around97%could be answered correctly by the system.The input observations can be entered in a graphical user interface,but the user is not restricted to the ordering in this interface.The observations can be entered in any order, thus the input can be seen as a set.This is not entirely true because some observations are dependent on other observations and will only appear when certain input-conditions are met.Because of these dependencies,the maximum number of observations that can be given for one case is30.The plant-classification system computes a score for every output class based on the given input.These scores result in an ordering on the output classes.All the classes with a sufficiently high score can be seen as a plausible candidate for the given input,but plants with a higher score are seen as more plausible candidates.All the scores are computed for a given input set and these scores are adjusted incrementally when new observations are added.The user does not actually see the numeric scores of the candidates,but only an interpretation of the scores.For example,all plants with a score lower than42receive the status ausgeschlossen(i.e.excluded).4Results of the degradation studyIn this section we present the robustness measures that we have obtained in empiri-cal experiments with the plant-classification system.Before we discuss these results in some detail,we want to emphasize that this case-study only serves to illustrate our gen-eral approach to measure robustness through degradation testing.What’s important in this section is the quantities we’ve decided to measure,and how we analyze them,not so much the specific results for the plant-classification system,since it only serves as a case-study to illustrate our proposal.4.1Which input quality measure to use?According to the definitions from section2we must still decide on what to use as a measure on the input quality.In this case-study we choose the completeness of the input as the measure of input quality.In our classification system,completeness of the input can be directly translated as the number of available observations.There are two reasons why this choice is reasonable and attractive:-robustness:in many practical classification settings,the input observations are not completely avail-able.It then becomes an interesting question how robust the system functions under such incomplete input.-Anytime behavior:Even when all observations are present, there are practical settings where insufficient run-time is available to process all the ob-servations:some output from the system is required before a given real-time deadline, and not all observations can be processed before this deadline.Those observations that could not be processed before the deadline can be regarded as“missing from the input”.As a result of this second reason,the degradation results that we present in this sec-tion can also be seen as anytime performance profiles for the plant-classification system. Performance profiles are a basic tool in the study of anytime algorithms[Dean&Boddy, 1988].They plot the output quality as a function of available run-time.Since available run-time can be interpreted as one aspect of“input quality”,such performance pro-files are simply a special case of our more general proposal:performance profiles only study output degradation as a function of decreased run-time,whereas our approach is applicable to any aspect of input quality that one chooses to model.In the following we will present a number of graphs analyzing the robustness of the plant-classification system.Each of these graphs plot output-quality(measured by either recall or precision)against input-quality(measured by the number of observations that were available to the system).If one is interested in anytime behavior,these graphs can be read from left to right:“what happens when the system has time to process more and more of the inputs?”.If one is interested in robustness,these graphs should be read from right to left:“what happens when the system is provided with fewer and fewer of the inputs?”Before we discuss the results,a final remark must be made about the possible values of recall and precision in this case-study.Since for every case there is at most one correct answer (namely the name of the actual plant on which the observations weremade),we have for any case I ,correct I 1iff the case is in the knowledge base or correct I 0iff the case is not in the knowledge base.As a result,the only values that recall I can assume are either 0or 1.For the same reason,precision I is either 0or 100510152025300.20.40.60.81observations (a)Precisioniv This result is not completely surprisingbecause it is well known that the average of several variables can indeed show a different distribution than the individual variables.As mentioned above,such monotonic behavior is desirable from both a robustness and from an anytime perspective,so on a case-by-case basis,the plant-classification system does not score very well on this.Surprisingly,the average-case behavior of the system is apparently much better.A second observation to make is that(as to be expected)initially the system is not able to make any sensible guess at likely solutions(this holds up to about6obser-vations).For higher number of available observations,the graph is surprising for two reasons:Surprise2.After about12observations,adding more observations does not increase the precision.This is surprising since most cases contain as much as19-30observa-tions.Figure2(a)suggests that12observations is sufficient to obtain the maximally achievable precision on average.Surprise3.The region in which additional observations actually contribute to an in-crease in precision is surprisingly small,namely between the6and12observations. Of the19-30observations per case,all the real work seems to be done by this small segment of observations!Figure2(b)shows similar results for the other dimension of output quality,namely the recall from definition1.The dotted lines infigure2(a)indicate the variance of the precision,and this vari-ance is rather significant.It shows that the distribution of the actual precision-values that were obtained for the different cases are actually spread rather widely around the average v.Figure3gives more insight in the distribution of the precision than the simple aver-age fromfigure2(a).Each line in thisfigure shows the percentage of cases that achieved a precision of at least a certain value after the given number of observations.The lowest line shows that after12observations,40%of the cases have already reached the max-imum precision(namely1).Furthermore,and more surprisingly,this percentage then stops growing!This means that:Surprise4.When aiming for the maximum precision of1,there is no need to use any more than12observations(out of a maximum of30!).If the maximum precision has not been reached after thefirst12observations,adding further observations will not help.This is actually a more precise version of surprise2above.There we claimed that extending beyond12observations was not useful on average.Here we see that for harder cases,a few more observations do actually help,although not more than20 observations in total.This is because at the other end of the scale(the top line infigure3),we see that the percentage of cases with a precision of at least0.2continues to increase during a longer interval.Apparently,harder cases(those that ultimately achieve a lower precision)ben-efit more from additional observations than easy cases(those that achieve precision1). Nevertheless,even there we see that no increase is gained after about20observations:020406080100051015202530p e r c e n t a g e o f c a s e s observations 21416Fig.3.Precision with multiple levels.Surprise 5.Whatever the final precision that is ultimately obtained by the system,this level of precision is already obtained after at most 20observations.It seems that ask-ing for any more then 20observations will not improve the output quality any further.This is surprising since many cases (in fact 98%of the test set)contain more than 20observations.Looking at the initial segment of observations,we see another surprise:although we may expect that a low number of observations leads to a low average precision,it is surprising that the lines for the different precision-levels all coincide until the 6th observation:Surprise 6.No increase in precision can be gained from the first 6observations.This means that in an anytime setting,interrupting the system before the 6th ob-servation is completely useless,since no increase in precision will have been obtained yet.Figure 3is particularly interesting from an anytime perspective:it tells us for each partially processed input what the chance is that the system has already obtained a certain precision in its output:for instance,after having fed the system 10observations,there is a 30%chance that it has already obtained the maximum precision of 1,a 45%chance that it has already obtained a precision of at least 0.5,and a 60%chance that it has already obtained a precision of at least 0.3.vi This information can be used bythe user to determine if it is useful to continue feeding the system more input,or if a sufficiently high precision has already been obtained for the purposes of the user, so that processing(and acquiring potentially expensive observations)can be stopped. Our graph(when interpreted as a performance profile)contains much more information than the usual performance profiles presented in the literature(e.g.[Zilberstein,1996]). These graphs typically give only a single expected value for the output quality at any point in time(compare ourfigure2(a)),whereas we give a probability distribution of the expected output value,which is much more informative.Note that the ideas behindfigure3can in principle also be applied to the recall. We omitted this because in our case-study the recall is either0or1,thus the resulting figure would be the same asfigure2(b).4.3Early conclusions on robustnessSince we are only studying a single system,we cannot apply the definitions from sec-tion2.4,which only speak about one system being more or less robust than another. However,what is clear from the analysis until now is that the robustness of the plant-classification system is certainly not very uniform across the distribution of input qual-ity.While degrading input quality(i.e.reading the previous graphs from right to left), the system atfirst appears extremely stable against missing observations:no quality loss occurs at all.This holds until we are left with somewhere between12-15observations (depending on the difficulty of the case).At that point,the robustness of the system is very low,and the input quality drops dramatically.Is this desirable behavior or not?Would a more uniform behavior(e.g.a straight line connects bottom-left and top-right offigure2(a))be more attractive?In our view,this question cannot be answered in general,but depends on the pragmatics of the system in use.The“straight line”profile is on the one hand more attractive,because it avoids the dramatic drop in quality seen in thefigures above(definition5from section2.4); on the other hand,it would start loosing output quality straight away,while the profiles discussed above are all remarkably resistant to quality loss during early phases of input degradation(definition4from section2.4).4.4Exploring other input sequencesIn all the profiles above,we have degraded the input by removing observations in the order in which they were listed in each test-case.Figure4shows what happens if the input is degraded by removing observations in a different order.For reference,the dotted line shows the recall-profile fromfigure2(b).The left-most line shows the theoretically optimal average-recall profile:at each step in each case,we computed which next observation would contribute maximally to an increase in recall. Of course,this cannot be done in practice,since which observation will contribute most in general depends on the observation-value that is obtained,so this computation can only be done theoretically for test-cases where all observations are already present. The value of the left-most line is therefore only to show what would be the theoreti-cally fastest increase in recall by the system with the fewest possible observations.The right-most line infigure4does the same,but this time for the theoretically slowestr e c a l lobservations Fig.4.Recall with various orderings.average-recall profile.Every other possible recall profile must lie between these two lines (as is indeed the case with the earlier observed profile based on the test-case se-quence).Finally,figure 4shows a narrow bundle of recall profiles.Each of these profiles corresponds to a randomly generated order of the observations.The dotted line in this figure shows the profile based on the observation order ob-tained from the test-cases (as originally plotted in figure 2(b)).We can now see that this observation order actually scores rather well when compared with the random se-quences:Surprise 7.The degradation sequence taken from the test-cases is surprisingly effec-tive in obtaining a high recall after only a few observations.In fact,it is much closer to the theoretically optimal sequence than the randomly generated (information-free)sequences.Currently,we have no good explanation for this phenomenon.It is possible that the order of the input observables in the test-cases is influenced by the order in the graphical user-interface.We will look more closely at this ordering in section 4.6.4.5Further conclusions on robustnessThe variation in the curves from figure 4shows that the plant-classification is very sensitive to the specific order in which the observations are presented to the system.In。