调洪演算步骤
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
第1章 调洪演算1.1 调洪演算已知正常高水位▽正=128m ,查水库水位库容曲线,可得361044.296m V ⨯=。
010020030040050060070060708090100110120130140150160水位(m)容积(106m 3)图 1 - 1 枋洋水库水位库容曲线1.1.1 确定防洪库容用枋洋水库入库断面20年一遇洪水流量同倍比法推求“6·9”洪水过程线,以洪峰控制,其放大倍比为095.121192320===mdmp Q Q K 表1-1 计算表格如下所示:)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q1 23 25 19 318 348 37 530 5802 51 56 20 454 497 38 417 4563 132 144 21 623 682 39 296 324 4 267 292 22 649 710 40 194 2125 366 400 23 721 789 41 137 150 6 412 451 24 694 759 42 99 108 7 519 568 25 802 877 43 75 82 868474826851931445863)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q)(h t )/(3%5s m Q)/(39.6s m Q9 953 1043 27 1150 1258 45 45 49 10 1053 1152 28 1711 1872 46 35 38 11 1154 1262 29 2119 2318 47 27 30 12 961 1051 30 1903 2082 48 21 23 13 814 891 31 1673 1830 49 15 16 14 629 688 32 1297 1419 50 9 10 15 475 520 33 1055 1154 51 6 7 16 375 410 34 846 926 52 2 2 17 314 344 35 719 787 53 1 1 182712963663669654根据表格数据,绘制6.9洪水过程线:51015202530354045505001000150020002500时间t (h)流量q(m3/s)图1-2 6.9洪水过程线1.1.2 求防洪库容和防洪高水位由正常高水位起调,下游最大安全泄量为500s m /3,调洪计算得防洪库容361044.296m V ⨯=正常。
1.5 调洪演算调洪演算的基本原理是水量平衡,其方程为121221--22Q Q q qt t V V ++∆∆= 式中: Q 1、Q 2分别为计算时段Δt 始、末入库流量; q 1、q 2分别为计算时段Δt 始、末出库流量; V 1、V 2分别为计算时段Δt 始、末水库库容; Δt 为计算时段。
采用列表试算法,计算工作量较大,这里采用半图解法(单辅助线法)。
将水量平衡方程变形得:2212111222V q Q Q V q q t t +⎛⎫+=-++ ⎪∆∆⎝⎭式中右边为已知项,左边为未知项。
我们可以先确定q 与2V q t ⎛⎫+ ⎪∆⎝⎭之间的关系,绘制2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线。
方法为由已知的q 查上游水位与泄流量关系曲线得上游水位H 上,在查水位库容关系曲线得相应的库容,Δt 为计算时段,在这里为24h ,进而求得对应的2V q t ⎛⎫+ ⎪∆⎝⎭。
从第一时段开始,由入库洪水过程和起始条件就可以知道Q 1、Q 2、q 1、V 1,由上式求得222V q t ⎛⎫+ ⎪∆⎝⎭,然后由2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线查的对应的q 值即为q 2,然后按此方法依次计算q 。
计算过程如下,先确定q 与2V q t ⎛⎫+ ⎪∆⎝⎭之间的关系。
表1.19A q 与2V q t ⎛⎫+ ⎪∆⎝⎭关系表绘制2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线:图1.7A 2q V q t ⎛⎫+ ⎪∆⎝⎭~的辅助曲线然后进行调洪演算,过程如下:表1.20A 调洪演算过程表图1.8A 调洪演算过程曲线调洪演算后的最大泄流量为两线的交点,表中计算的q max=4819m3/s,对应的Q=4800 m3/s,不相等,但很接近,则q max比4819m3/s稍微大些,参照图得q max=4825m3/s。
0123455.6200640156926052061475477479481483485330039204640536062007400015546482712701780洪水过程曲线如下图V(104m 3q(m 3/s)Z(m)铁山水库校核校核洪水时段﹙△t=1h﹚Q(m3/s)q-V曲线图Z-q曲线图因为q-v曲线接近直线可以添加趋势线并模拟出公式01234565.620064015692605206116715.62005748001000118012905000500050005147.45593.36050.36277.5由上式得出的结果再进行试算代入图表验证就比较简单了Z-q曲线图由上图可以得到正常蓄水位480Z-V曲线图用试算法进行调洪计算如下下泄q 水库存水量V成果整理如下 计算获得的泄洪过程q如表△t入库流量Q V 2=V 1+1/2【(Q 1+Q 2)-(q 1+q 2)】*3600q=f(v) (可以先用模拟公式V=2.2511q+3461.7计算)480480480480.3481.44482.68483.08结论 由图可得最大下泄流量q=1320 校核洪水位Z=483.2水库水位Z库校核洪水调洪计算成果67891011121314 16711368113294981772063957651348788002340位480m时对应的库容 V=500 泄流量q=6407891011121314 13681132949817720639576513 1320131012801260117611001000865 6354.76331.36239.761005948.35802.285651.985502.4483.2483.16483.08482.76482.4482.1481.76481.6调洪库容V=1354.7。
调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。
由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。
不计流速水头。
) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。
4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。
防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。
5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。
6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。
参莴工程3.1 设计洪水与校核洪水A河洪水由于暴雨集中,强度大,加之两岸地形较陡。
因而水情变化具有山区特性。
洪水历时短,涨落急剧,来势凶猛,洪峰、洪量相对较小,经常泛滥成灾。
从历史洪水调查及实测资料统计分析,A河较大洪水发生时间均在7~8月份,有时9月上旬也有发生,因此汛期定为每年7月1日~9月10日。
对可利用的水文系列年限经过综合考虑分析,根据SL252—2000《水利水电枢纽工程等级划分及设计标准》的规定,选取设计洪峰流量Q设=24800m3/s(p=0.1%),校核洪峰流量Q较=34500m3/s(p=0.01%)。
表3-1 山区、丘陵区水利水电工程永久性水工建筑物洪水标准表3-2 A河S水库最近的实测洪峰分析成果表3-3 典型洪水过程表(单位:m3/s)由资料知P=0.01%时,最大洪峰为34500m3/s.将资料中典型洪水过程线按同倍比放大法推求校核洪水过程线如下:表3-4 校核情况下的洪水过程线由P=0.1%时,最大洪峰为24800m3/s,将典型洪水过程线按同倍比放大法推求设计洪水过程线如下:表3-5 设计情况下的洪水过程线3.3 调洪演算3.3.1 基本资料根据工程的泥沙和水位资料:多年平均含沙量:201万吨,实测最大含沙量:151万吨;正常蓄水位:▽96.6m ,防洪限制水位:▽77.8m ,死水位:▽70m ,工程开发的主要目的和任务、现状,拟定泄水建筑物型式为坝顶表孔和泄洪底孔。
水库Z ~V 如表5所示:表3-6 坝址水位-库容关系曲线表P=0.01%时,最大洪峰为34500m 3/s. P=0.1%时,最大洪峰为24800万m 3/s 。
3.3.2 演算原理依据《水能规划》所给的水库洪水调节计算原理,采用水量平衡方程式:tV tV V q q Q Q q Q ∆∆=∆-=+-+=-122121)(21)(21,式中:21,Q Q ——分别为计算时段初,末的入库流量(s m /3);Q——计算时段中的平均入库流量(s m /3),它等于12()/2Q Q +;21,q q ——分别为计算时段初、末的下泄流量(s m /3); q——计算时段中的平均下泄量(s m /3),即q =12()/2q q +;21,V V ——分别为计算时段初、末水库的蓄水量(3m ); V ∆——为12V V 和的之差;t∆——计算时段,一般取1~6小时,需化为秒数。
调洪演算的基本步骤调洪演算是一种用于预测洪水的方法,通过模拟洪水过程,预测洪水的发展趋势和可能影响的范围,以帮助人们做出有效的防洪措施。
下面将介绍调洪演算的基本步骤。
第一步,收集数据。
调洪演算需要大量的数据来进行模拟计算,包括雨量、水位、地形、土壤类型等。
这些数据可以通过气象台、水文站等多种途径获取。
数据的准确性和完整性对于调洪演算的结果影响很大,因此在收集数据时需要注意数据的来源和质量。
第二步,建立模型。
在进行调洪演算之前,需要建立一个洪水模型,模拟洪水的传播过程。
洪水模型可以是基于物理原理的数学模型,也可以是基于统计方法的经验模型。
建立模型时需要考虑地区的特点和实际情况,选择合适的模型参数和模拟方法。
第三步,确定边界条件。
在进行模拟计算时,需要确定模型的边界条件,包括输入的雨量和水位数据,以及模型的输出要求。
边界条件的确定对于模拟结果的准确性和可靠性至关重要,需要结合历史洪水事件和实测数据来确定。
第四步,进行模拟计算。
在模型建立和边界条件确定之后,可以进行调洪演算的模拟计算。
模拟计算的过程是将输入的数据输入到模型中,通过模型的计算和迭代,得到洪水的传播过程和可能的影响范围。
模拟计算需要考虑不同的情景和参数,进行多次试算,以获得多种可能的结果。
第五步,分析结果。
在模拟计算完成后,需要对结果进行分析和评估。
可以对洪水的发展趋势、峰值水位、洪水面积等进行评估,评估结果可以用于制定洪水预警和防洪措施。
同时,还需要对模型的可靠性和误差进行评估,以提高模拟结果的准确性。
第六步,制定防洪措施。
根据调洪演算的结果和分析,可以制定相应的防洪措施。
这些措施可以包括加固堤坝、开展疏浚工程、建设排水系统等,以减少洪水对人们生活和财产的影响。
第七步,监测和预警。
在实施防洪措施后,需要进行洪水的监测和预警。
可以通过水文站、遥感技术等手段,及时获取洪水的信息,并向相关部门和居民发布预警,以提前做好防洪准备。
以上就是调洪演算的基本步骤。
2.4.2 调洪计算方法水库调洪是在水量平衡和动力平衡的支配下进行的,本次计算单辅助线法计算。
水量平衡的数学表达式为:221Q Q +t ∆ -221q q + t ∆=V 2-V 1式中:Q 1,Q 2——时段初、末入库流量,m 3/s ;q 1,q 2——时段初、末出库流量,m 3/s ;V1,V2——时段初、末水库蓄水量,m 3;t ∆——计算时段,t ∆=1h=3600s 。
将水量平衡方程进行变换得到:)(22)2(1112221q t V q Q Q q t V +∆+-+=+∆ 建立q ~2q t V +∆函数关系曲线,绘出q ~2q t V +∆辅助线,连续求出水库的下泄流量过程。
2.4.3 调洪演算成果按照不同频率入库设计洪水过程线,逐时段查算辅助曲线,确定水库出库流量过程。
根据上述入库设计洪水过程线、库容曲线、起调水位进行调洪演算。
本次调洪演算成果见表2-9。
调洪演算成果表2-92.5 坝顶高程计算水库主坝为浆砌石坝,坝顶超高计算公式采用《砌石坝设计规范》(SL25-2006)中公式进行计算:c z b h h H H ++∆=式中:H ∆——坝顶超高,m ;H b ——波浪高,m ;H z ——风浪中心线至正常蓄水位或校核洪水位的高差,m ;H c ——安全超高,5级坝,设计情况A=0.3m ,校校情况A=0.2m 。
根据当地提供的风速风向资料,水库水面以上10m 高度处,年最大平均风速为16m/s 。
根据《砌石坝设计》(SL25-2006)及《水利水电等级划分及洪水标准》(SL252-2000)有关规定,永久建筑物级别为5级。
根据《砌石坝设计规范》(SL25-2006)波高、波长按官厅公式(C.4.1-1)和(C.4.1-2)计算: )(11.4.)(0076.03/12020121-=C v gD v v gh o b)(21.4.)(33.015/42020157-=C v gD v v gLm o式中:H b ——波高(当2502020-=v gD时,为累积频率5%的波高h s%;当当100025020-=v gD 时,为累积频率10%的波高h 10%),m ;L m ——平均波长,m ;v 0——计算最大风速(设计情况采用多年平均年最大风速的1.5倍 ,校核情况采用多年平均最大风速),m/s ; D ——风区长度,m ;g ——重力加速度,9.81m/s 2。
第三章调洪计算调洪计算目的水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。
调洪演算的原理水库调洪计算的基本公式是水量平衡方程式:t t t t t t V V t q q t Q Q -=∆+-∆++++1121121)()( (3-1)式中t ∆—计算时段长度,s ;1,+t t Q Q —t 时段初、末的入库流量,m 3/s ; 1,+t t q q —t 时段初、末的出库流量,m 3/s ; 1,+t t V V —t 时段初、末水库蓄水量,m 3。
水库泄流方程 :q =f (V ) (3-2)用已知(设计或预报)的入库洪水过程线Q ~t ,由起调水位开始,逐时段连续求解(3-1)和(3-2)组成的方程组,从而求得水库出流过程q ~t ,这就是调洪演算的基本原理。
这里采用单辅助线半图解法,联解(2-1)和(2-2)两个方程,将(3-1)改写为:(Vt /△t+qt/2 )+Q-qt= (Vt+1/△t)+(qt+1/2 ) (3-3)式中Q—计算时段平均入流量,Q=(Qt + Qt+1)/2;其他同(3-1)也就是说,可以事先绘制q~(V/△t)+(q/2 )的关系曲线,即调洪演算工作曲线,因式3-3)的左端各项为已知数,故式(3-3)右端项也可求出,然后根据(Vt+1/△t)+(qt+1/2 )的值,通过工作曲线q~(V/△t)+(q/2 )可查出qt+1的值。
因第一时段的V2、q2就是第二时段的V1、q1,于是可重复以上步骤连续进行计算,直到求出结果。
调洪计算结果整理调洪演算基本资料水库特征水位:正常蓄水位1856m,汛期限制水位1854m,死水位1852m 积石峡入库洪水过程线见下表:表2-1积石峡入库洪水过程线调洪计算过程及结果方案一:1. 拟定泄水建筑物型式、尺寸及堰顶(或底坎)高程:左岸溢洪道: 单孔溢洪道, B=,H=18m,堰顶高程为1833m 。
2.1.1 调洪计算的原理洪水在水库中行进时,水库沿程的水位、流量、过水断面、流速等均随时间而变化,其流态属于明渠非恒定流。
根据水力学明渠非恒定流的基本方程,即圣维南方程组为连续性方程 0Q t sω∂∂+=∂∂ (2-1) 运动方程 221Z v v v Q s g t g s K∂∂∂-=++∂∂∂ (2-2) 式中 ω——过水断面面积(㎡);t ——时间(s );Q ——流量(m 3/s );s ——沿水流方向的距离(m );Z ——水位(m );v ——断面流速(m/s );K ——流量模数(m 3/s )。
为了简化计算,通常采用瞬态法来求近似解。
瞬态法实际上是采用有限差值来代替微分值并加以简化,以近似的求解一系列瞬时的流态。
瞬态法将式2-1和2-1简化得出专用于水库调洪计算的实用公式如下:21121211()()22V V V Q q Q Q q q t t-∆-=+-+==∆∆ (2-3) 式中 1Q 和2Q ——分别为计算时段初、末的入库流量; Q ——计算时段内平均入库流量,为1Q 和2Q 的平均值;1q 和2q ——分别为计算时段初、末的下泄流量; q ——计算时段的平均下泄流量;1V 和2V ——分别为计算时段初、末水库的蓄水量;V ∆——1V 和2V 之差;t ∆——计算时段。
这个公式实际上是一个水量平衡方程,它表明:在一个计算时段内,水库水量与下泄水量之间的差值即为该时段中水库蓄水量的变化。
当水库入库洪水过程线已知时,1Q 和2Q 均为已知,而1q 和1V 是计算时段开始时的初始条件,则必须有一个方程22()q f V =与式2-3相联立才能解出2q 和2V 的值。
由于下泄流量是泄流建筑物水头的函数,当泄流建筑物型式和尺寸已知时,则可求出2q 关于水头H 的方程为2()B q f H AH == (2-4)同时可借助水库容积特性曲线()V f Z =得出方程22()q f V =的具体形式。
水库的调洪计算水库的调洪计算基本原理:水量平衡和动力平衡(水量平衡方程、蓄泄方程)1.根据库区地形资料,绘制水位库容关系曲线z-v,并根据泄洪建筑物的形式和尺寸,有相应的水力学出流计算公式求得q-v曲线2.从第一时段开始调洪,由起调水位(即汛前水位)查z-v及q-v 关系曲线得到水量平衡方程中的V1和q1;有入库洪水过程线Q-t查得Q1、Q2;然后假设一个q2值,根据水量平衡方程算的相应的V2值,由V2在q-V曲线上查得q2,若二者相等,即为所求;否则应重新假设q2,重复上述过程,直到二者相等为止3.将上时段末的q2,V2值作为下一时段的q1、V1,重复上述试算过程,最后得出水库下泄流量过程线4.将入库洪水过程线Q-t和计算的泄流过程线q-t曲线绘制在同一张图上,若计算的最大泄流量qm正好是两线交点,则计算正确;否则应缩短qm附近的时段,重新进行试算,直至qm正好是两线交点为止。
5.由qm查q-v曲线,得最高洪水位时的总库容Vm,Vm减去起调水位的库容,得调洪库容V调,由Vm查z-v曲线,得到最高洪水位z洪。
显然,当入库洪水为设计标准洪水时,求得的qm、V调、z 洪即为设计标准最大泄流量qm设、设计防洪库容V设、设计洪水位Z设。
同理,当入库洪水为校核洪水时,可求得相应的qm校、V校、Z校。
无调节水电站水能计算1.根据实测径流资料的日平均流量变动范围,将流量划分为若干个流量等级;2.统计各级流量出现次数3.计算各级流量的平均值,差水位流量关系曲线,求得下游水位Z 下;4.上游水位一般维持在正常蓄水位5.计算各级流量相应的水电站净水头H=Z上-Z下-△H6.计算电站的出力N=KQH7.按从大到小次序排序,绘制出力保证率曲线8.按设计保证率查得的出力即为保证出力河川水能资源的基本开发方式及特点?根据集中落差方式的不同,水电站的基本开发方式可分为坝式、引水式、混合式、潮汐式与抽水蓄能式等。
⑴坝式:形成水库,能调节水量,提高径流利用率,有利于防洪和解决其他水利部门的用水问题;但基建工程较大,上游形成淹没区,移民问题难解决。
调洪演算2、采⽤列表试算法进⾏调洪演算:1) 确定⽔库蓄泄关系a) 确定库容曲线:根据给定的库容曲线表绘制⽔库的库容曲线如图2-1图2-1⽔库库容曲线b) 确定⽔库泄流公式根据堰流泄流能⼒:2302H g mBQ =式中: m —— 流量系数,本⼯程取0.35; B —— 堰顶净宽,55.0m ;g—— 重⼒加速度,取29.81g m s=;H0—— 堰顶⽔头,考虑坝前⾏进流速⽔头较⼩,取H0=H 。
则⽔库泄流能⼒公式可确定为:23(27.85)Zo Zt Q -=式中: Zt 为当前⽔库⽔位Zo 为正常⾼⽔位(溢流堰堰顶⾼程),本地取167.3m 。
c) 确定蓄泄关系 i. 确定⼀组⽔库库容V(I),I=1,2……m ; ii. 对V(I),据库容曲线查得库⽔位Z (I ),据2)计算对应的泄流能⼒q (i ); iii.对应⼀组V~q ,确定蓄泄关系,如图2—2。
图2-2 ⽔库蓄泄关系图2)列表进⾏调洪演算a)试算程序调洪演算原理i.对t时段计算,⽔库初始需⽔量V(t-1)由上⼀时段给出;ii.假设qt,则可计算出该时段的⽔库需⽔量V(t),从蓄泄关系上差得qt’;iii.⽐较qt与qt’,若|qt-qt’|<ξ1,则t=t+1,否则重新假设qt,令t=t;iv.当算⾄⽔库|Z(t)- Zo|<ξ2时,终⽌计算。
b)计算表格i.设计频率为P=5.0%的计算结果如表2-1:图2-3 频率为P=5.0%的调洪演算计算图ii.设计频率为P=3.33%的计算结果如表2-2;来⽔、泄流及⽔位过程线图2-4:图2-4 频率为P=3.33%的调洪演算计算图iii.设计频率为P=0.33%的计算结果如表2-3;表2-5 频率为P=0.33%的调洪演算计算结果c)调洪演算计算结果如表2-631)拟定⼯作图a)确定Z—q关系线,见列表法进⾏调洪演算;b)确定(V/△t±q/2)—q关系线;i.确定⼀组⽔库库容V(I),I=1,2……m;ii.对V(I),据库容曲线查得库⽔位Z(I),据2)计算对应的泄流能⼒q(i),并计算V(i)/△t+q(i)/2;iii.对应⼀组V(i)~Z(i)~ V(i)/△t+q(i)/2~ V(i)/△t-q(i)/2,确定各相各关系。
A、4、调洪演算1、调洪演算的基本资料(1)起调水位:由于渭北地区水资源缺乏,尚书水库属于蓄洪运用水库,不能使用降低汛期限制水位的办法来保证水库安全。
水库的起调水位取正常蓄水位582.50m。
(2)库容曲线:2001年3月水库管理局委托陕西省水利电力设计院测量队,对尚书水库淤积和库容曲线进行了测量。
目前,坝前淤积面高程为570.00m,死库容已淤满,兴利库容为170万m3,总淤积量44万m3。
参见表4-1。
尚书水库水位与库容曲线表表4-1(3)溢洪道泄流曲线:溢洪道位于大坝右岸,涵洞泄流按宽顶堰计算,最大流量14m3/s,没有考虑涵洞淹没时的出流情况。
本次调洪演算对涵洞出流进行了复核,并考虑了淹没状态,当堰上水头小于2.0m时按宽顶堰计算,当堰上水头大于2.0m时涵洞淹没按管口出流计算流量。
经复核涵洞最大泄流量为42 m3/s,水位与泄流关系曲线表参见表4-2。
2、调洪计算的方法放水洞流量小(1.5m3/s)不参与调洪。
调洪计算的方法为蓄率中线法,三条工作曲线的计算表参见表4-3,将三条工作曲线绘制在同一图上,就可以进行调洪演算了。
蓄率中线法工作曲线计算表3、水库调洪运用方式在正常蓄水位582.50m时洪水入库,水库调洪运用方式是:入库流量小于闸门全开正常蓄水位下的出库流量(88m3/s)时,由闸门控制来多大流量泄多大流量;入库流量大于闸门全开正常蓄水位下的出库流量(88m3/s)时,闸门全开溢洪道畅泄,库水位回落到582.50m时由闸门控制来多大流量泄多大流量。
4、调洪计算结果将各频率设计洪水利用蓄率中线法进行调洪演算,其结果参见表4-4和表4-5。
从中可以看出, 30年一遇设计洪水调洪演算,水库最高洪水位为582.98m,最大下泄流量为113m3/s. 300年一遇校核洪水调洪演算,水库最高洪水位为584.44m,最大下泄流量为180m3/s.水库调洪计算表(P=0.33%)。
调洪演算计算说明书一、 相关资料中包水利枢纽工程是三等工程,溢洪道设计洪水标准为五十年一遇(P=2%)至一百年一遇(P=1%),校核洪水标准为千年一遇(P=0.1%).二、基本原理1.泄水建筑物尺寸:溢洪道堰顶高程519m ,采用3孔86m m ⨯(宽⨯高)的弧形门控制。
由2/302q H g m nb ⋅=ε (其中侧收缩系数ε=0.92,n 为所开孔数, 流量系数m=0.48,单孔堰顶宽度b=8m ,g=9.812/m s ,堰顶水头0H =水位Z-堰顶高程,。
不计流速水头。
) 计算出下泄流量2.设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
3.基本计算公式为:()()()t V V q q Q Q ∆-=+-+/2/2/122121式中: Q 1, Q 2--分别为计算时段初、末的入库流量,m 3/s ; v 1,v 2--分别为计算时段初、末水库的蓄水量,m 3 ; q 1,q 2--分别为计算时段初、末的下泄流量,m 3/s ; t ∆--计算时段,一般取1小时。
4.下游安全泄量及起调水位该水利枢纽没有下游防洪要求,一般在洪水来临时,水库将预泄库水至水库防洪限制水位,以便有足够的库容蓄洪或滞洪。
防洪限制水位是水库在汛期允许兴利蓄水的上限水位,则调洪计算从水位525.3m 起调。
5.水库运行方式根据题目分析,本工程采用3孔溢洪道泄洪,设计洪水来临时,用左右2孔泄洪;校核洪水来临时,用3孔泄洪。
在洪水期间洪水来临时,先用闸门控制下泄流量q 并使其等于洪水来水量Q,使水库水位保持在防洪限制水位525.3m不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z 的升高而增大,流态为自由流态,情况与无闸门控制一样。
6.计算方法:先决定开始计算时刻和此时的q1、V1,然后假定下泄流量q2值,再由计算V2值,再查q-V表得出q2’值,水量平衡方程()()()t-+2/2/=+/VV-qqQ∆Q211122比较q2和q2’,若二者基本相等,则假定正确,否则重新试算,直到大致相等为止,依次计算下去。
(1)基本资料水位-容积曲线(见蓝图); 实测洪水过程线(见蓝图); 各类型洪峰值(见2.2.3节)正常(设计)洪水重现期 1000~500年 对应频率:0.1%~0.2% 非常(校核)洪水重现期 5000~2000年 对应频率:0.02%~0.05% (2)限制条件起调水位:175.8m ,对应流量824.7m 3/s ;参加泄洪的不包括放空流量,要求计入发电的流量;最大的下泄流量不得大于安全泄量,设计和校核分别为2000m 3/s 2500m 3/s ; (3)设计和校核洪水过程线的推求设计洪水过程线取频率为0.1%的洪水,期洪峰4750m 3/s ;校核洪水过程线取0.02%,对应洪水期洪峰5600m 3/s 。
利用按峰控制的同倍比放大法对典型洪水放大得设计校核洪水过程线。
设计洪水放大系数:48.132204750Q Q K m mp Q ===; 校核洪水放大系数: 74.132205600Q Q K m mp Q ===; 可得设计和校核洪水过程线如图1-2所示 (4)演算方案拟订①泄洪方式:采用表孔式泄洪; ②拟订演算方案(闸孔宽度和数量)取允许单宽流量:[q]=70 m 3/s; 溢流前净宽:m 71.35702500]q [Q L ===防 堰上水深H 0根据公式2/3H g 2m q ε=推求2/30H 8.9248.070⨯⨯= 则H 0=10.28m堰顶高程Z 堰顶=Z 限-H0=181.20-10.28=170.92m图1-1 溢流堰顶形式闸门高h=Z 正常- Z 堰顶=178.00-170.92=7.08m 取7米根据以上基本尺寸现拟订两个方案: Ⅰ b=11m n=3 堰顶高程170.92 Ⅱ b=12m n=3 堰顶高程170.92(5)计算工况计算工况分为校核和设计两种。
(6)计算方法计算方法:试算法。
由于试算过于复杂且均为重复性计算,考虑用电算。
(7)调洪演算试算法过程①根据库容曲线Z-V(见蓝图),的拟订的泄洪建筑物形式、尺寸,用水力学公式确定算Q-Z 关系为2/32H g Bm q ε=;②分析确定调洪开始时的起始条件,即起调流量824.7m 3/s;③利用水量平衡式和蓄泄曲线,按试算法列表解算各是段时段末的q 2、V 2。
2.4.2 调洪计算方法水库调洪是在水量平衡和动力平衡的支配下进行的,本次计算单辅助线法计算。
水量平衡的数学表达式为:221Q Q +t ∆ -221q q + t ∆=V 2-V 1式中:Q 1,Q 2q 1,q 2V1,V2t ∆——计算时段,t ∆2)2(12221q Q Q q t V +-+=+∆绘出q ~2q t V +∆辅助线,2-9。
表2-92.5 坝顶高程计算水库主坝为浆砌石坝,坝顶超高计算公式采用《砌石坝设计规范》(SL25-2006)中公式进行计算:c z b h h H H ++∆=式中:H ∆——坝顶超高,m ;H b ——波浪高,m ;H z ——风浪中心线至正常蓄水位或校核洪水位的高差,m ;H c ——安全超高,5级坝,设计情况A=0.3m ,校校情况A=0.2m 。
根据当地提供的风速风向资料,水库水面以上10m 高度处,年最大平均风速为16m/s 。
根据《砌石坝设计》(SL25-2006)及《水利水电等级划分及洪水标准》(SL252-2000)有关规定,永久建筑物级别为5级。
根据《砌石坝设计规范》(SL25-2006)波高、波长按官厅公式(C.4.1-1)和(C.4.1-2)计算: )(11.4.)(0076.03/12020121-=C v gD v v gh o bΛΛΛΛ )(21.4.)(33.015/42020157-=C v gD v v gLm oΛΛΛΛ式中:H b ——波高(当2502020-=v gD时,为累积频率5%的波高h s%;当当100025020-=v gD 时,为累积频率10%的波高h 10%),m ;L m ——平均波长,m ;v 0——计算最大风速(设计情况采用多年平均年最大风速的1.5倍 ,校核情况采用多年平均最大风速),m/s ; D ——风区长度,m ;g ——重力加速度,9.81m/s 2。
波浪中心线至计算水位的高度h z 采用公式 (C.4.2-2)计算: Hz=)22.4..(2h 1-10%%25%-C L H cth L mm ΛΛΛΛΛΛΛππ 式中:h s%-10%_累积频率5%-10%的波高,m;h z ——波浪中心线至计算水位的高度,m ;H 1——坝前水深。
调洪演算报告范文一、引言调洪演算是水利工程中的重要环节,旨在通过科学的方法和工具,对于河流水系中的洪水进行预测和调度,以达到减轻洪水灾害的目的。
本报告将对于调洪演算的原理、方法和实施过程进行详细的介绍和分析,并结合实际案例进行说明。
二、调洪演算的原理调洪演算的原理主要包括两个方面:洪水预测和调度决策。
洪水预测是基于历史洪水数据和气象预报等信息,通过数学模型和统计学方法,对未来一段时间内的洪水进行预测。
调度决策是在洪水预测的基础上,采用适当的水利工程措施,对水库蓄水和泄洪进行合理的安排,以尽量减少对下游地区的洪水影响。
三、调洪演算的方法调洪演算的方法通常包括以下几个步骤:1.数据收集与分析:根据洪水历史数据、气象预报以及水库、河流和地形等信息,收集并分析相关数据。
2.水文模型建立:根据收集到的数据,建立数学模型,模拟洪水的产生和传递过程。
3.洪水预测:利用建立的水文模型,结合实时的气象预报等信息,对未来一段时间内的洪水进行预测。
4.优化调度决策:根据洪水预测结果,采用优化方法,对水库蓄水和泄洪进行合理的安排,以减少洪水对下游地区的影响。
5.模拟验证与调整:通过模拟验证和调整,对调洪方案进行优化和完善,以提高调洪效果。
四、调洪演算的实施过程调洪演算的实施过程可以分为以下几个阶段:1.需求分析和目标确定:根据实际需要,确定调洪的目标和要求,明确工程的规模、投资和效益等因素。
2.数据采集和分析:收集并分析洪水历史数据、气象预报以及水文测量和地形资料等,建立数据库并进行质控。
3.模型建立和参数调整:根据采集到的数据,建立水文模型,确定模型中的参数,并进行模型的校准和验证。
4.调洪模拟和分析:利用建立的水文模型,进行洪水调洪模拟,并分析不同方案的调洪效果。
5.优化方案设计:根据调洪模拟结果,采用优化方法,设计出合理且有效的调洪方案。
6.方案评价和决策:对于设计的调洪方案进行评价和分析,结合经济、社会和环境效益等因素,做出最终的调洪决策。
范家疃水库洪水核算(小(二)型)本水库的核算依据为一九九一年十二月山东省水利厅工管局翻印的《山东省小型水库洪水核算方法》。
一、最大入库洪峰流量的查算1、流域特征参数的量算由1/25000地形图上求得水库流域面积F=0.30平方公里,自工程地点沿主河道量至分水岭得最大流程L=1.1 公里,相应于该河道的平均比降J=0.0487米/米。
查附表得:F2/5= 0.62 J1/3=0.365流域特征综合参数:K=L/F2/5×J1/3= 1.1/0.62×0.365=0.4862、设计暴雨量的计算根据工程所在地点,查辅助计算图表得,多年平均最大24小时降雨H24=99毫米。
多年平均24小时降雨量变差系数Cv=0.55,采用Cs=3.5Cv,应用皮尔逊Ⅲ型频率曲线Kp值表查得二百年一遇Kp值Kp(200年)=3.34,则二百年一遇的最大24小时降H24(200年)=Kp(200年)×H24=3.34×99=330.66毫米。
3、单位面积最大洪峰流量的计算该流域主河道比降为48.7‰,大于10‰,根据流域坡度、土壤地质、植被等情况,该流域属于山区;查胶东山区q m-H24-K关系曲线得:q m (200年)=34.25秒立米/平方公里4、设计标准最大洪峰流量的计算:二百年一遇的最大洪峰流量:Q m(200年)= q m (200年)×F×1.1=34.25×0.3×1.1=11.30立米/秒二、洪水总量和洪水过程线的计算1、洪水总量的计算二百年一遇最大24小时设计暴雨量为330.6 毫米,其百分之七十五为:P(200年)=330.6×75﹪=248毫米设计Pa为40毫米则:P(200年)+Pa=248+40=288毫米查P+Pa-h R曲线得:h R(200年)=214毫米,洪水总量为:W(200年)=0.1h R×F=0.1×214×0.3=7.06万立米2、洪水过程的计算洪水过程为三角形洪水历时T(200年)=W/1800Qm =7.06×104/1800×11.3 = 3.47小时涨水历时=1/ 3T=1/3×3.47=1.16小时落水历时=2/3T=2/3×3.47=2.31小时三、调洪演算1、基本资料:水位-调洪库容-溢洪道泄量关系曲线见下表,泄量计算公式,q泄=1.5Bh3/2H-Vo-q关系表2、调洪演算:调洪演算采用图解法见附图,经计算后求得:二百年一遇最大24小时暴雨情况下Q泄max(200年)=6.9 立米/秒Vomax( 200年) = 2.8万立米Hmax(200年) =48.83米四、设计坝顶高程的确定坝顶超高:根据1978年水利电力部《水利水电枢纽工程等级划分及设计标准》(山区、丘陵区部分)SDJ12-78(试行)表8规定小(一)、(二)型水库(4、5级)非常运用情况下坝顶安全超高均为0.30米。