2016全国硕士研究生入学统一考试数学一试题答案
- 格式:pdf
- 大小:280.66 KB
- 文档页数:14
更多干货,内容请关注凯程官网和凯程手机站。
12016年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若反常积分()11badx x x +∞+⎰收敛,则()()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且【答案】(C )【解析】1(1)a bdxx x +∞+⎰1111(1)(1)a b a b dx dx x x x x +∞=+++⎰⎰11pdx x⎰在(1p <时收敛),可知1a <,而此时(1)bx +不影响同理,1111(1)11ba ba b dx dxx x x x +∞+∞+=+⎛⎫+ ⎪⎝⎭⎰⎰11p dx x +∞⎰(1p >时收敛),而此时11bx ⎛⎫+ ⎪⎝⎭不影响(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是()()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩【答案】(D )【解析】由已知可得,()()(ln )x C x F x x x C x ⎧-+<=⎨-++≥⎩21111111,取C =10,故选D(3)若()()22222211,11y xx y x x =+-+=+++是微分方程()()y p x y q x '+=的两个解,则()q x =()22()()()()()()2222313111xx A x x B x x C D x x +-+-++【答案】(A )【解析】y y x-=-+21221是一阶齐次微分方程()y p x y '+=0的解,代入得()()x p x x x -+-+=+2222101,所以()xp x x =-+21,根据解的性质得,y y +122是()()y p x y f x '+=的解。
2016考研数学(一)真题及详细答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且【答案】(C )(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩【答案】(D )(3)若()()222211y xy x =+=+是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111x x A x x B x x C D x x +-+-++【答案】(A )(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩ ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 【答案】(D )(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( )(A )TA 与TB 相似 (B )1A -与1B -相似 (C )TA A +与TB B +相似 (D )1A A -+与1B B -+相似 【答案】(C )(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (D )柱面 【答案】(B )(7)设随机变量()()0,~2>σσμNX ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少 【答案】(B )(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )(缺失)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx【答案】21(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA 【答案】()1,1,0-y(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz【答案】dy dx 2+-(12)设函数()21arctan ax xx x f +-=,且()10''=f ,则________=a【答案】21(13)行列式100010014321λλλλ--=-+____________. 【答案】432234++++λλλλ(14)设12,,...,n x x x 为来自总体()2,N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.【答案】()8.10,2.8三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.【答案】3325+π (16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.【答案】()II k3 (17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()t L f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值 【答案】3(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑【答案】21(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明: (I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.【答案】略(20)(本题满分11分)设矩阵1112221,11112A a B a a a --⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a 为何值时,方程AX B =无解、有唯一解、有无穷多解?【答案】2-=a 时,无解;1=a 时,有无穷多解,⎪⎪⎪⎭⎫ ⎝⎛----=21211133k k k k X ;2-≠a 且1≠a 时,有唯一解,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=01240231a a a a X (21)(本题满分11分)已知矩阵011230000A -⎛⎫⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
WORD 资料 .可编辑2015 年全国硕士研究生入学统一考试数学一试题答案一、选择题 :1~ 8 小题,每小题 4 分,共 32 分 .下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 ....1 、设函数f ( x) 在(-,+)连续,其2阶导函数f (x) 的图形如下图所示,则曲线y f ( x) 的拐点个数为()(A )0(B) 1(C )2(D)3【答案】 (C)【考点】拐点的定义【难易度】★★【详解】拐点出现在二阶导数等于0,或二阶导数不存在的点上,并且在这点的左右两侧二阶导数异号,因此,由 f (x) 的图形可知,曲线 y f ( x) 存在两个拐点,故选(C).2 、设y 1 e2 x x 1e x是二阶常系数非齐次线性微分方程y ay by ce x的一个特解,23则()( A )a3,b1,c 1.(B)a3,b2, c 1.( C )a3,b2, c 1.( D)a3,b2, c 1.【答案】 (A)【考点】常系数非齐次线性微分方程的解法【难易度】★★【详解】 1 e2x, 1 e x为齐次方程的解,所以 2 、 1 为特征方程2 +a b 0 的根,从而23a123,b 1 2 2, 再将特解y xe x代入方程 y 3y 2 y ce x得:c 1.3 、若级数a n条件收敛,则 x 3 与x 3 依次为幂级数na nnx 1的:n 1n 1( A )收敛点,收敛点( B)收敛点,发散点( C )发散点,收敛点( D )发散点,发散点【答案】 (B)【考点】级数的敛散性【难易度】★★★a n条件收敛,故x2为幂级数a n x 1n【详解】因为的条件收敛点,进而得n 1n 1a n xn1,收敛区间为0,21 的收敛半径为,又由于幂级数逐项求导不改变收敛区间,故n 1na n xn0,2 ,因而x3与 x 3 依次为幂级数n1的收敛区间仍为na n x 1 的收敛n 1n1点、发散点 .4 、设 D 是第一象限中曲线2xy1,4 xy 1与直线 y x, y3x 围成的平面区域,函数 f ( x, y)在 D 上连续,则 f (x, y)dxdyD1( A )2d sin 21 42sin 21( C )3d sin 2142sin 2f (r cos , r sin )rdrf (r cos ,r sin )dr1( B)2d sin 2142sin 21(D )3d sin 2142sin 2f (r cos ,r sin )rdrf (r cos , r sin )dr【答案】 (D)【考点】二重积分的极坐标变换【难易度】★★★【详解】由y x 得,;由y3x 得,43由 2xy1得, 2r 2cos sin1, r12sin由 4xy1得, 4r 2cos sin1, r12sin 21所以 f ( x, y)dxdy3d sin 2 f (r cos , r sin)rdr1D42sin 211115、设矩阵A 12a, b d ,若集合{1,2} ,则线性方程组Ax b 有无穷多个14a2 d 2解的充分必要条件为( A )a, d( B)a, d( C )a, d(D )a,d【答案】 (D)【考点】非齐次线性方程组的解法【难易度】★★11111111【详解】A, b12a d01 a 1d11 4 a2 d 20 0 a 1 a 2 d 1 d 2Ax b 有无穷多解R( A)R( A,b)3a 1或 a 2 且 d 1 或 d 26 、设二次型 f ( x1, x2 , x3 ) 在正交变换x Py 下的标准形为 2y12y22y32,其中P (e1 ,e2 , e3 ) ,若 Q(e1 , e3 , e2 ) ,则 f ( x1 , x2 , x3 ) 在正交变换x Qy 下的标准形为( A )2y12y22y32( B)2y12y22y32( C )2y12y22y32( D)2y12y22y32【答案】 (A)【考点】二次型【难易度】★★200【详解】由 x Py ,故f x T Ax y T (P T AP ) y 2y12y22y32且: P T AP 010001100200 QP00 1 PC,Q T AQ C T (P T AP)C 0 10 010001所以fx T Ax y T (Q T AA) y2y12y22y32,故选 (A)7 、若A, B为任意两个随机事件,则( A )P(AB) P( A)P(B)( B)P( AB) P( A)P(B)(C )P( AB)P( A) P(B)(D)P( AB)P(A)P(B) 22【答案】 (C)【考点】【难易度】★★【详解】P(A)P(AB), P(B)P(AB)P(A)P(B)2P(AB)P(AB)P(A)P(B)故选( C)28 、设随机变量X,Y不相关,且 EX2, EY1, DX3,则E X X Y 2(A )-3(B)3(C )-5(D)5【答案】 (D)【考点】【难易度】★★★【详解】EXXY2 E X 2XY 2XEX2EXY 2EXDX E2X EXEY 2EX 5二、填空题: 9 ~ 14小题 ,每小题 4 分 ,共 24 分 .请将答案写在答题纸指定位置上 ....ln cos x9 、limx2x 01【答案】2【考点】极限的计算【难易度】★★ln cosxln(1 cos x 1)cos x 11 x 21【详解】 lim limlim2x 2limx 2x 2x 22xx 0x 0x 02 (sin xx )dx10、 -cos x212【答案】4【考点】积分的计算【难易度】★★sin x2【详解】2 (x )dx 22xdxcosx4-2111 、若函数 z z( x, y) 由方程 ezxyz+xcos x 2 确定,则 dz (0,1).【答案】【考点】隐函数求导【难易度】★★【详解】令 F ( x, y, z)ezxyz x cos x2 ,则 F xyz 1sin x , F y xz , F z xy ,又当 x0, y 1时, z0 ,所以zF x 1,zF ydxx(0,1)F zy(0,1)0 ,因而 dz (0,1)F z12 、设是由平面 xyz 1与三个坐标平面所围成的空间区域,则( x 2 y 3z)dxdydz1 【答案】4【考点】三重积分的计算【难易度】★★★【详解】 由轮换对称性,得1òòò(x+2y + 3z )dxdydz= 6 òòòzdxdydz = 6 ò0zdz òòdxdyW WDzWORD 资料 .可编辑其中 D z 为平面 z= z 截空间区域 W 所得的截面,其面积为1(1- z )2.所以2òòò()òòò11 21321z × (1 - z )dz =3z- 2z + z dz=x + 2y + 3z dxdydz = 6zdxdydz = 64WWò2ò()2 0 0 2-1220 02 2 13 、 n 阶行列式 0 0-1 2【答案】 2n 12【考点】行列式的计算 【难易度】★★★【详解】 按第一行展开得= 2n+1- 214 、设二维随机变量 ( X ,Y ) 服从正态分布 N (1,0,1,1,0) ,则 P( XY Y 0).【答案】12【考点】【难易度】★★【详解】( X ,Y) ~ N (1,0,1,1,0), X ~ N (1,1),Y ~ N (0,1), 且 X ,Y 独立X 1~ N(0,1), P XYY 0P(X 1)Y 0P X1 1 1 1 110,Y0 PX10,Y02 2 2 22三、解答题: 15~ 23 小题 , 共 94 分 .请将解答写在答题纸指定位置上.解答应写出文字说明、证明...过程或演算步骤.15 、(本题满分10 分)设函数 f (x) x a ln(1 x) bx sin x , g( x) kx3,若 f ( x) 与 g ( x) 在x0 是等价无穷小,求a ,b,k值。
2016年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、若反常积分01(1)a bdx x x +∞+⎰收敛,则 (A )1a <且1b >. (B )1a >且1b >.(C )1a <且1a b +>. (D )1a >且1a b +>.2、已知函数2(1),1,()ln ,1,x x f x x x -<⎧=⎨≥⎩则()f x 的一个原函数是 (A )2(1), 1.()(ln 1), 1.x x F x x x x ⎧-<=⎨-≥⎩ (B )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨--≥⎩(C )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨++≥⎩ (D )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨-+≥⎩3、若222(1)1y x x =++,222(1)1y x x =++'()()y p x y q x +=的两个解,则()q x =(A )23(1)x x +. (B )23(1)x x -+.(C )21x x +. (D )21x x -+. 4、已知函数,0,()111,,1,2,,1x x f x x n n n n≤⎧⎪=⎨<≤=⎪+⎩ 则 (A )0x =是()f x 的第一类间断点. (B )0x =是()f x 的第二类间断点.(C )()f x 在0x =处连续但不可导. (D )()f x 在0x =处可导.5、设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是(A )T A 与T B 相似. (B )1A -与1B -相似.(C )T A A +与T B B +相似. (D )1A A -+与1B B -+相似.6、设二次型222123123121323(,,)444f x x x x x x x x x x x x =+++++,则123(,,)2f x x x =在空间直角坐标下表示的二次曲面为(A )单叶双曲面 (B )双叶双曲面(C )椭球面 (D )柱面7、设随机变量2~(,)(0)X N μσσ>,记2{}p P X μσ=≤+,则(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加(C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少8、随机试验E 有三种两两不相容的结果1A ,2A ,3A ,且三种结果发生的概率均为13,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为(A )12- (B )13- (C )13 (D )12二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、020ln(1sin )lim _______.1cos x x t t t dt x →+=-⎰10、向量场(,,)()A x y z x y z i xyj zk =++++的旋度_______.rotA =11、设函数(,)f u v 可微,(,)z z x y =由方程22(1)(,)x z y x f x z y +-=-确定,则 (0,1)|______.dz =12、设函数2()arctan 1x f x x ax=-+,且(0)1f '''=,则a =______. 13、行列式1000100014321λλλλ--=-+______. 14、设12,,,n x x x 为来自总体2(,)N μσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知平面区域{=(,)|22(1cos ),22D r r ππθθθ⎫≤≤+-≤≤⎬⎭,计算二重积分D xdxdy ⎰⎰. 16、(本题满分10分)设函数()y x 满足方程20y y ky '''++=,其中01k <<.(1)证明:反常积分0()y x dx +∞⎰收敛;(2)若(0)1y =,(0)1y '=,求0()y x dx +∞⎰的值. 17、(本题满分10分)设函数(,)f x y 满足2(,)(21)x y f x y x e x-∂=+∂,且(0,)1f y y =+,t L 是从点(0,0)到点(1,)t 的光滑曲线。
全国硕士研究生入学统一考试数学(一)模拟题(江南博哥)1 [单选题]A.不连续B.连续但不可导C.可导但导数不连续D.导数连续正确答案:D参考解析:2 [单选题]A.P>N>M.B.N>P>M.C.N>M>P.D.P>M>N.正确答案:D参考解析:3 [单选题]A.取得极小值B.取得极大值C.取得极大值eD.不取得极值正确答案:A参考解析:由4 [单选题]设向量组α1,α2,α3,α4线性无关,则下列向量组线性无关的是().A.α1+α2,α2+α3,α3+α4,α4+α1B.α1+α2,α2+α3,α3+α4,α4-α1C.α1+α2,α2-α3,α3+α4,α4-α1D.α1-α2,α2-α3,α3-α4,α4-α1正确答案:B参考解析:5 [单选题]设A,B,C,D都是n阶矩阵,且A~C,B~D,则必有A.(A+B)~(C+D).B.C.AB~CD.D.正确答案:B参考解析:6 [单选题]二次型f(x1,x2,x3)=x1x2+x2x3 ,的正、负惯性指数分别为().A.p=1,q=1B.p=1,q=2C.p=1,q=0D.p=0,q=2正确答案:A参考解析:求正、负惯性指数,可通过标准形(规范形)或特征值得到,已知二次型厂中没有平方项,先作可逆线性变换产生平方项,再化为标准形或求其矩阵的特征值.7 [单选题]设0<P(C)<1,且P(A+B|C)=P(A|C)+P(B|C),则下列正确的是( ).A.P(A+B|)=P(A|)+P(B|)B.P(AC+BC)=P(AC)+P(BC)C.P(A+B)=P(A|C)+P(B|C)D.P(C)=P(A)P(C|A)+P(B)P(C|A)正确答案:B参考解析:8 [单选题]设随机变量x在[0,]上服从均匀分布,U=sinX,V=cosX,则U 与V的相关系数ρUV为().A.ρUV=0B.|ρUV|=1C.0<ρUV<lD.-1<ρUV<0正确答案:D参考解析:9 [单选题]已知总体X的期望EX=0,方差DX=σ2.X1,…,X n是来自总体X 的简单随机样本.其均值为,则可以作出σ2的无偏估计量为A.B.C.D.正确答案:C参考解析:由于EX=0,DX=EX2=σ2,故10 [单选题]总体X~N(μ,52),则总体参数β的置信度为1-α的置信区间的长度( ).A.与α无关B.随α的增加而增加C.随α的增大而减少D.与α有关但与α的增减性无关正确答案:C参考解析:11 [填空题]参考解析:【解析】12 [填空题]参考解析:【解析】13 [填空题]参考解析:14 [填空题]参考解析:【解析】15 [填空题]参考解析:【解析】16 [填空题]设随机变量X,Y相互独立,D(X)=4D(y),令U=3X+2Y,V=3X-2Y,则ρUV=_______ 参考解析:17 [简答题]参考解析:18 [简答题]参考解析:19 [简答题]参考解析:将L满足的微分方程y'=f(x,y)代入被积表达式,得20 [简答题]参考解析:21 [简答题]设A是3阶实对称矩阵,存在可逆矩阵P,使得P-1AP=diag(1,2,-1),且α1=(1,k+1,2)T,α2=(k-1,-k,1)T分别为A的特征值λ1=1,λ2=2的特征向量,A*的特征值λ0对应的特征向量β=(2,-5k,2k+1)T.(Ⅰ)求λ0与k的值;(Ⅱ)求矩阵(A-1)*.参考解析:(Ⅰ)设λ3=-1对应的特征向量为α3=(x1,x2,x3)T,由A是实对称矩阵,知α1,α2,α3两两正交,故(Ⅱ)22 [简答题](1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.参考解析:(1)(2)。
2016年全国硕士研究生入学统一考试数学(一)真题及解析(江南博哥)1 [单选题]A.a<1且b>1B.a>1且b>1C.a<1且a+b>1D.a>1且a+b>1正确答案:C参考解析:2 [单选题]A.B.C.D.正确答案:D参考解析:函数F(x)在x=1处连续,考查可导性,所以答案选D项.3 [单选题]若y=(1+x2)2-,y=(1+x2)2+是微分方程y'+p(x)y=q(x)的两个解,则q(x)=().A.3x(1+x2)B.-3x(1+x2)C.D.-正确答案:A参考解析:4 [单选题]A.x=0是f(x)的第一类间断点B.x=0是f(x)的第二类间断点C.f(x)在x=0处连续但不可导D.f(x)在x=0处可导正确答案:D参考解析:由连续及可导的定义可知f(x)在x=0点是可导的,其中注意需要讨论左右连续及左右导数.5 [单选题]设A,B是可逆矩阵,且A与B相似,则下列结论错误的是().A.A T与B T相似B.A-1与B-1相似C.A+A T与B+B T相似D.A+A-1与B+B-1相似正确答案:C参考解析:因为A与B相似,所以存在可逆矩阵P,使得P-1AP=B,两端分别取逆与转置可得:P-1A-1P=B-1,B项正确;P T A T(P T)-1=B T,A项正确;P-1(A+A-1)P=P-1AP+P-1A-1P=B+B-1,D项正确.6 [单选题]设二次型f(x1,x2,x3)=,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为().A.单叶双曲面B.双叶双曲面C.椭球面D.柱面正确答案:B参考解析:求出二次型矩阵的特征值,设1,负惯性指数为2,从而二次型f(x1,x2,x3)=2表示双叶双曲面.7 [单选题]设随机变量X~N(μ,σ2)(σ>0),记P=P|X≤μ+σ2},则().A.P随μ的增加而增加B.P随σ的增加而增加C.P随μ的增加而减少D.p随σ的增加而减少正确答案:B参考解析:将X标准化.8 [单选题]随机试验E有三种两两不相容的结果A1,A2,A3,且三种结果发生的概率均为,将试验E独立重复2次,X表示2次试验中结果A1发生的次数,Y表示2次试验中结果A2发生的次数,则X与Y的相关系数为().A.-B.-C.D.正确答案:A参考解析:二维离散型随机变量(X,Y)的联合分布列为:9 [填空题]_______.参考解析:【解析】10 [填空题]向量场A(x,y,z)=(x+y+z)i+xyj+zk的旋度rotA=_______.参考解析:j+(y-1)k【解析】11 [填空题]设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x-z,y)所确定,则出dz|(0,1)=_______.参考解析:-dx+2dy【解析】方程两边求全微分得12 [填空题]设函数_______.参考解析:13 [填空题]_______.参考解析:14 [填空题]设X1,X2,…,X n为来自总体N(μ,σ2)的简单随机样本,样本均值=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为_______.参考解析:(8.2,10.8)【解析】置信区间中心为x,可知置信下限为9.5-(10.8-9.5)=8.215 [简答题]参考解析:解:积分区域关于x轴对称,设D,为x轴上方区域,如右图.16 [简答题]设函数y(x)满足方程y”+2y’+ky=0,其中0<k<1.(I)(Ⅱ)参考解析:解:17 [简答题]参考解析:解:18 [简答题]参考解析:解:19 [简答题]已知函数f(x)可导,且f(0)=1,0<f’(x)<.设数列{x n}满足x n+1=f(x n)(n=1,2,…),证明:(I)(Ⅱ)参考解析:证明:(I)由lagrange中值定理可知20 [简答题]当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时求此方程.参考解析:解:当|A|≠0时,可知方程AX=0有唯一解.21 [简答题](I)求A99;(Ⅱ)设三阶矩阵B=(α1,α2,α3)满足B2=BA.记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合.参考解析:解:(I)因此A的特征值为λ1=0,λ2=-1,λ3=-2.当λ1=0时,解(0E-A)x=0,即Ax=0.22 [简答题]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,(I)写出(X,Y)的概率密度;(Ⅱ)问:U与X是否互相独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).参考解析:解:23 [简答题](I)求T的概率密度;(Ⅱ)确定a值,使得aT为θ的无偏估计.参考解析:解:(I)T的分布函数为。
2016考研数学(一)真题及答案解析考研复习最重要的就是真题,所以跨考教育数学教研室为考生提供2016考研数学一的真题、答案及部分解析,希望考生能够在最后冲刺阶段通过真题查漏补缺,快速有效的备考。
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列下列命题中不正确的是( ) (A )若lim n n x a →∞=,则221lim lim n n n n x x a +→∞→∞==(B )若221lim lim n n n n x x a +→∞→∞==,则lim n n x a →∞=(C )若lim n n x a →∞=,则321lim lim n n n n x x a -→∞→∞==(D )若331lim lim n n n n x x a -→∞→∞==,则lim n n x a →∞=【答案】(D ) (2)设211()23x x y e x e =+-是二阶常系数非齐次线性微分方程x y ay by ce '''++=的一个特解,则(A )3,2,1a b c =-==- (B )3,2,1a b c ===- (C )3,2,1a b c =-== (D )3,2,1a b c === 【答案】(A )【解析】将特解代入微分方程,利用待定系数法,得出3,2,1a b c =-==-。
故选A 。
(3)若级数1nn n a x∞=∑在2x =处条件收敛,则x =3x =依次为幂级数1(1)nnn na x ∞=-∑的( )(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点 【答案】(A ) 【解析】因为级数1nn n a x∞=∑在2x =处条件收敛,所以2R =,有幂级数的性质,1(1)nnn na x ∞=-∑的收敛半径也为2R =,即13x -<,收敛区间为13x -<<,则收敛域为13x -<≤,进而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,收敛点,故选A 。
更多干货,内容请关注凯程官网和凯程手机站。
12016年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若反常积分()11badx x x +∞+⎰收敛,则()()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且【答案】(C )【解析】1(1)a bdxx x +∞+⎰1111(1)(1)a b a b dx dx x x x x +∞=+++⎰⎰11pdx x⎰在(1p <时收敛),可知1a <,而此时(1)bx +不影响同理,1111(1)11ba ba b dx dxx x x x +∞+∞+=+⎛⎫+ ⎪⎝⎭⎰⎰11p dx x +∞⎰(1p >时收敛),而此时11bx ⎛⎫+ ⎪⎝⎭不影响(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是()()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩【答案】(D )【解析】由已知可得,()()(ln )x C x F x x x C x ⎧-+<=⎨-++≥⎩21111111,取C =10,故选D(3)若()()22222211,11y xx y x x =+-+=+++是微分方程()()y p x y q x '+=的两个解,则()q x =()22()()()()()()2222313111xx A x x B x x C D x x +-+-++【答案】(A )【解析】y y x-=-+21221是一阶齐次微分方程()y p x y '+=0的解,代入得()()x p x x x -+-+=+2222101,所以()xp x x =-+21,根据解的性质得,y y +122是()()y p x y f x '+=的解。
所以有()()q x x x =+231.(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩ ,则()(A )0x =是()f x 的第一类间断点(B )0x =是()f x 的第二类间断点(C )()f x 在0x =处连续但不可导(D )()f x 在0x =处可导【答案】(D )【解析】由于()lim x x f x-→-'==0001,()lim n n f n+→∞-'==1011,故选D 。
(5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是()(A )TA 与TB 相似(B )1A -与1B -相似(C )TA A +与TB B +相似(D )1A A -+与1B B -+相似【答案】(C )【解析】此题是找错误的选项。
由A 与B 相似可知,存在可逆矩阵,P 使得1P AP B -=,则111111111111111111(1)()()~,A (2)()~(3)()~, T T T T T T T T P AP B P A P B A B P AP B P A P B A B B P A A P P AP P A P B B A A B B D ------------------=⇒=⇒=⇒=⇒+=+=+⇒++故()不选;,故()不选;故()不选;此外,在(C )中,对于111()TTP A A P P AP P A P ---+=+,若1=P AP B -,则1()TTT T P A P B -=,而1TP A P -未必等于TB ,故(C )符合题意。
综上可知,(C )为正确选项。
(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为()(A )单叶双曲面(B )双叶双曲面(C )椭球面(D )柱面更多干货,内容请关注凯程官网和凯程手机站。
3【答案】(B )【解析】对于二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,其矩阵为122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭,接下来由0E A λ-=,可得其特征值为1235,1λλλ===-(一正两负),因此其正惯性指数和负惯性指数分别为1,2.故二次型()123,,f x x x 的规范形为222123f z z z =--,即22222231212322221(2)(2)(2)z z z z z z --=⇒--=,对应的曲面为双叶双曲面。
(7)设随机变量()()0,~2>σσμNX ,记{}2σμ+≤=X P p ,则()(A )p 随着μ的增加而增加(B )p 随着σ的增加而增加(C )p 随着μ的增加而减少(D )p 随着σ的增加而减少【答案】(B )【解析】2{}{}X P X P μμσσσ-≤+=≤所以概率随着σ的增大而增大。
(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为()【解析】11(2,),(2,)33X B Y B 24,39EX EY DX DY ====,211(1,1)9EXY P X Y =⋅⋅===所以12XY EXY EXEY DX DYρ-==-二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)()__________cos 1sin 1ln lim 200=-+⎰→x dt t t t xx 【答案】21【解析】ln(sin )limx x x x x →+=301122(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA44【答案】()1,1,0-y 【解析】由旋度公式得,{}(A),,,,R Q P R Q P rot y y z z x x y ⎧⎫∂∂∂∂∂∂=---=-⎨⎬∂∂∂∂∂∂⎩⎭01111、设函数(,)f u v 可微,(,)z z x y =有方程()(,)x z y x f x z y +-=-221确定,则(),____dz =01.【答案】dydx 2+-【解析】()(,)x x y x f x z y +-=-221两边分别关于,x y 求导得()(,)(,)()()((,)()(,))x x y y z x z xf x z y x f x z y z x z y x f x z y z f x z y '''++=-+--''''+-=--+-2121212112,将,,x y z ===011代入得,(),dzdx dy=-+012(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a 【答案】21(13)行列式1000100014321λλλλ--=-+____________.【答案】432234++++λλλλ【解析】414321001011=01+4110++2+3+4.00132+101432+1λλλλλλλλλλλλλλ+-----⨯-=--(-)(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.【答案】()8.10,2.8【解析】0.0250.0250.0250.025{}{}0.95x uP u u P x u u x u nnnσσσ--<<=-<<+=更多干货,内容请关注凯程官网和凯程手机站。
5因为0.02510.8x u nσ+=,所以0.025 1.3,u nσ=所以置信下限0.0258.2x u nσ-=.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.【答案】3325+π【解析】()()⎰⎰⎰⎰⎰-+-+==223cos 1222222cos 123cos cos ππθππθθθθθd rdr r d dxdy x D()⎰⎰⎰⎰----++=++=22422322222432cos 38cos 8cos 8cos cos 3cos 338ππππππππθθθθθθθθθθd d d d ()⎰⎰⎰⎰------+⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+-++=22222232222322222cos sin 338|3sin sin 8|22sin 4sin cos 38sin sin 18212cos 8ππππππππππππθθθθθθθθθθθθθd d d d 33252sin 23324222+=-+=⎰-πθθπππd (16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.【答案】()II k3【解析】(1)特征方程为220r r k ++=,由01k <<可知,特征方程有两个不相同的特征根,1,2244112kr k -±-==-±-且1,20r <,66由二阶常系数齐次线性方程的求解可知,1212()r x r xy x C e C e =+12120()r x r xy x dx C e C e dx +∞+∞⎡⎤=+⎣⎦⎰⎰12120r x r x C e dx C e dx+∞+∞=+⎰⎰121212lim 1lim 1r x r x x x C Ce e r r →+∞→+∞⎡⎤⎡⎤=-+-⎣⎦⎣⎦由于1,20r <1212()C C y x dx r r +∞=--⎰极限存在,故收敛.(2)由1212()r xr xy x C e C e =+,(0)1,'(0)1y y ==可知,1211221,21111C C C r C r r k⎧+=⎪⎪+=⎨⎪=-±-⎪⎩解得1212C C ==代入12012()C C y x dx r r +∞=--⎰可知0()y x dx +∞=⎰1kk -(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,t f y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()t L f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值【答案】3【解析】(1)由2(,)(21)x yf x y x e x-∂=+∂可知:2(,)[(21)]x y f x y x e d x-=+⎰22[2]y x xe x e d x ed x -=+⎰⎰2()y x e xe y ϕ-=+ 2()x y x e y ϕ-=+又(0,)1f y y =+可知()1y y ϕ=+更多干货,内容请关注凯程官网和凯程手机站。