专题 利用二次函数性质求最值
- 格式:ppt
- 大小:9.18 MB
- 文档页数:14
第三章函数微专题利用二次函数性质求最值1.某农场要建一个饲养场(矩形ABCD),饲养场的两面靠墙(墙足够长),另两边用木栏围成,中间也用木栏隔开,分成两个形状相同的场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD)的一边(AB)长为x米,饲养场的占地面积为y平方米.(1)求y关于x的函数关系式及自变量x的取值范围;(2)求y的最大值.第1题图2.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为多少?第2题图3.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式;(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.4.(2019天水)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?第4题图5.某市为了增加市民的幸福感,计划在人民公园修建一个圆形喷水池,如图,在水池中心竖直安装一根水管OA,O恰好在水面的中心,OA=3米,在水管的顶端安装一个水龙头,使喷出的抛物线形水柱与水池中心的水平距离为1米时达到最高,高度为4米.(1)求抛物线的解析式;(2)当水池的半径为多少时,才能使喷出的水流不流出池外;(3)若在距离水管OA 2.8米处设立一个警示牌,并使其不碰到水柱,则警示牌的高度应不超过多少米?第5题图参考答案综合训练1.解:(1)由题意知AB=x米,则EH、FG所用围栏长均为(x-1)米,CD=x米,BC=45-(x+x-1+x-1)+1=48-3x(米),∴饲养场的占地面积y=x(48-3x)=-3x2+48x(1<x<473);(2)∵y=-3x2+48x=-3(x-8)2+192,-3<0,∴当x=8时,y取得最大值,最大值为192平方米.2.解:在Rt△ABC中,∠C=90°,AB=10 cm,BC=8 cm, ∴AC=AB2-BC2=6 cm.设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2t cm, ∴S四边形PABQ=S△ABC-S△CPQ=12AC·BC-12PC·CQ=12×6×8-12(6-t)×2t=t2-6t+24=(t-3)2+15,∵1>0,∴当t=3时,四边形PABQ的面积取得最小值,最小值为15 cm2.3.解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件商品的销售利润为y=m(x-30), 又∵m=162-3x,∴y=(x-30)(162-3x),即y=-3x2+252x-4860,∵x-30≥0,∴x≥30.又∵m≥0,∴162-3x≥0,即x≤54.∴30≤x≤54.∴y与x之间的函数关系式为y=-3x2+252x-4860(30≤x≤54);(2)不能.理由如下:由(1)得y =-3x 2+252x -4860=-3(x -42)2+432,∴销售价格定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.4.解:(1)设y 与x 的函数关系式为y =kx +b(k ≠0),代入点(10,30),(16,24),得⎩⎪⎨⎪⎧10k +b =3016k +b =24, 解得⎩⎪⎨⎪⎧k =-1b =40, ∴y 与x 之间的函数关系式为y =-x +40(10≤x ≤16);(2)根据题意得,W =(x -10)(-x +40)=-x 2+50x -400=-(x -25)2+225,∵-1<0,∴当x<25时,W 随x 的增大而增大,∵10≤x ≤16,∴当x =16时,W 取得最大值,最大值是-(16-25)2+225=144元.答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.5.解:(1)由题可知,抛物线的顶点坐标为(1,4),故可设抛物线的解析式为y =a(x -1)2+4, 将点A(0,3)代入解析式得3=a +4,解得a =-1,∴抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(2)当y =0时,0=-(x -1)2+4,解得x 1=-1(舍),x 2=3.故水池的半径至少为3米时,才能使喷出的水流不流出池外;(3)当x =2.8时,y =-(2.8-1)2+4=0.76,∴警示牌的高度应不超过0.76米.。
二次函数应用题最值解法技巧
求解二次函数的最值,是高中数学教学中常见的问题,也是学生学习,应对考试经常遇到的难题。
下面介绍一般常用的求解二次函数最值的技巧:
一、求图像上最大最小值的步骤:
1、分析二次函数的几个重要关于最值的性质。
首先,二次函数的最值总是取决于它的顶点,而顶点的横纵坐标即为二次函数的最值。
2、求得顶点的横纵坐标,可以采用求导法:二次函数y=ax2+bx+c的导数为y'=2ax+b,上下两个函数图像关于x轴对称,故用y'=0即可求得函数最大最小值点的横坐标值。
3、求得二次函数最值点的横坐标后,就可以替换到y=ax2+bx+c中,求出该点处函数的值,就是函数的最值。
二、求导法求解二次函数最值的注意事项:
1、求导时,需要用合适的表达式;
2、求导法仅适用于求确定数学函数的最大最小值,不能用来求未定义函数或参数函数的最大最小值;
3、求导时,需要判断函数在不同区域的极大值极小值情况,以及确定顶点的横纵坐标值。
以上内容是求解求解二次函数的最值的常用技巧,但是学生在复习时,还需要多积累二次函数求解最值的实际应用实例,熟悉不同情况下的求解步骤,加强对求解最值的熟练操作。
数学篇数苑纵横与二次函数有关的最值问题是中考数学中的一个重难点,常与几何图形、三角函数、实际问题等相结合,考查同学们的空间想象能力和逻辑推理能力.不少同学面对这类最值问题时觉得难以下手,但只要我们认真阅读题目,理解问题的实质,构建出二次函数,再运用二次函数的有关性质即可使问题顺利得解.一、求解实际生活中的最值问题在实际生活中,我们总是追求利益最大或者是成本最低,从数学角度看,就是在特定条件下求目标函数的最大值或者最小值.运用二次函数求解实际生活中的最值问题,关键在于如何构建正确的二次函数模型.解题时应把握以下两点:其一,认真审题,提炼出有用信息;其二,根据题干描述以及自身生活经验,通过合理的抽象确定常量与变量间的函数关系,建立函数模型,然后结合模型和实际情况求得最大值或最小值.需要注意的是,实际问题中二次函数的最大值或最小值不一定在图象的顶点处取得,若顶点的横坐标不在自变量的取值范围内,则要借助函数的增减性来求最大值或最小值.例1某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)设每件商品的售价上涨x 元(x 为正整数),则每件商品的利润为:(60-50+x )元,总销量为:(200-10x )件,商品利润为:y =(60-50+x )(200-10x ),=(10+x )(200-10x ),=-10x 2+100x +2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x ≤12且x 为正整数;(2)y =-10x 2+100x +2000,=-10(x 2-10x )+2000,=-10(x -5)2+2250.故当x =5时,最大月利润y =2250元.这时售价为60+5=65(元).点评:此题主要考查了二次函数的应用及二次函数的最值问题.根据每天的利润=一件的利润×销售量,建立函数关系式.借助二次函数解答实际问题是解题关键.例2李大爷利用坡前空地种植了一片优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足m =ìíî3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图1所示:图1如果李大爷的草莓在上市销售期间每天如何利用二次函数求解最值问题山西临沂周立恒23数学篇数苑纵横的维护费用为80元.(1)求日销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x .解:(1)当1≤x ≤10时,设n =kx +b ,由图可知ìíî12=k +b ,30=10k +b ,解得ìíîk =2,b =10,∴n =2x +10同理得,当10<x ≤30时,n =-1.4x +44,∴销售量n 与第x 天之间的函数关系式:n =ìíî2x +10(x ≤x ≤10),-1.4x +44(10<x ≤30),(2)∵y =mn -80,∴y =ìíîïï(2x +10)(3x +15)-80(x ≤x ≤10),(-1.4x +44)(3x +15)-80(10<x <15),(-1.4x +44)(-x +75)-80(15≤x ≤30),整理得,y =ìíîïï6x 2+60x +70,(1≤x ≤10),-4.2x 2+111x +580,(10<x <15),1.4x 2-149x +3220,(15≤x ≤30),(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =-b 2a=602×6=-5,∴此时,在对称轴的右侧y 随x 的增大而增大,∴当x =10时,y 取最大值,则y 10=1270当10<x <15时,∵y =-4.2x 2+111x +580的对称轴是直线x =111-4.2×2=1118.4≈13.2<13.5,∴当x =13时,y 取得最大值,此时y 13=1313.2;当15≤x ≤30时,∵y =1.4x 2-149x +3220的对称轴为直线x =1492.8>30,∴此时,在对称轴的左侧y 随x 的增大而减小∴x =15时,y 取最大值,y 的最大值是y 15=1300,综上,草莓销售第13天时,日销售利润y 最大,最大值是1313.2元.点评:本题在确定函数最大值时,由于此函数是分段函数,所以要分三种情况讨论.第二种情况中顶点的横坐标在自变量取值范围内,可以利用顶点坐标公式来确定函数的最大值;而第一种情况和第三种情况中顶点的横坐标都不在自变量取值范围内,因此必须利用函数的增减性来确定函数的最大值.分别求出三种情况中的最大值后,还要通过比较确定日销售利润的最大值.二、求解几何图形中的最值问题解答几何图形中的最值问题一般根据已知条件设置相关参数,构建对应的函数模型,再借助函数的性质进行解答.构建二次函数求解几何图形中的最值问题时,要全面观察几何图形的结构特征,挖掘出相应的内在性质,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等,寻求等量关系构造出二次函数,结合二次函数性质计算出最终结果.同时,为保证求解最值问题的正确性,应明确自变量的取值范围.例3如图2,梯形ABCD 中,BC ∥AD ,AB =BC =CD =6,∠D =60°,E 、F 分别为BC 、CD 上两个动点(不与端点重合),且∠AEF =120°,设BE =x ,CF =y .(1)求y 与x 的函数关系式;(2)x 取何值时,y 有最大值,最大值是多少?24数学篇数苑纵横图2解:(1)∵AB =BC =CD =6,BE =x ,CF =y ,∴EC =6-x ,∵BC ∥AD ,∴∠C +∠D =180°,又∠D =60°,∴∠C =120°,∴∠CEF +∠CFE =60°,又∠AEF =120°,∴∠CEF +∠AEB =60°,∴∠CFE =∠AEB ,又梯形ABCD 中,BC ∥AD ,AB =CD ,∴∠B =∠C ,∴△ABE ∽△ECF ,∴AB EC =BE CF,即66-x =x y,∴y =-16x 2+x ;(2)函数y =-16x 2+x =-16(x -3)2+32为开口向下的抛物线,由0<x <6可知,当x =3时,y 有最大值,y 的最大值为32.点评:本题的思路为通过已知条件得出相似三角形,由相似三角形的比例式,进而列出y 与x 的函数关系式,最后根据二次函数求最值的方法求出y 的最大值及此时x 的值.同学们在求二次函数最值时一定要注意自变量x 的范围.例4如图3,在△ABC 中,AB =10,AC =25,∠ACB =45°,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则△BDE 面积的最大值等于.图3图4解:如图4,过点E 作EM ⊥BA 于M ,过点C 作CN ⊥BA 交BA 的延长线于N ,过点A 作AH ⊥BC 于H .在Rt△ACH 中,∵∠AHC =90°,∠ACH =45°,AC =25,∴AH =CH =AC ⋅cos 45°=10,在Rt△ABH 中,∵∠AHB =90°,AB =10,AH =10,∴BH =AB 2-AH 2=102-(10)2=310,∴BC =BH +CH =410,∵S △ACB =12⋅BC ⋅AH =12⋅AB ⋅CN ,∴CN =4,在Rt△ACN 中,AN =AC 2-CN 2=(25)2-42=2,∴BN =BA +AN =12,设BD =x ,则DN =12-x ,∵四边形EFCD 是正方形,∴DE =DC ,∠EDC =∠EMD =∠DNC =90°,∴∠EDM +∠ADC =90°,∠ADC +∠DCN =90°,∴∠EDM =∠DCN ,∴△EMD ≌△DNC (AAS),∴EM =DN =12-x ,∴S △DBE =12⋅BD ⋅EM =12⋅x ⋅(12-x )=12x 2+6x =-12(x -6)2+18,∵-12<0,∴当x =6时,△BDE 的面积最大,最大值为18.故答案为18.点评:本题是一道几何函数题,考查了正方形的性质,解直角三角形等知识.求解时应从几何图形入手,充分利用几何图形的性质构造出函数关系,如本题以三角形的面积公式构建二次函数,再利用二次函数的性质解题.25。
数学篇解题指南几何图形与二次函数的综合题难度一般较大.在解答此类问题时,同学们要认真观察、分析图形的结构特征,充分挖掘几何图形的性质,再利用二次函数的性质求解.下面笔者就以二次函数中线段最值问题与图形面积最值问题的常见解法举例说明.一、二次函数中的线段最值问题常见的二次函数中的线段最值问题有:(1)求某条线段的最值;(2)求几条线段的和的最小值或差的最大值.这类问题侧重于考查二次函数与直线的位置关系、二次函数的性质、平面几何图形的性质.解答此类问题,通常需根据直线与二次函数的位置关系,利用二次函数的对称性转换点或线段的位置,构造出三角形、平行四边形、三点共线的情况等,从而运用三角形、平四边形的性质,以及一些平面几何定理,如“两点间线段最短”“两边之差小于第三边”,求得最值.例1在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2,-4),O (0,0),B(2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.分析:题目(1)是一个求二次函数解析式的简单问题,只要把三个点代入解析式,组成方程组求解即可;(2)是在(1)求解出的二次函数解析式的基础上,求对称轴上一点到两个固定点的距离和问题,即“求AM +OM 的最小值”.准确画出二次函数的图象,如图1所示,利用二次函数的对称性以及对称轴的相关知识,可以得出OM =BM ,从而将AM +OM 转化为当A 、B 、M 三点共线时,两线段和最小.解:(1)把A (-2,-4),O (0,0),B (2,0)三点的坐标代入y =ax 2+bx +c 中,得方程组的解为,a =-12,b =1,c =0,所以抛物线的解析式为y =-12x 2+x ;(2)由y =-12x 2+x =-12(x -1)2+12,可得抛物线的对称轴为x =1,并且对称轴垂直平分线段OB ,∵点M 是抛物线对称轴上的一点,∴OM =BM ,∴OM +AM =BM +AM ,连接AB 交直线x =1于M 点,此时OM +AM 最小.过点A 作AN ⊥x 轴于点N ,在Rt△ABN 中,AB =AB 2+BN 2=42+42=42,因此OM +AM 的最小值为42.评注:二次函数的图象具有对称性,点M 是对称轴上的一点,利用此性质可以得到OM =BM ,这样便将“OM +AM ”转化为“BM +AM ”,进一步转化为求AM +BM 最小值问题,然后利用“两点之间线段最短”的原理求解即可.二、二次函数中图形面积的最值问题二次函数中图形面积的最值问题往往是二次函数线段最值问题的升华.求解此类问题时往往需要将不规则或复杂的图形通过“分割法”或“补形法”转化为规则的图形,然后利用规则图形的面积公式来求解.一般地,怎样求解二次函数中的几何最值问题南京师范大学盐城实验学校程梦书x y 图119数学篇解题指南二次函数中图形面积的最值问题往往通过“转化”思想,化为“线段(和)”最值问题.此外,经过割补后所求区域的面积,可通过不同区域的面积相加或相减来求得.例2已知抛物线经过点A (-1,0)、B (3,0)、C(0,3).(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN //y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.分析:(1)求二次函数解析式比较容易,直接将三点坐标代入组成方程组即可.(2)中点M 虽是动点,但坐标可以用二次函数的解析式表示出来,随后表示出点N 的坐标,即可表示MN 的长.(3)△BNC 面积直接求解比较困难,利用转化思想化为S △MNC +S △MNB .利用面积公式,将“面积”最值问题转化为“线段”最值问题来求解.(如图2所示).解:(1)∵抛物线过点A (-1,0)、B (3,0),∴设抛物线的解析式为:y =a (x +1)(x -3),又∵抛物线过点C (0,3),∴a (0+1)(0-3)=3,解得a =-1,所以,抛物线的解析式为:y =-(x +1)(x -3)=-x 2+2x +3;(2)设直线BC 的解析式为y =kx +b ,则有:故直线BC 的解析式为:y =-x +3,已知点M 的横坐标为m ,则M (m ,-m +3)、N (m ,-m 2+2m +3),∴MN =|(-m 2+2m +3)-(-m +3)|=|-m 2+3m |,∵点M 在B 、C 之间,∴点N 高于点M ,∴0<m <3,∴MN =|-m 2+3m |=-m 2+3m 即MN =-m 2+3m (0<m <3);(3)存在,S △BNC =S △MNC +S △MNB ,∵MN //y 轴,∴延长NM 交x 轴于点D ,∴点C 到MN 的距离为OD ,∴S △MNC =12MN ×OD ,S △MNB =12MN ×DB ,S △BNC =S △MNC +S △MNB =12MN (OD +DB )=12MN ×OB ,∴当|MN |最大时,△BNC 的面积最大,MN =-m 2+3m =-(m -32)2+94,当m =32时,MN 有最大值为94,所以当m =32时,S △BNC 的面积最大,故△BNC 的面积最大值为12×94×3=278.评注:求解二次函数的最值问题时,一定要准确绘制出函数的图象,特别是开口方向、与x 轴的交点、与y 轴的交点、对称轴.否则,可能得到错解或无解.利用二次函数求最值需要注意:当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值.二次函数中的几何最值问题往往涉及“线段和最小”或“图形面积最大”等问题.同学们应掌握二次函数的图象和性质,将最值图2。
利用二次函数性质求线段最值考点剖析:利用铅垂法或者构造相似三角形将线段用含参的二次函数表示,然后求最值.一、方法突破:1、如图,已知抛物线223y x x =-++,点P 为抛物线上一点,且横坐标为m ,过点P 作PE ⊥x 轴于点E ,当122m ≤≤时,求线段PE 的最大值和最小值.【核心要点】要求线段PE 的最值,只需要求出当122m ≤≤时,y 的最值即可,先将抛物线的解析式化为顶点式,利用二次函数的增减性即可求解.解:2223(1)4y x x x =-++=--+∴ 抛物线的对称轴为直线x =1.∵-1<0 ∴ 点P 越靠近对称轴,函数值越大,即PE 越大.∴ PE 的最大值为4.∵ 11212--< ∴当m=2时,PE 取得最小值,此时PE=3∴ 当122m ≤≤时,线段PE 的最大值是4,最小值是3. 2、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 上方抛物线上一点,过点P 作x 轴的垂线交BC 于点D ,交x 轴于点E ,求线段PD 的最大值.【核心要点】设出点P 、D 坐标,表示出线段PD 的长,再利用二次函数的性质求最值. 解:∵ 223y x x =-++与x 轴交于A 、B 两点,∴ 令y=0,即2230x x -++=,解得121,3x x =-=∵ 点A 在点B 左侧,∴A (-1,0)、B (3,0)∵ 223y x x =-++与y 轴交于点C∴C (0,3)∴ 直线BC 的解析式为3y x =-+设点P 的坐标为2(,23)(03)m m m m -++<<则点D 的坐标为(,3)m m -+∴223923(3)()24PD m m m m =-++--+=--+∵ 303-102<<,<∴ 当32m =时,线段PD 取得最大值,最大值为943、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 上方抛物线上一点,过点P 作PM ⊥BC 于M ,求线段PM 的最大值.【核心要点】过点P 作PN ⊥x 轴交BC 于点N ,构造直角三角形,将PM 用PN 表示,再利用二次函数的性质求最值.解:如图,过点P 作PN ⊥x 轴交BC 于点N ,∵ 223y x x =-++与x 轴交于A 、B 两点,∴ 令y=0,即2230x x -++=,解得121,3x x =-=∵ 点A 在点B 左侧,∴A (-1,0)、B (3,0)∵ 223y x x =-++与y 轴交于点C∴C (0,3)∴ OB=OC=3∵ PN ⊥x 轴∴ 45PNM OCB ==︒∠∠∴ △PMN 为等腰直角三角形∴ 2PM PN = 直线BC 的解析式为3y x =-+设点P 的坐标为2(,23)(03)m m m m -++<<则点N 的坐标为(,3)m m -+∴223923(3)()24PN m m m m =-++--+=--+∴23)2PM m =-+∵ 303-022<<, ∴ 当32m =时,线段PM取得最大值,最大值为84、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,连接BC ,点D 是线段BC 上方抛物线上一点,过点D 作DE ∥BC ,交x 轴于点E ,连接AD 交BC 于点F ,当FB DE取得最小值时,求点D 的横坐标.【核心要点】利用相似三角形的性质进行转化,求FB DE最小值,即求AE 的最大值,利用二次函数的性质求出AE 的最大值即可.解:∵ 抛物线解析式为223y x x =-++,∴ A (-1,0),B (3,0),C (0,3)∴ AB=4,直线BC 的解析式为3y x =-+∵ DE ∥BC∴ 设直线DE 的解析式为y x b =-+,△AFB ∽△ADE∴ FB AB DE AE= ∵ AB 为定值 ∴ FB DE取得最小值,即AE 取得最大值 设点D 的坐标为2(,23)(03)m m m m -++<<将点D 的坐标代入直线DE 的解析式得223m b m m -+=-++ ∴ 233b m m =-++∴ 直线DE 的解析式为233y x m m =--++将y =0代入233y x m m =--++中得233x m m =-++ ∴ 点E 的坐标为2(33,0)m m -++ ∴ 22232533(1)34()24AE m m m m m =-++--=-++=--+ ∵ 303-102<<,<∴ 当32m =时,AE 取得最大值 ∴ 当FB DE 取得最小值时,点D 的横坐标为32二、典例精析例一:(2021•西藏)在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(1,0)-,点C 的坐为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;【思路分析】(1)将A 的坐标(1,0)-,点C 的坐(0,5)代入2y x bx c =-++,即可得抛物线的解析式为245y x x =-++;(2)过P 作PD x ⊥轴于D ,交BC 于Q ,过P 作PH BC ⊥于H ,由245y x x =-++可得(5,0)B ,故OB OC =,BOC ∆是等腰直角三角形,可证明PHQ ∆是等腰直角三角形,即知2PH =PQ 最大时,PH 最大,设直线BC 解析式为5y kx =+,将(5,0)B 代入得直线BC 解析式为5y x =-+,设2(,45)P m m m -++,(05)m <<,则(,5)Q m m -+,2525()24PQ m =--+,故当52m =时,PH 最大,即点P 到直线BC 的距离最大,此时5(2P ,35)4; 解:(1)将A 的坐标(1,0)-,点C 的坐(0,5)代入2y x bx c =-++得: 015b c c =--+⎧⎨=⎩,解得45b c =⎧⎨=⎩, ∴抛物线的解析式为245y x x =-++;(2)过P 作PD x ⊥轴于D ,交BC 于Q ,过P 作PH BC ⊥于H ,如图:在245y x x =-++中,令0y =得2450x x -++=,解得5x =或1x =-,(5,0)B ∴,OB OC ∴=,BOC ∆是等腰直角三角形,45CBO ∴∠=︒,PD x ⊥轴,45BQD PQH ∴∠=︒=∠,PHQ ∴∆是等腰直角三角形,2PH ∴,∴当PQ 最大时,PH 最大,设直线BC 解析式为5y kx =+,将(5,0)B 代入得055k =+, 1k ∴=-,∴直线BC 解析式为5y x =-+,设2(,45)P m m m -++,(05)m <<,则(,5)Q m m -+,222525(45)(5)5()24PQ m m m m m m ∴=-++--+=-+=--+, 10a =-<,∴当52m =时,PQ 最大为254, 52m ∴=时,PH 最大,即点P 到直线BC 的距离最大,此时5(2P ,35)4; 例二: (2021日照中考)已知:抛物线2y ax bx c =++经过(1,0)A -,(3,0)B ,(0,3)C 三点.(1)求抛物线的解析式;(2)如图1,点P 为直线BC 上方抛物线上任意一点,连PC 、PB 、PO ,PO 交直线BC 于点E ,设PE k OE=,求当k 取最大值时点P 的坐标,并求此时k 的值.【思路分析】(1)运用待定系数法即可求得答案;(2)如图1,过点P 作//PH y 轴交直线BC 于点H ,则PEH OEC ∆∆∽,进而可得13k PH =,再运用待定系数法求得直线BC 的解析式为3y x =-+,设点2(,23)P t t t -++,则(,3)H t t -+,从而得出2133()324k t =--+,再利用二次函数性质即可得出答案; 解:(1)抛物线2y ax bx c =++经过(1,0)A -,(3,0)B ,(0,3)C , ∴设(1)(3)y a x x =+-,将(0,3)C 代入,得(01)(03)3a +-=, 解得:1a =-,2(1)(3)23y x x x x ∴=-+-=-++,∴抛物线的解析式为223y x x =-++;(2)如图1,过点P 作//PH y 轴交直线BC 于点H , PEH OEC ∴∆∆∽,∴PE PH OE OC=, PE kOE=,3OC =, 13k PH ∴=, 设直线BC 的解析式为y kx n =+,(3,0)B ,(0,3)C ,∴303k n n +=⎧⎨=⎩, 解得:13k n =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,设点2(,23)P t t t -++,则(,3)H t t -+,2223(3)3PH t t t t t ∴=-++--+=-+,221133(3)()3324k t t t ∴=-+=--+, 103-<, ∴当32t =时,k 取得最大值34,此时,3(2P ,15)4;三、中考真题对决1、(2021•泰安)二次函数24(0)y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D .(1)求二次函数的表达式;(3)请判断:PQ QB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【思路分析】(1)利用待定系数法即可求出答案;(3)设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,利用待定系数法求出直线AC 表达式,再利用//BM PN ,可得PNQ BMQ ∆∆∽,进而得出5PQ PN PN QB BM ==,设0(P a ,20034)(40)a a a --+-<<,则0(N a ,04)a +,从而得到20(2)45a PQ QB -++=,利用二次函数的性质即可求得答案.解:(1)二次函数24(0)y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B , ∴2(4)(4)4040a b a b ⎧⋅-+⋅-+=⎨++=⎩,解得:13a b =-⎧⎨=-⎩, ∴该二次函数的表达式为234y x x =--+;(3)PQ QB有最大值. 如图,设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M ,设直线AC 表达式为y mx n =+,(4,0)A -,(0,4)C ,∴(4)004m n m n ⋅-+=⎧⎨⋅+=⎩, 解得:14m n =⎧⎨=⎩, ∴直线AC 表达式为4y x =+,M ∴点的坐标为(1,5),5BM ∴=,//BM PN ,PNQ BMQ ∴∆∆∽, ∴5PQ PN PN QB BM ==, 设0(P a ,200034)(40)a a a --+-<<,则0(N a ,04)a +, ∴22200000034(4)4(2)4555a a a a a a PQ QB --+-+---++===, ∴当02a =-时,PQ QB有最大值, 此时,点P 的坐标为(2,6)-.2.(2021•巴中)已知抛物线2y ax bx c =++与x 轴交于(2,0)A -、(6,0)B 两点,与y 轴交于点(0,3)C -.(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当PM AM最大时,求点P 的坐标及PM AM 的最大值;【思路分析】(1)将(2,0)A -、(6,0)B 、(0,3)C -代入2y ax bx c =++即可求解析式;(2)过点A 作AE x ⊥轴交直线BC 于点E ,过P 作PF x ⊥轴交直线BC 于点F ,由//PF AE ,可得MP PF AM AE=,则求PF AE 的最大值即可; 解:(1)将点(2,0)A -、(6,0)B 、(0,3)C -代入2y ax bx c =++,得42036603a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得1413a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩,2134y x x ∴=--; (2)如图1,过点A 作AE x ⊥轴交直线BC 于点E ,过P 作PF x ⊥轴交直线BC 于点F , //PF AE ∴, ∴MP PF AM AE=, 设直线BC 的解析式为y kx d =+,∴603k d d +=⎧⎨=-⎩, ∴123k d ⎧=⎪⎨⎪=-⎩,132y x ∴=-, 设21(,3)4P t t t --,则1(,3)2F t t -, 221113332442PF t t t t t ∴=--++=-+, (2,0)A -,(2,4)E ∴--,4AE ∴=, ∴22213131942(3)41681616t t MP PF t t t AM AE -+===-+=--+, ∴当3t =时,MP AM 有最大值916,15(3,)4P ∴-;3.(2021•郴州)将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P 是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图1,点P 在线段AC 上方的抛物线H 上运动(不与A ,C 重合),过点P 作PD AB ⊥,垂足为D ,PD 交AC 于点E .作PF AC ⊥,垂足为F ,求PEF ∆的面积的最大值;【思路分析】(1)根据将抛物线2(0)y ax a =≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+,可得顶点坐标为(1,4)-,即可得到抛物线2:(1)4H y a x =++,运用待定系数法将点A 的坐标代入,即可得出答案;(2)利用待定系数法可得直线AC 的解析式为3y x =+,设2(,23)P m m m --+,则(,3)E m m +,进而得出239()24PE m =-++,运用二次函数性质可得:当32m =-时,PE 有最大值94,再证得PEF ∆是等腰直角三角形,即可求出答案;解:(1)由题意得抛物线的顶点坐标为(1,4)-,∴抛物线2:(1)4H y a x =++,将(3,0)A -代入,得:2(31)40a -++=,解得:1a =-,∴抛物线H 的表达式为2(1)4y x =-++;(2)如图1,由(1)知:223y x x =--+,令0x =,得3y =,(0,3)C ∴,设直线AC 的解析式为y mx n =+,(3,0)A -,(0,3)C ,∴303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线AC 的解析式为3y x =+,设2(,23)P m m m --+,则(,3)E m m +,2223923(3)3()24PE m m m m m m ∴=--+-+=--=-++, 10-<,∴当32m =-时,PE 有最大值94, 3OA OC ==,90AOC ∠=︒,AOC ∴∆是等腰直角三角形,45ACO ∴∠=︒,PD AB ⊥,90ADP ∴∠=︒,ADP AOC ∴∠=∠,//PD OC ∴,45PEF ACO ∴∠=∠=︒,PEF ∴∆是等腰直角三角形, 22PF EF PE ∴==, 21124PEF S PE EF PE ∆∴=⋅=, ∴当32m =-时,21981()4464PEF S ∆=⨯=最大值; 4.(2021•黄石)抛物线22(0)y ax bx b a =-+≠与y 轴相交于点(0,3)C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(3)若(3,)P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【思路分析】(1)由题意得:2323b x a b -⎧=-=⎪⎨⎪=-⎩,即可求解; (3)由2222222(3)(63)(3)[(3)6]PQ m m m t m m t =-+-+--=-+-+-,对t 的取值分类讨解:(1)由题意得:2323b x a b -⎧=-=⎪⎨⎪=-⎩,解得13a b =-⎧⎨=-⎩, 故抛物线的表达式为263y x x =-+-;(3)设点Q 的坐标为2(,63)m m m -+-,则2222222(3)(63)(3)[(3)6]PQ m m m t m m t =-+-+--=-+-+-, 设2(3)n m =-,则2222(6)(211)(6)PQ n n t n n t t =++-=+-+-,二次项系数为10>,故2PQ 有最小值,①当112t 时,2PQ 的最小值221234(6)(112)44t t t -=---=, PQ ∴; ②当112t >时,2PQ 的最小值2(6)t =-, PQ ∴的最小值为|6|t -;∴当6t 时,6PQ t =-,当1162t <<时,6PQ t =-,综上所述,11)2116(6)26(6)t PQ t t t t ⎪⎪=-<<⎨⎪-⎪⎪⎩. 5.(2021•东营)如图,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线122y x =-+过B 、C 两点,连接AC . (1)求抛物线的解析式;(3)点(3,2)M 是抛物线上的一点,点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为抛物线对称轴上一动点,当线段DE 的长度最大时,求PD PM +的最小值.【思路分析】(1)直线122y x =-+过B 、C 两点,可求B 、C 两点坐标,把(4,0)B ,(0,2)C 分别代入212y x bx c =-++,可得解析式. (3)设点D 的坐标为213(,2)22x x x -++,则点E 的坐标为1(,2)2x x -+,由坐标得2122DE x x =-+,当2x =时,线段DE 的长度最大,此时,点D 的坐标为(2,3),即点C 和点M 关于对称轴对称,连接CD 交对称轴于点P ,此时PD PM +最小,连接CM 交直线DE 于点F ,则90DFC ∠=︒,由勾股定理得5CD =,根据PD PM PC PD CD +=+=,即可求解.解:(1)直线122y x =-+过B 、C 两点, 当0x =时,代入122y x =-+,得2y =,即(0,2)C , 当0y =时,代入122y x =-+,得4x =,即(4,0)B , 把(4,0)B ,(0,2)C 分别代入212y x bx c =-++, 得8402b c c -++=⎧⎨=⎩, 解得322b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为213222y x x =-++; (3)设点D 的坐标为213(,2)22x x x -++, 则点E 的坐标为1(,2)2x x -+, 21312(2)222DE x x x ∴=-++--+ 213122222x x x =-+++-2122x x =-+, 102-<, ∴当2x =时,线段DE 的长度最大, 此时,点D 的坐标为(2,3), (0,2)C ,(3,2)M , ∴点C 和点M 关于对称轴对称, 连接CD 交对称轴于点P ,此时PD PM +最小, 连接CM 交直线DE 于点F ,则90DFC ∠=︒,点F 的坐标为(2,2), 225CD CF DF ∴=+=, PD PM PC PD CD +=+=, PD PM ∴+的最小值为5.。
2023年中考高频数学专题突破--二次函数的最值问题1.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?2.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?.3.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?4.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?5.自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线()2=-+表示.y a x30100(1)a=;(2)求图1表示的售价P与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?6.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?7.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为y 元,试写出y与x之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?8.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元已知拔标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同。
青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》说课稿一. 教材分析青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》这一节,是在学生已经掌握了二次函数的图像和性质的基础上进行教学的。
教材通过实例引出二次函数的最值问题,让学生理解二次函数在实际生活中的应用,提高学生学习数学的兴趣。
教材从生活实际出发,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不能将所学知识与实际问题相结合,对于二次函数在实际生活中的应用还不够明确。
因此,在教学过程中,我将以实例引导学生,让学生理解二次函数在实际生活中的应用。
三. 说教学目标1.知识与技能目标:使学生理解二次函数的最值问题,掌握利用二次函数的性质确定函数最大值和最小值的方法。
2.过程与方法目标:通过实例分析,培养学生解决实际问题的能力,提高学生的数学应用意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:二次函数的最值问题,利用二次函数的性质确定函数最大值和最小值的方法。
2.教学难点:如何将实际问题转化为二次函数问题,利用二次函数的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,培养学生的动手能力和合作精神。
2.教学手段:利用多媒体课件辅助教学,直观展示二次函数的图像和性质,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对二次函数最值的思考,激发学生的学习兴趣。
2.讲解新课:讲解二次函数的最值问题,引导学生掌握利用二次函数的性质确定函数最大值和最小值的方法。
3.案例分析:分析几个实例,让学生理解二次函数在实际生活中的应用,培养学生解决实际问题的能力。
二次函数中线段周长最值及定值问题(八大题型)通用的解题思路:一、二次函数中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解,求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确。
2.两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点,其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
【常见模型二】(两点在河的同侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。
3. 两条线段差的最值问题:解决这类问题最基本的定理就是“三角形任何两边之差小于第三边”,解决这类问题的方法是:求解时,先根据原理确定线段差取最值时的图形,再根据已知条件求解。
【常见模型一】(两点在同侧):在直线L上求一点P,求|PA-PB|的最大值方法:如右图,延长射线AB,与直线L交于点P,|PA-PB|最大值为AB【常见模型二】(两点在异侧):在直线L上求一点P,求|PA-PB|的最大值。
方法:如右图,作点B关于直线L的对称点B',延长射线AB',与直线L交于点P,|PA-PB|最大值为AB'二、二次函数中的定值问题一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:1.参数计算法:即在图形运动中,选取其中的变量(如线段长,点坐标)作为参数,将要求的定值用参数表示出,然后消去参数即得定值。
二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用二次函数的最值与应用二次函数是高中数学中一个非常重要的概念,在学习二次函数的最值性质及其在实际问题中的应用之前,我们首先需要了解二次函数的基本形式和性质。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a不等于0,x、y为变量。
在此基础上,我们将深入探讨二次函数的最值及其在实际问题中的应用。
一、二次函数的最值性质二次函数的图像是一个抛物线,其开口方向由二次项的系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于一个二次函数而言,其最值即为函数的最大值和最小值。
1. 最值存在性对于二次函数y=ax^2+bx+c,当抛物线开口向上时,函数存在最小值;当抛物线开口向下时,函数存在最大值。
即最值存在性与a的正负相关。
2. 最值点的横坐标对于二次函数y=ax^2+bx+c,最值点的横坐标可以通过计算二次函数的自变量x的取值来确定。
最值点的横坐标为二次函数的顶点,顶点的横坐标为-x轴的对称轴,即x=-b/2a。
3. 最值点的纵坐标最值点的纵坐标可通过将最值点的横坐标代入二次函数中求得。
将x=-b/2a代入二次函数y=ax^2+bx+c中,可以求出最值点的纵坐标。
二、二次函数最值的应用二次函数的最值性质在实际问题中具有广泛的应用。
下面将介绍二次函数最值的几个常见应用场景。
1. 最值问题通过研究二次函数的最值性质,可以解决许多涉及最值问题的实际情况。
例如,我们要抛掷一个物体,求出其最高点的高度以及达到最高点时的时间。
可以建立一个关于时间的二次函数模型,然后通过最值性质计算出最高点的高度和达到最高点的时间。
2. 优化问题在实际生活中,许多问题可以通过优化函数来解决。
例如,我们要制造一个容积为V的长方体包装盒,为了节省材料成本,我们想使包装盒的表面积最小。
可以建立一个关于长方体各边长的二次函数模型,然后通过最值性质求解出使表面积最小的边长。