第7章聚合物的性质
- 格式:ppt
- 大小:7.02 MB
- 文档页数:144
常见聚合物的性质和应用聚合物,也叫高分子化合物,是一种由许多小分子组成的大分子化合物。
其分子量一般在10^5 ~ 10^7之间,其特点是收缩滞后现象,即形成聚合物的反应不可逆。
在自然界和人工中都能发现聚合物,如天然橡胶、木材、DNA、塑料等。
本文将介绍几种常见聚合物的性质和应用。
一、聚乙烯:聚乙烯是一种非常重要的塑料,其优点包括耐腐蚀、耐磨损、化学稳定性好、物理性能优良等。
同时,聚乙烯便宜、易加工,应用非常广泛。
例如,超市购物袋、水管、电线电缆、瓶盖、食品包装等均可使用聚乙烯。
聚乙烯分为低密度聚乙烯和高密度聚乙烯两大类,前者柔软而具有优异的抗冲击性;后者则更硬,但更为刚性。
二、聚氯乙烯:与聚乙烯不同,聚氯乙烯的物理性能要差一些。
但正因如此,它在工业领域中的用途更广泛,如水管、电缆、地板、墙纸、医疗用品、人造皮革等。
聚氯乙烯极易在空气中退火变质,故应在生产和使用时特别注意稳定性和防腐性。
三、聚苯乙烯:聚苯乙烯具有透明、易加工、低成本等优点。
它常被用于电器外壳、包装材料、餐具、玩具等。
但聚苯乙烯脆性较强,易破裂,故在使用时需注意相关的生产标准和质量认证。
四、聚酰胺:又称尼龙,是一种高性能工程塑料。
与上述几种塑料不同,聚酰胺具有优异的强度和硬度,同时也具有极好的耐久性和化学稳定性。
它被广泛应用于机械零部件、航空器件、汽车部件、塑料袋、绳索等方面,以满足高度要求的工艺和材料性能。
五、丙烯腈-丁二烯-苯乙烯共聚物:简称ABS。
ABS是一种广泛应用于日用品和工业制品的高性能工程塑料。
它是由丙烯腈、丁二烯和苯乙烯三种单体组成的共聚物,具有耐冲击性好、化学稳定性高、机械性能强等优点。
其应用领域广泛,如电器外壳、汽车内饰、家居用品、儿童玩具等。
综上所述,聚合物的应用非常广泛,与人们的生活息息相关。
随着科技的进步和创新,聚合物也会不断发展,创造更为优美、实用和高效的产品与工具。
因此,对于聚合物性质和应用的学习与探索,是我们不容忽视的一个重要领域。
7.3聚合物的力学性质聚合物作为材料使用时,对它性质的要求最重要的还是力学性质。
比如作为纤维要经得起拉力;作为塑料制品要经得起敲击;作为橡胶要富有弹性和耐磨损等等。
聚合物的力学性质,主要是研究其在受力作用下的形变,即应力-应变关系。
7.3.1应力-应变曲线7.3.1.1什么是应力和应变当材料在外力作用下,而材料不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变。
材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力。
材料受力方式不同,形变方式也不同。
常见的应力和应变有:(1)张应力、张应变和拉伸模量材料受简单拉伸时(图7-34),张应力:张应变(又称伸长率):拉伸模量(又称杨氏模量):(2)(剪)切应力、(剪)切应变和剪切模量应力方向平行于受力平面,如图7-35所示。
切应力切应变剪切模量还有一个材料常数称泊松(Poisson)比,定义为在拉伸试验中,材料横向单位宽度的减小与纵向单位长度的增加的比值(注:加负号是因为Δm为负值)可以证明没有体积变化时,υ=0.5,橡胶拉伸时就是这种情况。
其他材料拉伸时,υ<0.5.υ与E和G之间有如下关系式:因为0<υ≤0.5,所以2G<E≤3G。
也就是说E>G,即拉伸比剪切困难,这是因为在拉伸时高分子链要断键,需要较大的力;剪切时是层间错动,较容易实现。
7.3.1.2强度极限强度是材料抵抗外力破坏能力的量度,不同形式的破环力对应于不同意义的强度指标。
极限强度在实用中有重要意义。
(1)抗张强度在规定的试验温度、湿度和试验速度下,在标准试样(通常为哑铃形,见图7-36)上沿轴向施加载荷直至拉断为止。
抗张强度定义为断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。
抗张强度(2)冲击强度是衡量材料韧性的一种强度指标。
定义为试样受冲击载荷而折断时单位截面积所吸收的能量。
冲击强度式中:W为冲断试样所消耗的功;b为试样宽度;d为试样厚度。
聚合物的结构和性质聚合物是由许多单体分子连接而成的高分子化合物。
聚合物的结构相对复杂,包括链状、分支、交联以及网络结构。
这种复杂的结构赋予了聚合物独特的性质和用途。
1. 链状聚合物链状聚合物是由相同的单体分子连接而成的长链分子。
其分子链可以通过键键相连,形成线性链、弯曲链以及环状链等不同形态。
链状聚合物具有以下性质:(1) 高分子量:由于链状聚合物是由若干单体分子连接而成的,其分子量往往会非常大。
(2) 高分子稳定性:由于分子链往往是线性或弯曲的,相对稳定。
链状聚合物的热稳定性、化学稳定性等均较为优异。
(3) 高分子合成方便:链状聚合物的合成方法较为简单,容易掌握,重复性、扩展性较强。
2. 分支聚合物分支聚合物是由一个或几个核心结构上连接若干单体分子而形成的。
分支聚合物具有以下性质:(1) 分子体积大:由于分支结构紧密,空隙较小,其分子体积往往较大。
(2) 分子构造复杂:分支聚合物的结构通常是分子核心 + 分子支链,有些还包含有分子夹层等结构。
分支聚合物的结构复杂度相对较高。
(3) 物理性能特别:由于分支聚合物分子内部空间充足,分子间相互作用力较弱。
因此分支聚合物的物理性能常常非常特别,如超高分子材料等。
3. 交联聚合物交联聚合物是由可交联单体或可交联化合物单体所制备的高分子材料。
交联聚合物具有以下性质:(1) 耐火性和耐化学性较好:交联聚合物通常结构致密,交联度较高。
因此其耐火性和耐化学性均优异。
(2) 物理性质均匀:交联聚合物结构致密,分子间相互作用较强。
相当于是一个三维网状结构,物理性质较均匀。
(3) 生物相容性较差:交联聚合物一般具有化学反应性,因此在生物系统中应用较为有限。
4. 网络聚合物网络聚合物也称为化学凝胶,是由高分子单体经过交联反应在溶液或固态中形成的凝胶式高分子材料。
网络聚合物具有以下性质:(1) 密闭性极强:网络聚合物分子间交联后,形成一种网络结构,因此密闭性非常强。
(2) 可逆性预留时间较长:由于网络聚合物结构化学性质非常稳定,因此可逆性预留时间通常较长。
聚合物分子结构与性质分析聚合物是由单体分子经过聚合反应而成的高分子化合物。
聚合物有广泛的应用,例如塑料、纤维、胶、粘合剂等等。
而聚合物的性质则是由其分子结构所决定的。
因此,分析聚合物分子结构与性质的关系对于聚合物的应用与研究至关重要。
聚合物的分子结构可以通过不同的手段分析。
其中,聚合物的化学式和分子量可以通过质谱法测定。
质谱法是利用物质分子的不同质量/电荷比,分离和检测分子的方法。
对于聚合物,质谱法可以检测得到其分子量分布,进而推断出聚合度和分子结构。
此外,聚合物的分子结构还可以通过核磁共振(NMR)检测得到。
NMR技术可以通过不同的谱图,如1H NMR和13C NMR,揭示分子结构的细节信息,例如官能团分布、链结构等。
聚合物分子结构的分析可以帮助我们了解其性质的来源。
以聚乙烯(PE)为例,它由乙烯单体聚合而成,包含着大量的亚甲基(-CH2)官能团,分子结构可以表示为[-CH2-CH2-]n。
这种结构使PE具有一系列特性:热稳定性高、化学惰性、机械强度高、透明度高等。
此外,PE的晶体和无定形结构可以通过其分子结构来解释。
PE的分子链可以聚集成为长序列的无定形结构,也可以排列成具有高度规则结构的晶体。
这种分子结构的不同排列方式对PE具有显著的影响,例如影响其熔化温度和机械性能等。
除了分子结构,聚合物的性质还受到物理结构的影响。
常见的聚合物物理结构包括互穿聚合物、接枝聚合物、共聚物、共价键网络和非晶态有分散相等。
互穿聚合物是由两个或多个聚合物链相互穿插而成的高分子复合物。
互穿聚合物因其具有双重网络结构,因此表现出与单个聚合物不同的性质。
例如,互穿聚合物可以在高温和高压下表现出更高的热稳定性和机械强度。
接枝聚合物是一种特殊的聚合物体系,它的单个分子链上带有1-n个“侧枝”.接枝聚合物具有不同于线性聚合物的热特性、溶液动力学、链传递以及机械性能等表现。
共聚物是由两种或多种单体分子共同聚合。
共聚物的分子结构比单种聚合物更加复杂,因此具有更加多样的性质。
聚合物的结构与热力学性质聚合物是由大量分子通过共价键连接而成的高分子化合物。
聚合物的结构和热力学性质对于其在不同领域的应用具有重要的意义。
本文将从聚合物的分子结构和热力学性质两方面进行论述。
一、聚合物的分子结构聚合物的分子结构对于聚合物的物理和化学性质具有决定性的作用。
聚合物的分子结构可以通过不同的方式描述,例如分子量、形状、分子构型等。
1. 分子量分子量是衡量聚合物分子大小的主要指标,通常通过摩尔质量或相对分子质量来表示。
聚合物的分子量越大,通常意味着聚合物的物理性质更高,例如强度、韧性等。
2. 形状聚合物的形状可以通过它们的链结构来描述,主要有线性聚合物、支化聚合物和交联聚合物三种。
线性聚合物是具有简单线性链结构的聚合物,链上没有分支或截面。
线性聚合物具有较高的可塑性和高分子化学反应活性。
支化聚合物是指在聚合物主链上部分碳原子上连接有支链结构的聚合物。
支化的聚合物较线性聚合物具有更高的熔点和稠度,同时也更耐热。
交联聚合物是指具有三维网络结构的聚合物,它们可以在较小的应变下保持形状。
交联聚合物具有较高的强度和硬度。
3. 分子构型分子构型是指聚合物分子在空间中的三维排列方式。
聚合物的分子构型决定了它的物理性质。
例如,一些交联聚合物是由于大量立体交联原因才得以形成,这使得材料很难变形,很难拉伸,具有优良的耐久性能。
二、聚合物的热力学性质聚合物的热力学性质指的是聚合物在热力学方面所表现出的各种性质,包括聚合物的热稳定性、热膨胀系数、热导率、玻璃转移温度和熔点等。
1. 热稳定性聚合物的热稳定性是指聚合物在高温下不分解或少分解的能力。
聚合物的热稳定性取决于聚合物的分子结构和环境条件。
例如,分子量越大的聚合物或支化聚合物比线形聚合物具有更高的热稳定性,因为它们具有更多的分支和交联。
2. 热膨胀系数热膨胀系数是指物体在温度变化过程中的体积膨胀量与初始体积的比值。
聚合物的热膨胀系数取决于聚合物的分子结构和温度。
聚合物名词解释聚合物是指由相同或不同的单体分子反复重复聚合形成的大分子化合物。
它们由许多小分子单元组成所以也被称为高分子化合物。
由于其材料性质优异、加工性能良好,被广泛应用于各个领域。
本文将对聚合物的几个重要概念进行阐述。
一、聚合物结构聚合物主要由单体分子反复连接而成,在聚合过程中两个单体分子之间的化学键不断形成,这种化学键可以是共价键、离子键或氢键。
聚合物的基本结构单位被称为重复单元或聚合体,这是聚合过程中反复出现的连接单元。
聚合体的种类和组成的单体不同,聚合物的基本结构也不同。
例如,丙烯酸聚合物的聚合体是丙烯酸分子,聚乙烯的聚合体是乙烯分子,聚酰胺的聚合体是亚麻素单体等。
二、聚合物分类聚合物的分类可以根据聚合反应方式、单体种类、聚合度、空间结构和性质等多种方式。
1、聚合反应方式:根据聚合反应方式将聚合物可以分为自由基聚合物、阴离子聚合物、阳离子聚合物和离子轻转移聚合物等几种类型。
2、单体种类:根据单体种类将聚合物分为丙烯酸聚合物、聚乙烯醇聚合物、聚酯类聚合物、聚酰亚胺类聚合物等。
3、聚合度:聚合度是指聚合物中一个聚合体里的单体数目,可以通过数值或平均分子量来表达。
聚合度的高低决定了聚合物的物理性质,例如高聚合度的聚乙烯是固体,而低聚合度的聚乙烯是液体。
4、空间结构:聚合物可以分为线性聚合物、分支聚合物、交联聚合物和网络聚合物等。
三、聚合物的性质由于聚合物结构的复杂性,其性质也非常复杂,与聚合物的种类和组成密切相关。
下面列举一些主要的聚合物性质。
1、物理性质聚合物的物理性质包括电气性质、热学性质、光学性质等。
例如聚丙烯聚氯乙烯等聚合物具有良好的电气绝缘性能,聚苯乙烯具有良好的光学透明性,聚对苯二甲酸乙二醇酯聚酯则具有良好的热稳定性。
2、化学性质聚合物的一些化学性质包括结构稳定性、耐化学腐蚀性、耐氧化性、抗紫外线性能等。
例如聚氨酯表现出良好的化学和耐磨性能、耐氧化性,聚合物化的聚乙烯醇因为含有羟基而具有良好的亲水性。