《概率论与数理统计》第五章 数理统计的基本概念n
- 格式:ppt
- 大小:4.11 MB
- 文档页数:79
概率论与数理统计的基本概念和原理简介概率论和数理统计是数学中重要的分支学科,它们在现代科学和生活中扮演着重要角色。
本文将对概率论和数理统计的基本概念和原理进行简要介绍。
一、概率论的基本概念和原理1. 随机试验随机试验是指具有以下特点的试验:在相同条件下可以重复进行,每次试验的结果不确定,但所有可能结果都是事先确定的且互不相容。
2. 随机事件与样本空间试验的每个可能结果称为基本事件,基本事件的集合称为样本空间。
样本空间中的子集称为随机事件。
3. 概率的定义一般来说,事件发生的概率是指该事件发生的可能性大小。
概率的定义可以通过频率的概念来解释:事件A发生的概率等于在多次重复试验中,事件A发生的频率趋近于一个常数。
4. 概率的性质概率具有以下性质:- 0 ≤ P(A) ≤ 1,概率值的取值范围在0到1之间。
- P(Ω) = 1,样本空间发生的概率为1。
- 对于任意的事件序列 {Ai},若相互不相容,则有 P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An)。
5. 概率的计算方法计算概率的常用方法有古典概型法、几何概率法、频率概率法和叠加原理等。
二、数理统计的基本概念和原理1. 总体与样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
通过对样本的统计分析,可以推断总体的性质。
2. 统计量统计量是样本的函数,用于刻画样本的某种性质。
常见的统计量有样本均值、样本方差等。
3. 参数估计参数估计是通过样本统计量推断总体参数的值。
常用的参数估计方法有点估计和区间估计。
4. 假设检验假设检验是指对于总体参数提出一个假设,并通过对样本进行统计推断来判断是否拒绝假设。
假设检验分为单侧检验和双侧检验。
5. 相关与回归分析相关分析用于刻画两个变量之间的线性关系,回归分析用于建立一个变量与其他变量之间的函数关系。
三、概率论与数理统计的应用领域概率论和数理统计广泛应用于各个领域:1. 金融风险管理概率论和数理统计对金融领域的风险管理起着关键作用,可以通过建立数学模型对金融市场进行预测和评估。
第五章 数理统计的基本概念一. 填空题1. 设X 1, X 2, …, X n 为来自总体N(0, 2), 且随机变量)1(~)(221χ∑==ni iX C Y , 则常数C=___.解.∑=ni iX1~ N(0, n 2),)1,0(~1N n Xni iσ∑=所以21,1σσn c n c ==.2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且243221)43()2(X X b X X a Y -+-=,则a = ______, b = ______时, Y 服从2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100))1,0(~20221N X X -, )1,0(~1004343N X X -201,201==a a ; 1001,1001==b b . Y 为自由度2的2分布.3. 设X 1, X 2, …, X n 来自总体2(n)的分布,则._____)(______,)(==X D X E解. 因为X 1, X 2, …, X n 来自总体2(n), 所以E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n),)(n X E = 22)()(221=⋅==∑=nnn nX D X D ni i二. 单项选择题1. 设X 1, X 2, …, X n 为来自总体N(0, 2)的样本,则样本二阶原点矩∑==n i i X n A 1221的方差为 (A)2 (B) n 2σ (C) n 42σ (D) n4σ 解. X 1, X 2, …, X n 来自总体N(0, 2), 所以,1)(),1(~)(222=σχσiiX E X 2)(2=σiX Dnn nn X D nX D A D ni ini i4242214212222))(()()(σσσσ=⋅===∑∑==. (C)是答案.2. 设X 1, X 2为来自正态总体N(,2)的样本, 则X 1 + X 2与X 1-X 2必 (A) 线性相关 (B) 不相关 (C) 相关但非线性相关 (D) 不独立 解. 假设 Y 1 = X 1 + X 2, Y 2 = X 1-X 2 所以 E(Y 2) = E(X 1)-E(X 2) = 0.cov(Y 1, Y 2) = E(Y 1Y 2)-E(Y 1)E(Y 2) = E(0)()()22212221=-=-X E X E X X . (B)是答案.3. 设X 服从正态分布N(0, 22), 而X 1, X 2, …, X 15为来自总体X 的简单随机样本, 则随机变量)(221521121021X X X X Y ++=所服从的分布为 (A) 2(15) (B) t(14) (C) F(10, 5) (D) F(1, 1)解.)10(~4221021χX X +, )5(~42215211χX X + 所以 )5,10(~204021521121021F X X X X ++++ , 即 )5,10(~)(221521121021F X X X X Y ++= (C)是答案.三. 计算题1. 设X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本,求∑=>1012)44.1(i iXP .解. 因为X 1, X 2, …, X 10为总体N(0, 0.32)的一个样本, 所以)10(~3.0101222∑=i i X χ ()44.1(1012P X P i i=>∑=1.0)16)10(()09.044.13.0101222=>=>∑=i i P X χ 2. 从一正态总体中抽取容量为10的一个样本, 若有2的样本均值与总体均值之差的绝对值在4以上, 试求总体的标准差. 解. 因为总体X 服从N(,2),所以)1,0(~10/N X σμ-. 由02.0)4|(|=>-μX P 知 02.0)104|10/(|=>-σσμX P即 99.0)104(,01.0)104(=Φ=-Φσσ查表得.43.533.2104,33.2104===σσ3. 设总体X ~N(72, 100), 为使样本均值大于70的概率不小于0.95 , 问样本容量至少应取多大?解. 假设样本容量为n, 则)1,0(~1072),100,72(~N nX nN X -由 95.0)70(≥>X P 得P(n X 1072->95.0)107270≥-n 所以 0625.68,65.15,95.0)5(≥≥≤Φn nn.4. 设总体X 服从N(, 4), 样本(X 1, X 2, …, X n )来自X, X 为样本均值. 问样本容量至少应取多大才能使i. 1.0)|(|2≤-μX E ii. 95.0)1.0|(|2≥≤-μX P解. i. 1.04)(1)()|(|2≤===-nX D n X D X E μ 所以 n ≥ 40. ii. )1,0(~2),4,(~N nX nN X μμ-. 所以 P X P =≤-)1.0|(|μ(95.0)21.0|2|≥≤-nnX μ975.0)201(≥Φn , 查表得 ,96.1201≥n n ≥ 1537 5. 设∑==ni i X n X 11, 证明:i.∑=-ni iX12)(μ=∑=---ni i X n X X 122)()(μ;ii.∑∑==-=-ni ni i iX n X X X12122)()(.解. i.=-∑=ni iX12)(μ∑=-+-ni iX X X12)(μ=2)(12+-∑=ni iX X∑=+--ni i X X X 1))((μ∑=-ni X 12)(μ=2)(12+-∑=ni iX X∑=+--ni i X n X X 1))((μ2)(μ-X n=∑=---ni iX n X X122)()(μii.=-∑=ni i X X 12)(21121222)2(X n X X X X X X X ni i ni ini i i+-=+-∑∑∑====22122X n X n Xni i+-∑==212)(X n X ni i ∑=-。
习题5-17、设总体X 的分布函数为()F x ,密度函数为()f x ,12,,,n X X X 为来自总体X 的样本,记(1)1min()i i nX X ≤≤=,()1max()n i i nX X ≤≤=,求(1)(),n X X 各自的分布函数与密度函数。
解:记(1)X 的分布函数和密度函数分别为(1)(1)(),()F x f x ,()n X 的分布函数和密度函数分别为()()(),()n n F x f x ,则(1)12(){min()}1{min()}1{,,...}i i n F x P X x P X x P X x X x X x =≤=->=->>>1[1()]n F x =--,所以1(1)(1)()[()][1()]()n f x F x n F x f x -'==-。
()12(){max()}{,,...}[()]n n i n F x P X x P X x X x X x F x =≤=≤≤≤=,所以1()()()[()][()]()n n n f x F x n F x f x -'==。
8、设总体X 服从指数分布()E λ,12,X X 是容量为2的样本,求(1)X ,(2)X 的概率密度。
解:由于总体X 服从指数分布()E λ,故X 的概率密度函数与分布函数分别为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,1,0()0,0x e x F x x λ-⎧->=⎨≤⎩ 所以,(1)X 的概率密度为2121(1)2[1(1)],02,0()[1()]()0,00,0x x x n e e x e x f x n F x f x x x λλλλλ-----⎧⎧-->>=-==⎨⎨≤≤⎩⎩, (2)X 的概率密度为211(2)2(1),02(1),0()[()]()0,00,0x x x x n e e x e e x f x n F x f x x x λλλλλλ------⎧⎧->->===⎨⎨≤≤⎩⎩。
第五章数理统计的基础知识在前四章的概率论部分中,我们讨论了概率论的基本概念、思想和方法。
知道随机变量的统计规律性是通过随机变量的概率分布来全面描述的。
在概率论的许多问题中,概率分布通常是已知的或假设为已知的,在这一前提下我们去研究它的性质、特点和规律性,即讨论我们关心的某些概率、数字特征的计算以及对某些问题的判断、推理等。
但在许多实际问题中,所涉及到的某个随机变量服从什么分布我们可能完全不知道,或有时我们能够根据某些事实推断出分布的类型,但却不知道其分布函数中的某些参数。
例如:1、某种电子元件的寿命服从什么分布是完全不知道的。
2、检测一批灯泡是否合格,则每个灯泡可能合格,也可能不合格,则服从(0—1)分布,但其中的参数p 未知。
对这类问题要深入研究,就必须知道与之相应的分布或分布中的参数.数理统计要解决的首要问题就是:确定一个随机变量的分布或分布中的参数.数理统计学是研究随机现象规律性的一门学科,它以概率论为理论基础,研究如何以有效的方式收集、整理和分析受到随机因素影响的数据,并对所考察的问题作出推理和预测,直至为采取某种决策提供依据和建议。
数理统计研究的内容非常广泛,可分为两大类:一是:怎样有效地收集、整理有限的数据资料.二是:怎样对所得的数据资料进行分析和研究,从而对所考察对象的某些性质作出尽可能精确可靠的判断—本书中参数估计和假设检验。
第一节数理统计的基本概念一、总体与总体的分布在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个元素称为个体。
总体中所包含的个体的个数称为总体的容量. 容量为有限的总体称为有限总体;容量为无限的总体称为无限总体. 总体和个体之间的关系就是集合与元素之间的关系。
在实际问题中,研究对象往往是很具体的事物或现象,而我们所关心的不是每一个个体的种种具体的特征,而是其中某项或某几项数量指标,记为X .例如:研究一批灯泡的平均寿命时,该批灯泡的全体构成了研究的总体,其中每个灯泡就是个体.但在实际问题中,我们仅仅关心灯泡的使用寿命(记X 表示该批灯泡的寿命)。
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
复制过来让大家都能下载哈第五章数理统计的基础知识5.1 数理统计的基本概念习题1已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表求样本容量n,样本均值X¯,样本方差S2.解答:对于抽到的每个居民户调查均收入,可见n=200.这里,没有给出原始数据,而是给出了整理过的资料(频率分布),我们首先计算各组的“组中值”,然后计算X¯和S2的近似值:分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.5.3 抽样分布(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
概率论与数理统计第五章知识点第五章的概率论与数理统计的知识点主要涉及到概率函数、统计推断、分布函数和多元正态分布等内容,这其中包括了多项式概率分布、超几何分布、二项分布、线性回归、假设检验、多重切线回归、卡方检验、小抽样检验、检验均值和协方差等内容。
首先,多项式概率分布是一种特殊的概率分布,它建立了在有限次试验中某个事件出现次数的概率,它由定义性的概率空间和一组完备的事件集合组成,并可以使用不同的统计技术来计算它们。
其次,超几何分布是一种分布,用于计算取样观测中某种特征发生次数的概率,它与多项式分布有着很大的不同,它建立了一个独立的取样模型,它是一种独立取样模型,它利用概率论中的概率空间来分析一个独立取样实验中观测到一个特征发生次数的概率。
再次,二项分布也是一种概率分布,它用来计算一系列试验中出现某种特征的次数的概率。
它是一种特殊的多项式分布,可以使用概率论的工具来应用二项式分布,以确定两个不同事件之间的概率。
此外,线性回归也是第五章概率论与数理统计中一个重要的概念,它是一种统计方法,用来预测一个变量的变化可能会导致另一个变量的变化。
线性回归的基本原理是拟合两个变量的关系,使回归线能够最佳地拟合所有数据,以找到其中的趋势。
另外,假设检验是一种重要的统计技术,在假设检验中,需要使用概率空间,以便计算假设检验中备择假设的概率,并判断假设是否成立。
另外,多重切线回归也是一种重要的统计方法,它是以多元关系作为因变量和因变量之间的关系来拟合数据,以确定多元回归线的最佳拟合方式,让其效果最好。
此外,卡方检验、小抽样检验和检验均值和协方差等也是第五章概率论与数理统计的重要内容。
其中,卡方检验是一种特殊的假设检验,用来判断一组数据的差异是否大于预期,以确定数据的分布情况。
而小抽样检验是一种统计方法,用于给出总体参数的精确估计,以帮助确定相关的总体统计量,用来估计总体参数。
最后,检验均值和协方差也是一种重要的统计方法,它可以帮助分析两个变量之间的关系,以确定两个变量之间的相关程度。
第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。
本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。
然而,实际情况往往并非如此。
一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。
例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。
再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。
那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。
为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。
由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。
数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。
这种伴有一定概率的推断称为统计推断。
二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。
为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。
我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。
总体中所包含的个体的个数称为总体的容量。
容量有限的总体称为有限总体,容量无限的总体称为无限总体。
例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。
所有5000只灯泡的寿命是一个有限总体。
数理统计基本概念教学目标:1.理解总体、样本和统计量的概念2.掌握样本均值、样本方差及样本矩的计算教学内容:一、引例例如,考察某厂生产的日光灯管的质量,灯管的平均寿命是一个重要的质量指标。
由于生产中各种随机因素的影响,各个灯管的寿命是不完全不同的,但受到人力、物力等限制,特别是灯管寿命测试这类试验带有破坏性,所以不可能对生产的全部灯管一一进行测试,一般只是从整批中取出一部分灯管来测试,然后根据这些得到的灯管寿命数据来推断整批灯管的平均寿命。
二、总体与个体概念在一个统计问题中,我们把研究对象的全体称为总体,构成总体的每个成员称为个体。
对多数实际问题。
总体中的个体是一些实在的人或物。
比如,我们要研究某大学的学生身高情况,则该大学的全体学生构成问题的总体,而每一个学生即是一个个体。
事实上,每个学生有许多特征:性别、年龄、身高、体重、民族、籍贯等。
而在该问题中,我们关心的只是该校学生的身高如何,对其他的特征暂不予以考虑。
这样,每个学生(个体)所具有的数量指标值——身高就是个体,而将所有身高全体看成总体。
这样一来,若抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的机会多,有的出现的机会少,因此用一个概率分布去描述和归纳总体是恰当的。
从这个意义上看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量。
以后说“从总体中抽样”与“从某分布中抽样”是同一个意思。
例1.考察某厂的产品质量,将其产品只分为合格品与不合格品,并以0记合格品,以1记不合格品,则总体={该厂生产的全部合格品与不合格品}={由0或1组成的一堆数}。
若以p表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:不同的p反映了总体间的差异。
例如,两个生产同类产品的工厂的产品总体分布为:我们可以看到,第一个工厂的产品质量优于第二个工厂。
实际中,分布中的不合格品率是未知的,如何对之进行估计是统计学要研究的问题。
三、样本为了了解总体的分布,我们从总体中随机地抽取n个个体,记其指标值为x1,x2,…,x n,则x1,x2,…,x n称为总体的一个样本,n称为样本容量,或简称样本量,样本中的个体称为样品。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。