wiresharkTcpUdp抓包分析
- 格式:doc
- 大小:414.00 KB
- 文档页数:8
【Wireshark抓包工具的工作原理、特点和应用场合】一、Wireshark抓包工具的工作原理1. 数据包捕获:Wireshark通过网络接口捕获网络上的数据包,可以实时监控数据流量,并将其转化成可读的数据格式。
2. 数据包分析:Wireshark可以对捕获的数据包进行解析和分析,包括源位置区域、目的位置区域、协议类型等信息,方便用户理解和判断网络通信情况。
3. 数据包展示:Wireshark提供了直观的图形化界面,将捕获的数据包以列表和流的形式展示,方便用户观察和分析。
二、Wireshark抓包工具的特点1. 多协议支持:Wireshark支持多种网络协议的捕获和解析,如TCP、UDP、IP、HTTP等,可以满足复杂网络环境下的需求。
2. 灵活性:Wireshark可以根据用户需求进行过滤和搜索,筛选出特定的数据包进行分析,有利于快速定位网络问题。
3. 开源免费:Wireshark是一款开源软件,用户可以免费获取和使用,而且有强大的社区支持,可以及时获得更新和技术支持。
4. 跨评台性:Wireshark支持多种操作系统,包括Windows、Linux、macOS等,方便用户在不同评台上使用和部署。
三、Wireshark抓包工具的应用场合1. 网络故障排查:Wireshark可以帮助网络管理员分析网络故障原因,包括丢包、延迟、网络拥堵等问题,并提供有效的解决方案。
2. 安全监测:Wireshark可以监控网络通信情况,检测潜在的网络攻击,帮助用户保护网络安全。
3. 网络性能优化:Wireshark可以分析网络通信情况,帮助用户优化网络性能,提高数据传输效率。
4. 教学和研究:Wireshark可以作为教学和研究工具,帮助用户深入理解网络通信原理和技术,提高网络技术水平。
四、个人观点和理解Wireshark作为一款强大的网络抓包工具,具有丰富的功能和灵活的应用方式,可以帮助用户解决各种网络问题,提高网络管理效率和安全性。
Wireshark抓包实验⼀、实验名称利⽤Wireshark抓包并分析 TCP/IP 协议⼆、实验⽬的通过实验,了解和掌握报⽂捕获⼯具 Wireshark 的使⽤⽅法和基本特点,使⽤ Wireshark 捕获⽹络报⽂,并分析各种⽹络协议的报⽂格式和⼯作过程。
三、实验内容使⽤ Wireshark 捕获⽹络报⽂,分析以太⽹、ARP、IP、TCP、DNS 和 HTTP 等协议的报⽂格式和⼯作过程。
四、实验步骤DNS分析在 cmd 下运⾏:nslookup –type=Anslookup –type=NS nslookup –type=MX nslookup –type=A 然后⽤Wireshark捕获报⽂并分析DNS和UDP协议的报⽂格式和⼯作过程。
ICMP分析在cmd下运⾏pingtracert然后⽤Wireshark捕获报⽂并分析 ICMP 报⽂格式和⼯作过程。
TCP/IP分析a) 在浏览器输⼊ ⽹址后,然后⽤ Wireshark 捕获报⽂并分析HTTP,TCP,IP,ARP和以太⽹等协议的报⽂格式和⼯作过程。
b) 运⾏各⾃编写的 UDP 和 TCP 客户/服务器程序并进⾏抓包分析。
五、实验结果及分析(⼀)DNS分析通过ipconfig命令查看IP、⽹关地址IP地址192.168.43.217默认⽹关192.168.43.1DNS报⽂格式DNS分析⼤体相同,就选择其⼀进⾏分析1.在cmd下运⾏nslookup -type=A ⾮权威应答:110.53.188.133 113.247.230.248 202.197.9.133应答服务器地址为192.168.43.1,为默认⽹关地址利⽤wireshark进⾏抓包分析,筛选DNS报⽂,本次运⾏有4个DNS报⽂,可以看出对应请求包和响应包的源IP与⽬的IP刚好相反。
Query这是⼀个请求报⽂。
⾸先主机发送⼀个 DNS 报⽂。
DNS 采⽤ UDP 协议⽀持。
Wireshark抓包实例分析通信工程学院010611班赖宇超01061093一.实验目的1.初步掌握Wireshark的使用方法,熟悉其基本设置,尤其是Capture Filter和Display Filter 的使用。
2.通过对Wireshark抓包实例进行分析,进一步加深对各类常用网络协议的理解,如:TCP、UDP、IP、SMTP、POP、FTP、TLS等。
3.进一步培养理论联系实际,知行合一的学术精神。
二.实验原理1.用Wireshark软件抓取本地PC的数据包,并观察其主要使用了哪些网络协议。
2.查找资料,了解相关网络协议的提出背景,帧格式,主要功能等。
3.根据所获数据包的内容分析相关协议,从而加深对常用网络协议理解。
三.实验环境1.系统环境:Windows 7 Build 71002.浏览器:IE83.Wireshark:V 1.1.24.Winpcap:V 4.0.2四.实验步骤1.Wireshark简介Wireshark(原Ethereal)是一个网络封包分析软件。
其主要功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。
其使用目的包括:网络管理员检测网络问题,网络安全工程师检查资讯安全相关问题,开发者为新的通讯协定除错,普通使用者学习网络协议的相关知识……当然,有的人也会用它来寻找一些敏感信息。
值得注意的是,Wireshark并不是入侵检测软件(Intrusion Detection Software,IDS)。
对于网络上的异常流量行为,Wireshark不会产生警示或是任何提示。
然而,仔细分析Wireshark 撷取的封包能够帮助使用者对于网络行为有更清楚的了解。
Wireshark不会对网络封包产生内容的修改,它只会反映出目前流通的封包资讯。
Wireshark本身也不会送出封包至网络上。
2.实例实例1:计算机是如何连接到网络的?一台计算机是如何连接到网络的?其间采用了哪些协议?Wireshark将用事实告诉我们真相。
Wireshark抓包分析CONTENTS5 TCP协议抓包分析5.1 TCP协议格式及特点5.2实例分析6 UDP协议的抓包分析6.1 UDP报文格式及特点6.2流媒体播放时传输层报文分析Word资料5 TCP 协议抓包分析5.1 TCP 协议的格式及特点2 .......... . ...... . 序列号,吕卯 .............. ......... .......…确认号 .&ck_非q・,・》*>■*・L A P R S F >■*・*・ I ■ »*>■*・*・ I ■ b * H * I- -fa ■■ I I- k- k- 4- I- -fa4 首部长度|.保留(6). . |R|C|S|S|¥|1| .......... window|..doff., > |. . ■ . *. . G K H T \ X . ........ ......... .... .............. ....5 ................. 校验和.ch«ck^ ...... .......................................... 紧急指针.|I .......... 迭项 ........................... 填充字节一.|图1 TCP 协议报头格式源端口:数据发起者的端口号; 目的端口:数据接收方的端口号;32bit 序 列号,标识当前数据段的唯一性;32bit 的确认号,接收数据方返回给发送方的 通知;TCP 头部长度为20字节,若TCP 头部的Options 选项启用,则会增加首 部长度,因此TCP 是首部变长的传输层协议;Reserved 、Reserved 、Nonce 、CWR 、 ECN-Echo :共6bit,保留待用。
URG: 1bit 紧急指针位,取值1代表这个数据是紧急数据需加速传递,取值 0代 表这是普通数据;ACK: 1bit 确认位,取值1代表这是一个确认的TCP 包,取值0则不是确认包;行 D ...... 4 ...... S.. 1D (16)1 I ... 源端口 « STC -pO27t目的端口. dst-poit.....PSH: 1bit紧急位,取值1代表要求发送方马上发送该分段,而接收方尽快的将报文交给应用层,不做队列处理。
抓包的分析报告1. 引言本文旨在通过对抓包数据的分析,对网络通信进行深入研究,从而揭示网络传输过程中的细节以及可能存在的安全隐患。
通过抓包分析,我们可以获取传输的原始数据,进而发现网络问题并进行相关的优化工作。
2. 抓包工具介绍抓包是一种网络分析的方法,通过获取网络中的数据包来进行深入分析。
常用的抓包工具包括 Wireshark、Tcpdump 等。
在本文中,我们使用 Wireshark 这一流行的抓包工具进行数据包分析。
Wireshark 是一款开源的网络协议分析软件,支持多种操作系统,用户可以通过 Wireshark 捕获和分析网络数据包,以便于查找和解决网络问题。
3. 抓包分析步骤3.1 抓包设置在开始抓包前,需要正确设置抓包工具。
我们需要指定要抓取的接口,以及过滤器来选择我们感兴趣的数据包。
为了保证抓包的有效性,可以在抓包前关闭一些不必要的网络应用,以减少干扰。
3.2 开始抓包设置完毕后,点击“开始”按钮开始进行抓包。
此时,Wireshark 将开始捕获网络数据包。
3.3 数据包过滤捕获到的数据包可能非常庞大,我们需要进行过滤以便于查找特定的数据包。
Wireshark 提供了强大的过滤功能,可以根据协议、源/目标 IP 地址、端口号等条件进行筛选。
3.4 数据包分析捕获到感兴趣的数据包后,我们可以对数据包进行深入分析。
Wireshark 提供了丰富的功能,可以查看每个数据包的详细信息,包括源/目标地址、端口号、协议类型、数据内容等。
4. 抓包分析实例为了更好地理解抓包过程和分析方法,我们将给出一个具体的抓包分析实例。
4.1 实验目标分析某网站的登录过程,并观察登录过程中的数据传输。
4.2 实验步骤•打开 Wireshark 并设置抓包过滤器为 HTTP。
•在浏览器中访问目标网站并进行登录。
•通过 Wireshark 捕获登录过程中的数据包。
•分析捕获到的数据包,观察登录过程中的数据传输情况。
wireshark抓包实验报告总结一、实验目的本次实验的主要目的是学习Wireshark抓包工具的使用方法,掌握网络通信过程中数据包的组成和解析方式,以及了解常见网络协议的运行机制。
二、实验环境本次实验使用的操作系统为Windows 10,使用Wireshark版本为3.4.6。
三、实验步骤1. 安装Wireshark软件并打开。
2. 选择需要抓包的网络接口,并开始抓包。
3. 进行相应的网络操作,例如访问网站、发送邮件等。
4. 停止抓包,并对捕获到的数据包进行分析和解析。
四、实验结果1. 抓取HTTP请求和响应数据包通过Wireshark抓取HTTP请求和响应数据包,可以轻松地了解HTTP协议在通信过程中所传输的信息。
例如,在访问一个网站时,可以看到浏览器向服务器发送GET请求,并获取到服务器返回的HTML 页面等信息。
同时还可以看到HTTP头部中所携带的信息,例如User-Agent、Cookie等。
2. 抓取TCP连接数据包通过Wireshark抓取TCP连接数据包,可以了解TCP协议在建立连接、传输数据和关闭连接时所涉及到的所有步骤。
例如,在进行FTP 文件传输时,可以看到TCP三次握手建立连接,以及文件传输过程中TCP的流量控制和拥塞控制等。
3. 抓取UDP数据包通过Wireshark抓取UDP数据包,可以了解UDP协议在通信过程中所涉及到的所有信息。
例如,在进行DNS域名解析时,可以看到DNS服务器返回的IP地址等信息。
五、实验总结通过本次实验,我学会了使用Wireshark抓包工具进行网络数据包分析的方法,并了解了常见网络协议的运行机制。
同时也发现,在网络通信过程中,数据包所携带的信息非常丰富,能够提供很多有用的参考和指导。
因此,在实际工作中,我们应该灵活运用Wireshark等工具进行网络数据包分析,并结合具体业务场景进行深入研究和分析。
用wireshark分析和 Dns 报文一、请求报文和响应报文wireshark所抓的一个含有请求报文的帧:1、帧的解释链路层的信息上是以帧的形式进展传输的,帧封装了应用层、传输层、网络层的数据.而wireshark抓到的就是链路层的一帧.图中解释:Frame 18:所抓帧的序号是11,大小是409字节Ethernet :以太网,有线局域网技术 ,属链路层Inernet Protocol:即IP协议,也称网际协议,属网络层Transmisson Control Protocol:即TCP协议,也称传输控制协议.属传输层Hypertext transfer protocol:即协议,也称超文本传输协议.属应用层图形下面的数据是对上面数据的16进制表示.2、分析上图中的请求报文报文分析:请求行:GET /img/2009people_index/images/hot_key.gif /1.1方法字段 / URL字段 /协议的版本我们发现,报文里有对请求行字段的相关解释.该报文请求的是一个对象,该对象是图像.首部行:Accept: */*Referer: m/这是Accept-Language: zh-语言中文Accept-Encoding: gzip, deflate可承受编码,文件格式用户代理,浏览器的类型是Netscape浏览器;括号内是相关解释Host: 目标所在的主机Connection: Keep-Alive激活连接在抓包分析的过程中还发现了另外一些请求报文中所特有的首部字段名,比如下面请求报文中橙黄色首部字段名:Accept: */*Referer: 这是html文件Accept-Language: zh-语言中文Accept-Encoding: gzip, deflate可承受编码,文件格式If-Modified-Since: Sat, 13 Mar 2010 06:59:06 GMT内容是否被修改:最后一次修改时间If-None-Match: "9a4041-197-2f11e280"关于资源的任何属性〔 ETags值〕在ETags的值中可以表现,是否改变用户代理,浏览器的类型是Netscape浏览器;括号内是相关解释目标所在的主机Connection: Keep-Alive激活连接Cookie: cdb_sid=0Ocz4H; cdb_oldtopics=D345413D; cdb_visitedfid=17; __gads=ID=7ab350574834b14b:T=1287731680:S=ALNI_Mam5QHAAK2cJdDTRuSxY24VDbjc1Acookie,允许站点跟踪用户,coolie ID是7ab350574834b14b3、分析的响应报文,针对上面请求报文的响应报文如下:wireshark对于2中请求报文的响应报文:展开响应报文:报文分析:状态行:/1.0 200 OK首部行:Content-Length: 159内容长度Accept-Ranges: bytes承受X围Server: nginx服务器X-Cache经过了缓存服务器路由响应信息Date: Fri, 22 Oct 2010 12:09:42 GMT响应信息创建的时间Content-Type: image/gif内容类型图像Expires: Fri, 22 Oct 2010 12:10:19 GMT设置内容过期时间Last-Modified: Fri, 11 Jun 2010 00:50:48 GMT内容最后一次修改时间Powered-By-ChinaCache:PENDINGfromC-BJ-D-3BA ChinaCache的是一家领先的内容分发网络〔CDN〕在中国的服务提供商.Age: 34缓存有效34天Powered-By-ChinaCache: HIT from USA-SJ-1-3D3ChinaCache是一家领先的内容分发网络〔CDN〕在中国的服务提供商.Connection: keep-alive保持TCP连接图中最后一行puserve GIF 是对所传图像的信息的描述GIF是puserve公司开发的图像格式标准.二、DNS查询报文和回答报文1、 Wireshark所抓的DNS查询报文:展开DNS查询报文:报文分析:首部区域:标识符:Transaction ID: 0x4b48 16位比特数,标志该查询标志: Flags: 0x0100〔standard query〕0………. ….= Respone:Messsage is a query0表示为dns查询报文.000 0……. ….=opcode: standard query<0>操作码为标准查询.…..0. …. ….=Truncated:message is not truncated信息没有被截断.… ..1. …. ….=Recursion desired:Do queryrecursively 执行递归查询…. …. .0.. …..=z:reserved〔0〕…. …. …0 …..=Nontheticated data: unacceptable 问题数:Question:1 只查询一个主机名回答RR数:Answer RRS:0权威RR数:Authority RRS:0附加RR数:Additional RRS:0问题区域:Type A<Host address> class:IN<0x0001>包含最初请求的名字的资源记录权威〔资源记录的变量数〕:无附加信息:无2、Wireshark 对应的DNS回答报文:展开DNS回答报文:报文分析:首部区域:标识符:Transaction ID: 0x4b48 16位比特数,与对应的查询报文标识符一样标志: Flags: 0x8180〔standard query〕问题数:Question:1 表示只查询一个主机回答RR数:Answer RRS:5 表示该主机对应的有5条资源记录权威RR数:Authority RRS:0附加RR数:Additional RRS:0问题区域:Type A<Host address> class:IN<0x0001>最初请求的名字的资源记录回答〔资源记录的变量数〕:Answers 5条RR,即主机与ip的5条资源记录权威〔资源记录的变量数〕:无附加信息:无。
TCP:(TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP 是面向连接的所以只能用于点对点的通讯)源IP地址:发送包的IP地址;目的IP地址:接收包的IP地址;源端口:源系统上的连接的端口;目的端口:目的系统上的连接的端口。
TCP是因特网中的传输层协议,使用三次握手协议建立连接。
当主动方发出SYN连接请求后,等待对方回答SYN,ACK。
这种建立连接的方法可以防止产生错误的连接,TCP使用的流量控制协议是可变大小的滑动窗口协议。
第一次握手:建立连接时,客户端发送SYN包(SEQ=x)到服务器,并进入SYN_SEND状态,等待服务器确认。
第二次握手:服务器收到SYN包,必须确认客户的SYN(ACK=x+1),同时自己也送一个SYN包(SEQ=y),即SYN+ACK包,此时服务器进入SYN_RECV状态。
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ACK=y+1),此包发送完毕,客户端和服务器进入Established状态,完成三次握手。
第一行:帧Frame1指的是要发送的数据块;其中,捕获字节等于传输的字节数第二行:以太网,是数据链路层;源MAC地址是:00:19:c6:00:06:3d,目的MAC地址是:00:1c:25:d4:91:9a;第三行:IPV4,源IP地址:172.24.3.5;目的IP是:172.24.7.26;第四行:协议类型:TCP;源端口bctp(8999),目的端口:2376;序列号:每发送一个RTP数据包,序列号就加1;ACK是TCP数据包首部中的确认标志,对已接收到的TCP报文进行确认,其为 1表示确认号有效;长度是1448字节;第五行:数据总有1448字节;其中,对应的TCP首部的数据信息:端口号:数据传输的16位源端口号和16位目的端口号(用于寻找发端和收端应用进程);该数据包相对序列号是1(此序列号用来确定传送数据的正确位置,且序列号,用来侦测丢失的包);下一个数据包的序列号是1449;Acknowledgement number是32位确认序号,其等于1表示数据包收到,确认其有效;收到的数据包的头字节长度是4位32比特;Flags含6个标志比特:URG紧急指针(urgentpointer)有效ACK确认序号有效。
Wireshark抓包分析TCP.IP.UDP.ICMP报⽂格式(移动互联⽹⽅向)TCP 报⽂格式分析:TCP 报⽂段的报头有 10 个必需的字段和 1 个可选字段。
报头⾄少为 20 字节。
1)源端⼝(16位):标识发送报⽂的计算机端⼝或进程。
⼀个 TCP 报⽂段必须包括源端⼝号,使⽬的主机知道应该向何处发送确认报⽂。
2)⽬的端⼝(16位):标识接收报⽂的⽬的主机的端⼝或进程。
由抓包数据可得源端⼝号为12762,⽬的端⼝号为803)序号(也叫序列号)(32位):⽤于标识每个报⽂段,使⽬的主机可确认已收到指定报⽂段中的数据。
当源主机⽤于多个报⽂段发送⼀个报⽂时,即使这些报⽂到达⽬的主机的顺序不⼀样,序列号也可以使⽬的主机按顺序排列它们。
在建⽴连接时发送的第⼀个报⽂段中,双⽅都提供⼀个初始序列号。
TCP 标准推荐使⽤以 4ms 间隔递增 1 的计数器值作为这个初始序列号的值。
使⽤计数器可以防⽌连接关闭再重新连接时出现相同的序列号。
序列号表达达到2^32 - 1后⼜从0开始,当建⽴⼀个新的连接时,SYN标志为1,系列号将由主机随机选择⼀个顺序号由图可得现序列号为25e4d8a84)确认号(32位):⽬的主机返回确认号,使源主机知道某个或⼏个报⽂段已被接收。
如果 ACK 控制位被设置为 1,则该字段有效。
确认号等于顺序接收到的最后⼀个报⽂段的序号加 1,这也是⽬的主机希望下次接收的报⽂段的序号值。
返回确认号后,计算机认为已接收到⼩于该确认号的所有数据。
由图可得现确认号为59eafa0c5)数据偏移(⾸部长度)(4位)TCP 报⽂段的数据起始处距离 TCP 报⽂段的起始处有多远,即⾸部长度。
由于 TCP 报头的长度随 TCP 选项字段内容的不同⽽变化,因此报头中包含⼀个指定报头字段的字段。
该字段以 32 ⽐特为单位,所以报头长度⼀定是 32 ⽐特的整数倍,有时需要在报头末尾补 0 。
由抓包图有偏移量在0x50中,占4bit,0x50转化为⼆进制数0101 0000 所以偏移量是 0101=5,所以TCP报⽂⾸部长度为5* 4 = 20字节。
计算机网络Wireshark抓包分析报告目录1. 使用wireshark获取完整的UDP报文 (3)2. 使用wireshark抓取TCP报文 (3)2.1 建立TCP连接的三次握手 (3)2.1.1 TCP请求报文的抓取 (4)2.1.2 TCP连接允许报文的抓取 (5)2.1.3 客户机确认连接报文的抓取 (6)2.2 使用TCP连接传送数据 (6)2.3 关闭TCP连接 (7)3. 实验心得及总结 (8)1. 使用wireshark获取完整的UDP报文打开wireshark,设置监听网卡后,使用google chrome 浏览器访问我腾讯微博的首页/welcomeback.php?lv=1#!/list/qqfriends/5/?pgv_ref=im.perinfo.pe rinfo.icon?ptlang=2052&pgv_ref=im.perinfo.perinfo.icon,抓得的UDP报文如图1所示。
图1 UDP报文分析以上的报文内容,UDP作为一种面向无连接服务的运输协议,其报文格式相当简单。
第一行中,Source port:64318是源端口号。
第二行中,Destination port:53是目的端口号。
第三行中,Length:34表示UDP报文段的长度为34字节。
第四行中,Checksum之后的数表示检验和。
这里0x表示计算机中16进制数的开始符,其后的4f0e表示16进制表示的检验和,把它们换成二进制表示为:0100 1111 0000 1110.从wireshark的抓包数据看出,我抓到的UDP协议多数被应用层的DNS协议应用。
当一台主机中的DNS应用程序想要进行一次查询时,它构成了一个DNS 查询报文并将其交给UDP。
UDP无须执行任何实体握手过程,主机端的UDP为此报文添加首部字段,并将其发出。
2. 使用wireshark抓取TCP报文2.1 建立TCP连接的三次握手建立TCP连接需要经历三次握手,以保证数据的可靠传输,同样访问我的腾讯微博主页,使用wireshark抓取的TCP报文,可以得到如图2所示的客户机和服务器的三次握手的过程。
Wireshark抓包分析实验若惜年一、实验目的:1.学习安装使用wireshark软件,能在电脑上抓包。
2.对抓出包进行分析,分析得到的报文,并与学习到的知识相互印证。
二、实验内容:使用抓包软件抓取HTTP协议通信的网络数据和DNS通信的网络数据,分析对应的HTTP、TCP、IP协议和DNS、UDP、IP协议。
三、实验正文:IP报文分析:从图中可以看出:IP报文版本号为:IPV4首部长度为:20 bytes数据包长度为:40标识符:0xd74b标志:0x02比特偏移:0寿命:48上层协议:TCP首部校验和:0x5c12源IP地址为:目的IP为:从图中可以看出:源端口号:1891目的端口号:8000udp报文长度为:28检验和:0x58d7数据长度:20 bytesUDP协议是一种无需建立连接的协议,它的报文格式很简单。
当主机中的DNS 应用程序想要惊醒一次查询时,它构造一个DNS查询报文段并把它给UDP,不需要UDP之间握手,UDP为报文加上首部字段,将报文段交给网络层。
第一次握手:从图中看出:源端口号:56770目的端口号:80序列号为:0首部长为: 32 bytesSYN为1表示建立连接成功当fin为1时表示删除连接。
第二次握手:从图中看出:源端口号是:80目的端口号为:56770序列号为:0ack为:1Acknowledgement为1表示包含确认的报文Syn为1表示建立连接。
第三次握手:从图中看出:源端口:56770目的端口:80序列号为:1ACK为:1首部长为:20bytesAcknowledgement为1表示包含确认的报文所以,看出来这是TCP连接成功了Tcp是因特网运输层的面向连接的可靠的运输协议,在一个应用进程可以开始向另一个应用进程发送数据前,这两个进程必须先握手,即它们必须相互发送预备文段,建立确保传输的参数。
发送报文:GET/HTTP/:是请求一个页面文件HOST:是请求的主机名Connection:持续连接Accept: 收到的文件User-Agent : 浏览器的类型Accept-encoding: gzip ,deflate ,sdch限制回应中可以接受的内容编码值,指示附加内容的解码方式为gzip ,deflate ,sdch 。
wireshark抓包分析Wireshark抓包分析是一种网络安全技术,通过对网络数据包的捕捉和分析,可以深入了解网络通信过程中所传输的数据内容和各层协议的运行情况。
本文将从Wireshark抓包的基本原理、抓包的过程、常见应用场景以及分析方法等方面进行详细介绍。
首先,我们来了解一下Wireshark抓包的基本原理。
Wireshark是一款开放源代码的网络协议分析工具,可以在不同的操作系统上运行。
它使用网络接口(如网卡)来捕捉通过该接口的数据包,并对数据包进行解析和展示。
通过Wireshark的捕包功能,我们可以观察和分析网络通信过程中发送和接收的数据包,从而深入了解网络的运行情况和数据内容。
要进行Wireshark抓包,首先需要安装Wireshark软件,并打开它的图形界面。
在Wireshark的主界面上,我们可以选择要进行抓包的接口,如以太网、无线网卡等。
选择好接口后,点击开始按钮即可开始抓包。
在抓包过程中,Wireshark会实时捕捉到通过选择的接口发送和接收的数据包,并以列表的形式展示出来。
Wireshark抓包可以应用于各种网络场景中,例如网络故障排查、网络性能优化、网络安全分析等。
在网络故障排查方面,我们可以通过抓包分析来确定网络中出现的故障原因,找出导致网络延迟、丢包或连接中断的根源。
在网络性能优化方面,我们可以通过抓包分析来评估网络的带宽使用情况,找出网络瓶颈所在,并采取相应的措施来提高网络性能。
在网络安全分析方面,我们可以通过抓包分析来检测和识别网络中的恶意流量和攻击行为,以及监测网络中的异常行为和数据泄露等情况。
对于Wireshark抓包的分析方法,首先我们可以从数据包的基本信息入手,了解到达和离开主机的数据包的源地址和目的地址。
通过IP地址和端口号的对应关系,我们可以知道数据包的发送者和接收者,以及它们之间建立的连接。
其次,我们可以进一步分析数据包的内容,了解TCP、UDP、HTTP等各个层次的协议头的具体内容和传输过程。
TCP/IP 实验报告实验2 用Wireshark进行UDP协议分析学院计算机学院专业网络工程班级1班姓名刘小芳学号410090401272012. 52.1实验性质本实验为操作分析性实验。
2.2 实验目的1. 掌握Wireshark软件的基本使用方法。
2. 掌握基本的网络协议分析方法。
3. 使用Wireshark抓包工具,分析UDP数据报的格式。
4. 加深理解UDP协议的原理及其工作过程。
1.3 实验环境1. 硬件环境:PC机1台。
2. 网络环境:PC机接入LAN或Internet。
物理地址:00-E0-4C-00-16-78Ip地址:192.168.0.1313. 软件环境:Windows操作系统和Wireshark软件。
1.4 实验学时2学时(90分钟)。
1.5 实验内容与要求1.5.1 启动Wireshark协议分析工具1.5.2 抓取UDP数据包1.5.3分析UDP报文answer the question.1. Select one packet. From this packet, determine how many fields there are in the UDP header. (Do not look in the textbook! Answer these questions directly from what you observe in the packet trace.) Name these fields.2. From the packet content field, determine the length (in bytes) of each of the UDP header fields.3. The value in the Length field is the length of what? Verify your claim with your captured UDP packet.4. What is the maximum number of bytes that can be included in a UDP payload?5. What is the largest possible source port number?6. What is the protocol number for UDP? Give your answer in both hexadecimal and decimal notation. (To answer this question, you’ll need to look into the IP header.)7. Search “UDP” in Google and determine the fields over which the UDP checksum is calculated.8. Examine a pair of UDP packets in which the first packet is sent by your host and the second packet is a reply to the first packet. Describe the relationship between the port numbers in the two packets.Extra Credit1. Capture a small UDP packet. Manually verify the checksum in this packet. Show all work and explain all steps11.6 实验总结[ 通过对IP报文的分析,总结IP协议的工作原理。
实验使用Wireshark分析UDP实验六使用W i r e s h a r k分析U D P 一、实验目的比较TCP和UDP协议的不同二、实验环境与因特网连接的计算机,操作系统为Windows,安装有Wireshark、IE等软件。
三、实验步骤1、打开两次TCP流的有关跟踪记录,保存在中,并打开两次UDP流中的有关跟踪文件。
如图所示:图1:TCP 流跟踪记录图2:UDP流跟踪记录2、分析此数据包:(1)TCP传输的正常数据:文件的分组1到13中显示了TCP连接。
这个流中的大部分信息与前面的实验相同。
我们在分组1到分组3中看到了打开连接的三次握手。
分组10到分组13显示的则是连接的终止。
我们看到分组10既是一个带有FIN标志的请求终止连接的分组,又是一个最后1080个字节的(序号是3921—5000)的重传。
TCP将应用程序写入合并到一个字节流中。
它并不会尝试维持原有应用程序写人的边界值。
我们注意到TCP并不会在单个分组中传送1000字节的应用程序写入。
前1000个字节会在分组4种被发送,而分组5则包含了1460个字节的数据-----一些来自第二个缓冲区,而另一些来自第三个缓冲区。
分组7中含有1460个字节而分组8中则包含剩余的1080个字节。
(5000-0=1080)我们注意到实际报告上的秒是从初始化连接的分组1开始到关闭连接的分组10结束。
分组11—13未必要计入接收端应用程序的时间内,因为一旦接收到第一个FIN,TCP层便马上发送一个关闭连接的信号。
分组11—13只可能由每台计算机操作系统得TCP层后台传输。
如果我们注意到第一个包含数据的分组4和最后一个分组8之间的时间,我们就大约计算出和由UDP接收端所报告的秒相同的时间。
这样的话,增加TCP传输时间的主要原因就是分组10中的重传。
公平的说,UDP是幸运的,因为它所有的分组都在第一时间被接受了。
在这个跟踪文件中,另一个值得注意的是没有包含数据的分组的数量。
Wireshark网络抓包与分析手册第一章:引言Wireshark是一款强大的网络抓包工具,它可以帮助网络管理员和分析师深入了解和分析网络流量。
本手册将详细介绍Wireshark 的基本原理、使用方法和常见功能,以帮助初学者快速上手,并为专业用户提供一些进阶技巧。
第二章:Wireshark的安装与配置2.1 下载与安装Wireshark2.2 设置抓包接口2.3 配置抓包过滤器2.4 配置显示过滤器第三章:Wireshark工作流程与基本原理3.1 抓包原理与流程3.2 数据包分析3.3 报文解析第四章:抓包与分析常用技巧4.1 抓包与保存4.2 实时捕获与停止捕获4.3 导入与导出数据4.4 分组展示与隐藏4.5 过滤与搜索数据包4.6 统计与图形分析第五章:网络协议分析与故障排查5.1 TCP/IP协议分析5.2 HTTP协议分析5.3 DNS协议分析5.4 ICMP协议分析5.5 ARP协议分析5.6 VLAN与VLAN跳跃5.7 网络故障排查技巧第六章:流量分析与安全性检测6.1 流量分析方法与技巧6.2 检测网络攻击6.3 检测网络异常流量6.4 识别网络安全漏洞6.5 防御与应对策略第七章:Wireshark高级功能与扩展7.1 使用过滤器与表达式7.2 自定义显示列与颜色7.3 自定义协议解析器7.4 使用统计插件与扩展7.5 自动化与脚本扩展第八章:案例分析与实战应用8.1 企业内部网络问题排查8.2 网络性能优化分析8.3 网络流量监测与分析8.4 恶意软件分析与检测8.5 无线网络抓包与分析第九章:附录9.1 Wireshark常用命令与快捷键9.2 Wireshark配置文件说明9.3 Wireshark故障排除与常见问题解决通过本手册的学习,读者将能够掌握Wireshark的使用技巧,能够熟练进行网络抓包和数据包分析。
同时,读者还将学会如何利用Wireshark进行网络故障排查、安全性检测和流量分析等专业应用。
Wireshark抓包分析TCP协议之前一直听别人说Wireshark这个抓包软件,Leelom也跟我提过说面试的时候会问这些东西。
今天呢,参考别人的博文,结合抓包,将TCP/IP协议进行一些浅显的分析。
1. HTTP协议基本特征更加具体的说明需要重新写一篇博客来看。
参考基础认知TCP(Transmission Control Protocol,传输控制协议)是面向连接的、可靠的、基于字节流的在传输层上的通信协议。
这里想一下UDP,是无连接的、不可靠的(所以就像之前提到的一样,无连接的快节省时间,不用连接建立的时间)。
TCP/IP の 4层模型数据包封装情况TCP/IP分层结构跟OSI(Open System Interconnection)分7层不同。
如上面的图中,TCP/IP 协议下分为4层:应用层、传输层、网络层、数据链路层。
•应用层:向用户提供常用的应用程序。
比如电子邮件、文件传输、远程登录等。
TELNET 会话提供了基于字符的虚拟终端,FTP使用 FTP协议来提供网络内机器间的文件拷贝功能。
•传输层:传输层提供两台主机之间端到端的通信。
所谓的TCP/UDP协议就是跑在这一层。
•网络层:处理分组在网络中的活动。
可以理解为IP路由这些。
•链路层:链路层负责处理下层物理层的物理接口细节。
主要目的有: \ 1. 为上层IP模块接收和发送IP数据报 \ 2. 为ARP模块发送请求和完成接收 \ 3.为RARP模块。
层级功能图封装封装这个事情就好像寄快递一样。
之前上计网课那个张洪涛就是这么举例子的。
报文封装注意上图中的 appl 首部是说 application 层首部的意思。
按照上图一层层封装,直到经过以太网封装之后,就要通过网线或者其他的传输介质将此封装好的报文发送到另一端去。
另一端收到之后再一层层的把封装头剥离,最终拿到用户数据。
这里我们要明白一点就是上层对下层不负责,下层对上层隐身。
TCP/IP这里可以做这样的一个理解,就是TCP/IP协议是说二者协同一起工作。
Wireshark数据抓包分析之传输层协议(TCP协议)实验步骤⼀根据实验环境,本实验的步骤如下:1.在测试环境使⽤发包⼯具和Wireshark抓取TCP三次握⼿和四次断开的数据包。
2.详细分析TCP协议的三次握⼿以及四次断开。
任务描述:安装发包⼯具,并配置TCP客户端,服务端,与Wireshark配合使⽤此⼯具与分析UDP协议时相同,实验室环境中已经安装,在此再重复⼀遍,我们使⽤" TCP&UDP测试⼯具"来制作和发送TCP数据包。
双击测试者机器桌⾯的" TCP&UDP测试⼯具",会出现下图显⽰页⾯:下⾯我们需要配置TCP的服务端以及客户端。
1.配置服务器端选择10.1.1.33的机器,双击桌⾯的" TCP&UDP测试⼯具",右键点击服务器模式,在下拉列表中,选择创建服务器,如下图:选择"创建服务器"之后,会弹出服务器端⼝设置,本次使⽤默认⼯具给的6000端⼝即可,点击"确定"按钮。
点击"确定"按钮之后,在左侧的服务器模式列表中,会出现创建的列表,选择我们创建的服务器,右键点击,选择"启动服务器",即完成了服务器端的配置2.配置客户端选择10.1.1.142的机器,双击桌⾯的" TCP&UDP测试⼯具",右键点击客户端模式,在下拉列表中,选择"创建连接",如下图:在弹出的窗⼝中,选择TCP协议,服务器IP为10.1.1.33.端⼝6000,本机随意IP,如下图点击创建后,如下图,3.获取TCP数据包获取的TCP协议的数据包。
分为两部分,即TCP三次握⼿,四次断开的数据。
但在实际的操作中,可能遇到的情况较多,⽐如源IP和⽬的IP⽐较多,协议的帧号乱序等各种问题。
在此,我们教⼤家简单的过滤功能,着⾊功能⽅便过滤和查看。
1.引上次我们说了IPS测试,对大家来说,基本没什么给予,不过提到个WireShark抓包软件,这个软件与软件背后的知识模块倒是很值得学习的,想当初测试IPS所用的数据包都是应用这个软件来抓的(保存格式为.pcap,供Tomahawk做发包)。
用WireShark抓包一是方便,因为它在Windows平台上,图形界面,易操作,二是其强大的过滤器决定了这个抓包器的地位(关于过滤器的使用,可参见其软件的Help->Manual Pages->WireShark Filter帮助),三是该软件对所抓的包有十分详细的解释,很适合学习,特别是对网络协议的熟悉与掌握。
2.WireShark简单操作打开WireShark,点击Caputre->Option…选择进入抓包设置窗口(图2-1)。
图2-1从这个窗口中我们可以对我们的抓包环境,策略,显示项做一个整体的设置。
首先是对抓包环境与策略的设置,如图2-2:图2-2“Interface”就是选择再哪一个网卡上进行抓包。
“Link-layer header type”就是对网络环境的掌控,即数据链路层的头部形态,一般选择以太网(Ethernet)。
“Buffer Size”当然就是缓冲区大小了(不好意思,这个具体作用不明,望达人指点)。
“Caputre packets in promiscuous mode”当然就是开启网卡的混杂模式,使得软件对网络上经过该网卡的包都捕获下来。
“Limit packet to”就是限制抓包的大小。
“Capture Filter”就是过滤器,用于对抓包的类型进行控制。
点击,可以选择已有的过滤器。
其次,“Stop Capture…”栏,就是可以设置抓包的停止条件,分别可以从抓包数,抓包的总大小,抓包时间进行设置。
再次,“Display Options”设置显示选项,其下三点内容包括抓包实施更新显示,自动滚屏,隐藏捕捉信息对话框。
Wireshark
抓包分析
CONTENTS 5 TCP协议抓包分析
5.1 TCP协议格式及特点
5.2 实例分析
6 UDP协议的抓包分析
6.1 UDP报文格式及特点
6.2 流媒体播放时传输层报文分析
5 TCP协议抓包分析
5.1 TCP协议的格式及特点
图1 TCP协议报头格式
源端口:数据发起者的端口号;目的端口:数据接收方的端口号;32bit 序列号,标识当前数据段的唯一性;32bit的确认号,接收数据方返回给发送方的通知;TCP头部长度为20字节,若TCP头部的Options选项启用,则会增加首部长度,因此TCP是首部变长的传输层协议;Reserved、Reserved、Nonce、CWR、ECN-Echo:共6bit,保留待用。
URG:1bit紧急指针位,取值1代表这个数据是紧急数据需加速传递,取值0代表这是普通数据;
ACK:1bit确认位,取值1代表这是一个确认的TCP包,取值0则不是确认包;PSH:1bit紧急位,取值1代表要求发送方马上发送该分段,而接收方尽快的将报文交给应用层,不做队列处理。
取值0阿迪表这是普通数据;
RST:1bit重置位,当TCP收到一个不属于该主机的任何一个连接的数据,则向对方发一个复位包,此时该位取值为1,若取值为0代表这个数据包是传给自己的;
SYN:1bit请求位,取值1代表这是一个TCP三次握手的建立连接的包,取值为0就代表是其他包;
FIN:1bit完成位,取值1代表这是一个TCP断开连接的包,取值为0就代表是其他包;
Window Size:16bit窗口大小,表示准备收到的每个TCP数据的大小;Checksum:16bit的TCP头部校验,计算TCP头部,从而证明数据的有效性;Urgent Pointer:16bit紧急数据点,当功能bit中的URG取值为1时有效;Options:TCP的头部最小20个字节。
如果这里有设置其他参数,会导致头部增大;
Padding:当TCP头部小于20字节时会出现,不定长的空白填充字段,填充内容都是0,但是填充长度一定会是32的倍数;
Data:被TCP封装进去的数据,包含应用层协议头部和用户发出的数据。
5.2 请求网页文件时传输层报文分析
下面结合具体的Wireshark的抓包分析TCP报文的特点。
如图2所示。
图2 TCP协议中请求建立连接
首先,注意到该报文的SYN字段为1,因此该报文为建立连接的报文。
窗口个数为8192。
Option字段中指明了最长字段长度为1460字节。
图3 服务器返回请求建立连接的确认
图3表示出了服务器向用户返回请求建立连接报文的确认字段,其中SYN为1,ACK为1。
传送的数据序列号为0。
窗口大小仍然为8192。
图3即为TCP协
议建立连接过程中的三次握手中的第二次握手。
图4 建立连接的“第三次握手”
上图中,图2、图3、图4代表了TCP协议建立连接时的三次握手。
同时,从图4中可以看出窗口长度是一个变量。
并且首部长度字段为20,没有option 字段。
图5 TCP关闭连接的过程
图6 TCP关闭连接时的第三次握手
图5,图6分别是TCP关闭连接时的三次握手。
图5中上半部分是用户发起结束TCP连接的请求报文,同时用户对收到的服务器数据做出响应,并返回服务器的请求内容。
图5中下半部分为服务器的结束连接部分,其余响应与用户相同。
图6中用户返回最终确认报文,结束连接。
6 UDP协议的抓包分析
6.1 UDP报文格式及特点
图7中给出了UDP报文格式。
可以看出,UDP是一种固定包头格式的协议,其头部共64bit,包含4个等长的部分,分别表示原端口号、目的端口号、UDP 报文段长度以及校验和。
图7 UDP协议格式
利用Wireshark抓取流媒体播放时的UDP报文协议如图8所示。
协议头部包含4部分,其中目的端口号为13777,源端口号为:13000,校验和为0x989e,整个协议长度为:43字节,从数据部分的长度为35字节也可以看出头部为8字节,刚好是16*4bits。
校验和后面[validation disaled]部分意思不明确。
图8 Wireshark UDP抓包结果
根据UDP首部固定长度的特点,其长度字段最大能表示65536字节,那么一个UDP协议最多能够包含的数据长度即为65528字节。
6.2 流媒体播放时传输层报文分析
图9为使用千千静听播放歌曲时Wireshark所抓数据包的UDP部分。
图9 “千千静听”Wireshark抓包结果
观察图10,不难发现一个奇怪现象,在前面几个UDP协议时本地IP地址是变动的。
同时SSDP以及不知名协议在传输层均是使用UDP协议。
SSDP协议具体内容如图10。
图10 SSDP协议
根据SSDP协议的具体内容,除了看出其应该是应用层协议以外,没有其他的额外信息。
但是值得注意的是,UDP长度字段指示为154字节,出去8字节的首部长度还应该有146字节的数据部分,说明HTP部分就是整个数据字段。
同时还有一个值得注意的现象,如图11所示。
图11 奇怪的现象
图11中奇怪之处已用红色椭圆标出。
首先上面的报文是接收报文,下面的报文是发送报文。
首先,就数据部分而言,上下报文只有一个字符的差异e和f,即1110和1111。
同时UDP协议中长度字段之差为8字节刚好为UDP首部长度。
不得不使人猜想,用户又将服务器发送来的数据加上头部打包发回给服务器。
但是UDP是无确认机制的服务,如果报文错误,将被直接丢弃不会返回错误的响应。
上图中的现象还有待进一步确认。
总结
通过抓包分析,加深了对TCP建立连接以及关闭连接时三次握手的认识。
但是TCP传输层协议的具体实现过程,由于抓的包太多没有能够具体分析,因此对课本的理解还有待加强。
关于UDP协议,其校验和后的[validation disabled]是否能够说明其快速的传输是建立在舍弃最大正确概率的基础上,这一点仍不是很清楚。
但是在TCP协议抓包时校验和后也出现了同样的字段,是否又说明是计算机设置的问题。