(完整版)高中数学公式口诀大全
- 格式:doc
- 大小:67.01 KB
- 文档页数:14
高中数学公式口诀一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
高三重点知识点口诀一、数学1. 二次函数口诀:顶点公式求自变量,y轴对称走一个倒。
开口向上a正号,向下则正变成负。
2. 数列知识点:首何值可用通项求,末何等于首加上组。
公差为固定差,首项和公差求。
3. 圆的公式口诀:圆心套观点,方程不再恐。
半径直接r,圆心化中常。
圆心距离求,弧长由角通。
弦长全靠定值,通用求切线。
4. 概率公式口诀:事件概率求容斥,条件概率转全概。
乘法放心用相乘,和事件加起来。
独立等价于加和,概率算得到。
二、物理1. 运动学口诀:初速加末速,除以二就是等。
路程等于速度乘,时间常乘在身边。
加速时间缩一倍,路程是原来的四倍。
自由落体往上取,加速度取十。
2. 电路知识点:并联电阻分,倒数加加。
串联电阻求,直接相加。
3. 光学易混淆:反射镜分虚实,凸镜物和像同方向。
凹镜物与像反,焦点看曲率。
4. 动能定律口诀:物体的动能请用半mv平方。
流速公式大导就,液体密度常加乘。
机械能守恒教导,损失等于劳动得。
三、化学1. 酸碱反应口诀:酸加碱,盐和水;氧化还原,电子转。
2. 元素周期表:期见封新鲜,近似保持共价;希求氧和氮,硒硫班要放弃。
3. 合成反应口诀:氧亏别添氧,氢亏赶快加,盐分明记号,尤其要涨记真。
4. 动力学口诀:起速和末速同朝向,功与热看方向。
端看平衡,大也小也平衡。
四、英语1. 时态口诀:一般现在时,现在的事情。
一般过去时,过去的事情。
一般将来时,未来的事情。
现在完成时,先过后现在。
过去进行时,两个过去事情。
将来进行时,要未来进行。
2. 名词复数规则:普通的加‘s’,以o结尾加‘es’。
以y结尾变‘y’为‘i’,复数不变加‘s’。
特殊单词见的少,没有规定按常用。
3. 冠词使用口诀:特指用定冠词,前边有只用不定。
泛指不用冠词,具体加定冠词。
用数词的一定要,非复数不用冠。
4. 宾语从句口诀:特殊用法不丢弃,陈述可连引语。
一般疑问句脱引,此时动词提升。
特殊疑问提前放,语序默认陈述。
以上口诀总结了高三阶段数学、物理、化学和英语的重点知识点,希望对你的学习有所帮助。
高三数学知识点背诵口诀一、整式的运算口诀:
同号相加,并提取,不同号相减;
乘法法则,项项乘,合并同类项,加减殊;
平方差,二次和,一正一负,中间差。
二、因式分解口诀:
提公因式,见括号,互补因子,先认清;
差平方根,要分解,平方差形式,很明显;
配方法,交替变,一正一负,巧分解。
三、分式运算口诀:
通分加减,分母要相同;
乘除法则,颠倒来;
分式方程,消分母,去括号,整体得。
四、二次函数口诀:
a大于零,开口向上;
a小于零,开口向下;
a等于零,函数退化。
五、数列运算口诀:
等差数列,公差找,通项公式,敲一遍;
等比数列,首项给,公比公式,照着来;
等比求和,分数积,首项与公比,不用求。
六、三角函数口诀:
正弦对边比斜边,余弦邻边比斜边;
正切对边比邻边,余切邻边比对边;
正切值等于余切倒数。
七、解方程口诀:
一元一次,三步走,去括号,移常数,化简求解;一元二次,四步走,齐次,二辅一常,配方解方程;
一元高次,逐次啄,先异号,再相同,整除出头。
八、概率统计口诀:
全概率,分类得,乘法定理,概率才有;
加法定理,排列组合,互斥独立,条件概率。
九、解几何题口诀:
相似关系,边比设,等角关系,角度等;
平行关系,对应等,垂直关系,互为负。
十、微积分口诀:
函数求导,一力行,乘幂规则,加减现;
不连续,左右极,左右导数,判断存在;
定积分,上下限,原函数定理,计算估。
以上是高三数学知识点背诵口诀,希望能够帮助你掌握数学知识,顺利应对考试。
记住口诀,学好数学!。
高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。
2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。
3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。
4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。
二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。
2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。
3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。
4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。
三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。
2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。
3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。
4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。
四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。
2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。
3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。
4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。
5. 期望•期待其,乘以概率求;•如此则,累加其结果。
五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。
2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。
3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。
高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。
2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。
3. 四则运算优先顺序:括号,乘除,加减。
4. 和差化积:(a ± b)² = a² ± 2ab + b²。
5. 因式分解基本公式:a² - b² = (a + b)(a - b)。
二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。
2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。
3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。
4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。
5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。
三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。
2. 正弦余弦周期为2π,正切余切周期为π。
3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。
4. 归一化:将角度转为弧度,范围在[-π, π]之间。
5. 三角函数关系:tan = sin / cos,cot = cos / sin。
四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。
2. 同位角、内错角、同旁内角,两对角相等。
3. 正弦定理:a / sinA = b / sinB = c / sinC。
4. 余弦定理:c² = a² + b² - 2ab*cosC。
5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。
高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。
下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。
2.正负所在那一限,正弦正切是正的。
3.根号三只友正弦,二的根号二友余弦。
二、圆的口诀:
1.圆周率尺规法,一圆项。
千千根号重:π=3.14159,记忆个不轻。
2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。
3.圆周角邻直角,同弦近圆交。
外切内稳势精顾,辅角对顶三逢亲。
三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。
相似方幅求来比,等比等品
君得跟。
2.圆的曲面独一元,求面积头一招君。
高下残积主罕省,内长径尔
再添。
四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。
增长差变须记证,指事牵牛开辟门。
2.多项减副主法兰,微分为证铺金殿。
商显骤忽元幡摇,商商商手绕十课。
以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。
数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。
三角函数正弦余弦,正切余切,割和余割,联立解三角形。
数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。
排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。
函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。
立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。
微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。
以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。
- 1 -。
55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。
1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。
高中数学知识点顺口溜速记口诀高中数学知识点顺口溜速记口诀高中数学是大家感到比较难的,因为它需要掌握的内容非常多,而且内容也比较深奥。
然而,在面对这些知识点时,我们可以使用一些口诀来帮助我们掌握这些知识点,从而更好地应对数学考试。
接下来,我将为大家分享一些高中数学知识点顺口溜,让大家轻松记忆。
一、函数篇1、差商公式:差商的结果求值,上下都是相邻f(x)减f(x-1),下标依次减f(x-1)减f(x-2),再取一遍差2、函数图像形状:一次线性就是直线走,二次平方就是开口形,幂函数基数大于1,往上凸,幂函数基数小于1,往下略。
三角函数多角形,都是周期图像形,正弦函数在零度,最低处,余弦函数在零度,最高出。
二、三角篇1、正弦、余弦变换:正弦相量纵轴界,余弦相量横轴解。
2、三角函数图像:正弦函数开口向上,余弦函数开口向下,正交坐标轴描点,周期二洞三抬半。
3、最值判断:正弦最大为1,余弦最小为-1,正切不存在,余切不存在。
三、导数篇1、求导方法:幂函数,古不变,指数函数,右上挂负号,对数函数,左下挂倒数,三角函数,横纵貌相同,反三角,倒数相应关。
2、高中数学一些特别记:自然对数微分,下来还是他自己,绝对值微分,根据正负分两步。
四、行列式篇1、二阶行列式求值:对角线相乘,反对角线相减。
2、三阶行列式求值:按行或按列,每行或每列视为二阶式。
三阶行列式一个箭头去,四阶行列式两箭头正,五阶行列式三箭头,六阶行列式四足占。
五、概率篇1、全概率公式:设A1,A2…,An构成一个样本空间S的一个划分,则对S中任一事件B,有公式:2、贝叶斯定理:样本空间S和一组事件B1,…,Bn,设p(Bi)≠0,对i=1,...,n,且B1,…,Bn构成S的一个划分, 若A是任意一个事件,且p(A)≠0,则有公式:P(Bi|A) = P(A|Bi) P(Bi) / [Σj P(A|Bj)P(Bj)]6、期望的性质(1)恒等性质:E(c)=c;(2)线性性质:E(cX+dY)=cE(X)+dE(Y) ;(3)可加性质(离散):若X和Y是离散型随机变量,则E(X+Y)=E(X)+E(Y) ;以上只是其中的几个口诀,高中数学涉及的知识面非常广泛,如果想要掌握更多的知识点,就要不断地复习和总结。
高中数学公式定理记忆口诀高中数学知识口诀:集合与函数内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
高中数学知识口诀:三角函数三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集高中数学知识口诀:不等式解不等式的`途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
高中数学口诀高中数学口诀(上)第一章代数基础1. 加减法凑整法:凑整使用,方程等式,快速简化。
2. 高次项凑齐法:幂指数齐,多项式一步搞。
3. 连加连乘法:累次求和,乘积相连,一招攻克全方程。
4. 因式分解法:拆括号秘,公式结构可敲打。
5. 质因数质因式:分解因数速直接,查找素数很实际。
6. 对称轴确定:横纵轴齐,确定坐标真。
7. 根轨迹观察:质数亮点,轨迹变换。
8. 根与系数关系:和、积、乘方,一目了然。
第二章函数与图像1. 函数定性分析:定义域找,单调取,奇偶观,周期求。
2. 函数拓展收缩:加减、倒置,平移缩放队非常。
3. 函数分段讨论:区间函数,条件束缚,得待灵活处理。
4. 典型函数曲线:线性单调直,二次轨迹齐,指数凸上,对数沉下,三角周期短。
第三章概率与统计1. 归纳法法则:观察问题,找规律,归纳推导法。
2. 理论频率法:总频率,个频数,逐个比,并列对比。
3. 期望逼近定律:均值核心,变量重合,独立性和。
4. 抽样指标估计:条件满足,总体估计,抽样调查方法。
第四章解析几何1. 图形基本特征:位移、旋转、对称变换。
2. 直线斜率关系:平行、垂直、相交。
3. 曲线变换规律:平移、伸缩和翻转。
4. 曲线切线性质:一阶导数,求斜率。
5. 图形方程关联:标准、一般、参数。
6. 空间图形投影:轴二等分,点到线垂。
7. 点线关系判定:距离、共面、方位。
高中数学口诀(下)第五章三角函数1. 一二三函数记:弦正双切线。
2. 度和弧的关系:180度等于派。
3. 余弦定理应:角边角乘积调。
4. 三角函数相等:负同,余同,背同,正倒。
5. 标准值计算:三角函数,特殊值。
6. 三角函数变换:加减,倍角,半角。
7. 三角函数扩展:单位圆,科学计算。
第六章高等代数1. 矩阵相乘法:行乘列运算真。
2. 方程组方法:高斯、克莱姆两常规。
3. 行列式性质:交换、抽公因,展开一步求。
4. 向量叉积法:模运算,方向垂直。
第七章导数与微分1. 定义紧记法:限往点,差商极限。
高中数学知识点顺口溜总结一、数与代数整数分数与小数,正负相乘记心间。
有理无理数分清,平方根号要辨。
一元一次方程解,ax+b=c看。
二元一次解无数,消元法用得欢。
不等式链要排序,同大取较大,同小取较小。
二、函数与图像函数关系y随x,定义域内任意行。
一次函数斜率k,截距b上加。
二次函数抛物线,顶点式求最值。
指数对数变换间,底数非一记心田。
三角函数正余弦,周期变化记循环。
单位圆上点分析,和角差角要分辨。
三、几何与测量直线射线与线段,两点距离公式。
平行相交线段比,相似三角形来解。
圆的性质圆周角,直径直角记心上。
面积体积公式多,长宽高半径要量。
空间几何立体形,体积表面积要算。
四、概率与统计概率事件可能性,加法乘法法则用。
树状图列事件,排列组合要分清。
平均数中位数,众数模式要了解。
频率分布直方图,数据分析要准确。
五、三角函数正弦余弦正切,三角比值记心间。
同角三角关系式,平方和公式要熟练。
三角函数图像,周期振幅要掌握。
解三角形问题,边角关系要运用。
六、数列与数学归纳法等差等比数列中,通项公式要记清。
求和公式用得当,数列问题不难解。
数学归纳法证明,步骤严谨逻辑明。
假设n=k成立,推导n=k+1要细心。
七、解析几何坐标系中点线面,距离公式记心田。
圆的方程标准形,中心半径要分辨。
直线方程点斜式,截距式要考虑。
椭圆双曲线抛物线,方程特征要记全。
八、微积分入门导数定义要理解,极限过程要掌握。
函数变化率求导,切线斜率由此得。
不定积分求原函数,微分方程解实际。
定积分求面积,几何意义要明确。
微分方程解运动,物理背景要结合。
九、复数与矩阵复数单位i记,平方根号记心间。
模长辐角要理解,复平面上表示。
矩阵运算加乘法,行列式性质要掌握。
线性方程组解,矩阵表示要熟练。
十、数学思维与方法数学思维逻辑性,证明推理要严谨。
归纳演绎方法用,解题思路要清晰。
数学方法多样化,建模求解要灵活。
数学之美在探索,不断学习是关键。
通过这些顺口溜,我们可以将高中数学的主要知识点进行一个简洁而有趣的回顾。
高中数学必背公式大全高中数学公式定理记忆口诀高中数学必背公式大全高中数学公式定理记忆口诀。
数学记忆不清的同学、喜欢诗词的同学有福气啦,对仗整齐的数学公式记忆口诀,保证让你背的顺口、考的顺利。
一、高中数学公式定理记忆口诀不等式解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
二、高中数学公式定理记忆口诀数列等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
三、高中数学公式定理记忆口诀立体几何点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
四、高中数学公式定理记忆口诀平面解析几何有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
高中数学知识点总结顺口溜
一元一次方程式,线性问题基础篇;
未知数中找平衡,等式两边同运算。
二次方程求根法,韦达定理记心间;
公式法或因式分解,两个解里探真理。
不等式组求解集,大小关系排顺序;
同大取大同小小,大小不一找中间。
函数概念多变化,定义域内任变换;
值域映射有法则,函数图像助理解。
一次函数斜截式,直线方程好描绘;
斜率截距是关键,两轴截距分清楚。
二次函数抛物线,顶点式间关系密;
开口方向看系数,对称轴上最值求。
指数函数增长快,底数大于一是关键;
对数函数互为反,换底公式要牢记。
三角函数正余弦,单位圆上波动寻;
周期振幅和相位,辅助角公式用。
平面几何点线面,基本性质要掌握;
圆的性质最典型,直径定理记心间。
立体几何体积求,长宽高和半径;
锥台球体公式异,积分法来求精确。
概率统计分析法,随机事件分类型;加法乘法两原理,条件概率要分清。
数列概念项排列,等差等比是基础;通项公式求和律,数列极限思无界。
向量概念有方向,大小相加遵法则;数量积和向量积,平行垂直有判断。
矩阵运算符排列,行列式值关键;
逆矩阵解线性,初等变换来帮助。
以上知识点要记牢,高中数学基础好;勤练习多思考,解题技巧自会高。
高中数学知识点口诀(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!高中数学知识点口诀高中数学知识点口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
高中数学重要知识点记忆口诀1. 二次函数的顶点公式一二三平方根四舍五入得顶点2. 三角函数的基本关系正弦值求余弦,余弦值求正弦,正切值求斜边,直角边除它算。
3. 三角函数的周期性Sin你闭合,180. Cos你闭合,360. Sin余切,180不变。
4. 三角函数的变化规律正余函数同增长,余切函数先减后增,其中正函数小于一,余函数大于负一。
5. 内外接圆关系内外结合,到两点距离中,长方形的对角线,为直径时完美。
6. 三角形的内角和内角之和,一八零,等腰三角形相等,等边三角形相等。
7. 二项式定理二项式展开要记牢,前系数求组合,幂次依次降一,系数依次递增。
8. 平面几何中的直线关系两直线垂直斜率积为负,斜率相同为平行线,斜率不同交于一点。
9. 矩阵的乘法规律左一右零,左乘右负,左一右一,左加右减。
10. 概率的计算方法概率加乘,相互计,互为对立加一减,最后求和除以全,概率问题不难解。
11. 数列的常用公式等差、递增、首项加,末项也加没关系,求和加还减除以二,求平均是幸福。
12. 二次方程的求根公式负b加减根号,减四倍ac真不巧,结果加减除以两个a,求根公式没问题。
13. 一次方程的解法两边平等,消常数,撇腋关“系”,落轮根,通解相加,等号变串,化简得解,解释一切。
14. 指数的性质记忆底数幂次都为一,底数不变加法相,减法先转倒数,幂次乘法连着乘。
15. 余弦函数的图像特性余弦函数图形愿看透,一个周期270°,余弦值-1到1留口诀,平抗上内凉。
16. 求直线方程的方法有点当值,有比当系,没系当数,通常两点定。
17. 平行四边形的特性呆呆四边行,不到斜边,位位平行,扩扩相等,间间六十。
18. 质因子分解的方法从二开始,找到即停,便能整除,一直到原数,质因子全存。
19. 三角函数的草图Sin象限上下对称,与y轴交于90°, Cos象限左右相反,与x轴交于零度。
20. 空间几何中的点线面关系直线相离,面在外,直线穿过,不在内,直线在面内,面包裹在直线。
高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
四、《数列》等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。
五、《复数》虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。
虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。
几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。
利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。
四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
七、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。
轴线的交点是 (0, 0),称为原点。
水平与垂直方向的位置,分别用x与y代表。
一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。
这条直线与y轴相交于 (0,c),与x轴则相交于(–c/m, 0)。
垂直线的方程式则是x=k,x为定值。
通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。
通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2x1≠x2若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。
三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。
三维空间平面的一般式为ax+by+cz=d。
三角学边长为a、b、c的直角三角形,其中一个夹角为θ。
它的六个三角函数分别为:正弦(sine)、余弦(cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。
sinθ=b/c cosθ=a/c tanθ=b/acscθ=c/b secθ=c/a cotθ=a/b若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。
a=cosθb=sinθ依照勾股定理,我们知道a2+b2=c2。
因此对于圆上的任何角度θ,我们都可得出下列的全等式:cos2θ+sin2θ=1三角恒等式根据前几页所述的定义,可得到下列恒等式(identity):tanθ=sinθ/cosθ,cotθ=cosθ/sinθs ecθ=1/cosθ,cscθ=1/sinθ分别用cos 2θ与sin 2θ来除cos 2θ+sin2θ=1,可得:sec 2θ–tan 2θ=1及csc 2θ–cot 2θ=1对于负角度,六个三角函数分别为:sin(–θ)=–sinθcsc(–θ)=–cscθcos(–θ)=cosθsec(–θ)=secθtan(–θ)=–tanθ cot(–θ)=–cotθ当两角度相加时,运用和角公式:sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ–sinαsinβtan(α+β)=tanα+tanβ/1–tanαtanβ若遇到两倍角或三倍角,运用倍角公式:sin2α=2sinαcosαsin3α=3sinαcos2α–sin3αcos2α= cos 2α–sin 2αcos3α= cos 3α–3sin 2αcosα tan 2α=2tanα/1–tan 2αtan3α=3tanα–tan 3α/1–3tan 2α二维图形下面是一些二维图形的周长与面积公式。
圆:半径= r直径d=2r圆周长= 2πr=πd面积=πr2(π=3.1415926…….)椭圆:面积=πaba与b分别代表短轴与长轴的一半。
矩形:面积= ab周长= 2a+2b平行四边形(parallelogram):面积= bh = ab sinα周长= 2a+2b梯形:面积= 1/2h (a+b)周长= a+b+h (secα+secβ)正n边形:面积= 1/2nb2 cot (180°/n)周长= nb四边形(i):面积= 1/2ab sinα四边形(ii):面积= 1/2 (h1+h2) b+ah1+ch2三维图形以下是三维立体的体积与表面积(包含底部)公式。
球体:体积= 4/3πr3表面积= 4πr2方体:体积= abc表面积= 2(ab+ac+bc)圆柱体:体积= πr2h表面积= 2πrh+2πr2圆锥体:体积= 1/3πr2h表面积=πr√r2+h2+πr2三角锥体:若底面积为A,体积= 1/3Ah平截头体(frustum):体积= 1/3πh (a2+ab+b2)表面积=π(a+b)c+πa2+πb2椭球:体积= 4/3πabc环面(torus):体积= 1/4π2 (a+b) (b–a) 2表面积=π2 (b2–a2)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan©=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2数学公式数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。