最新2015年成都市中考数学试题及答案(word版)
- 格式:doc
- 大小:554.50 KB
- 文档页数:15
A BCDE FMC'D 'B'俯视图主(正)视图左视图成都市2006年高中阶段教育学校统一招生考试试卷(北师大版)A 卷(共100分)一、选择题:(每小题3分,共30分)1、2--的倒数是( )A 、2B 、12C 、12-D 、-22、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A 、3.84×410千米B 、3.84×510千米C 、3.84×610千米D 、38.4×410千米 3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个D 、8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅=C 、236(2)8x x-=- D 、2()x x x -÷=-5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360° 6 、已知代数式1312a xy-与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D BC=2,那么sin ∠ACD =( )A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小成员协助交通警察在某路口统计的某个时段来往汽车的车(单位:千米/小时)情况如图所示。
四川省成都市2019年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)B3.(3分)(2019•成都)正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为B6.(3分)(2019•成都)函数y=中,自变量x的取值范围是()7.(3分)(2019•成都)如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()8.(3分)(2019•成都)近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,2210.(3分)(2019•成都)在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形OAB的的面积是:二、填空题(本大题共4个小题,每小题4分,共16分,答案卸载答题卡上)11.(4分)(2019•成都)计算:|﹣|=.|=故答案为:12.(4分)(2019•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是64m.MN=13.(4分)(2019•成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)14.(4分)(2019•成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2019•成都)(1)计算:﹣4sin30°+(2019﹣π)0﹣22.(2)解不等式组:.×16.(6分)(2019•成都)如图,在一次数学课外实践活动,小文在点C处测得树的顶端A 的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75),17.(8分)(2019•成都)先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.•==a+b+1﹣=﹣1=218.(8分)(2019•成都)第十五届中国“西博会”将于2019年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.人中随机选取一人作为联络员,选到女生的概率为:;个,得到偶数的概率为:=,19.(10分)(2019•成都)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.﹣y=x+5y=y=即方程组得﹣k=y=x+5=x××20.(10分)(2019•成都)如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程),,BE=AF=EF=BE FG=DE==时,=,,,AE=一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.(4分)(2019•成都)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.×=52022.(4分)(2019•成都)已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1.>且23.(4分)(2019•成都)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是7,3,10.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=11.(用数值作答),L×﹣24.(4分)(2019•成都)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1.MD=,,MC=,故答案为:25.(4分)(2019•成都)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为(,).)y=x+﹣x+,,)解方程组或)代入得,解得x+﹣x+﹣﹣﹣,)代入得,解得﹣+3x++3=+3,××a=点坐标为(,故答案为(,)二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2019•成都)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.27.(10分)(2019•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)﹣所对的圆周角=则由,,=2••=2•AB= AP=,PD=HBG=.==28.(12分)(2019•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?t=AF+DF DFy=×b=x+y=3)((﹣,,即:y=x+k y=(=,即k=.k=)DN=3,DBA==数学试卷DFt=AF+DFx+﹣=2)2。
成都市二O 一三年高中阶段教育学校统一招生考试数 学(本试卷满分150分,考试时间120分钟)A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21- 2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市2013年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )1.3×510 (B )13×410 (C )0.13×510 (D )0.13×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( )(A )1 (B )2 (C )3 (D )48.在平面直角坐标系中,下列函数的图像经过原点的是( ) (A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x 9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( ) (A )40°(B )50° (C )80° (D )100°第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中横线上)11.不等式312>-x 的解集为_______________. 12.2013年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米.三.解答题(本大题共6小题,共54分. 解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转后的△''C AB(2)求线段AC 在旋转过程中所扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生依次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 于点Q ; i )当点P 与A ,B 两点不重合时,求DPPQ的值;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分,请把答案填在题中横线上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位上均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x +=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当3k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,¼»=AB BC ,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.现探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos 75==o o ,cos15sin 75==o o ) 二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米/秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37t <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 点总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接于⊙O ,AC BD ⊥于点H ,P 为CA 延长线上一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A DB ∠=,33PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ii )取BC 的中点N ,连接,NP BQ .试探究PQNP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.本题考查图形的旋转以及扇形的面积计算,难度较小. 解:(1)如图,''AB C ∆为所求三角形.(4分)(2) 由图可知AC=2,∴线段AC 在旋转过程中所扫过的扇形面积为2902.360S ππ⨯== (8分)18.本题考查频数及频率的意义和计算以及用列表或用树状图计算某一事件发生的概率,难度中等.解:(1)4; 0.7 (每空2分) (4分) (2)由(1)知获得A 等级的学生共有4人,则另外两名学生为3A 和4.A 画如下树状图:所有可能出现的结果是:1213142123(,),(,),(,),(,),(,),A A A A A A A A A A 2431323441(,),(,),(,),(,),(,),A A A A A A A A A A4243(,),(,).A A A A (7分)或列表如下:(7分) 由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到12,A A 两名学生=21126=. (8分)19.本题考查用待定系数法求反比例函数的解析式,以及一次函数和反比例函数的图象和性质,难度中等. 解:(1)一次函数11y x =+的图象经过点(m,2),∴2=m+1. (1分)解得m=1. (2分)∴点A 的坐标为(1,2). (3分)反比例函数2ky x=的图象经过点A (1,2), ∴2=1k . 解得2k =. ∴反比例函数的表达式为22y x=. (5分) (2)由图象,得当0<x<1时,12y y <; (7分) 当1x =时,12y y =; (8分) 当1x >时,12y y >. (10分) 20.本题是几何综合题,考查全等三角形、相似三角形的判定和性质、动点问题等,难度较大. 解:(1)证明:BD ⊥BE ,A ,B ,C 三点共线,90.ABD CBE ∴∠+∠=90,90..C CBE E ABD E ∠=∴∠+∠=∴∠=∠又,,().A C AD BC DAB BCE AAS ∠=∠=∴∆≅∆ (2分)..AB CE AC AB BC AD CE ∴=∴=+=+ (3分)(2)①连接DQ ,设BD 与PQ 交于点F.90,,DPF QBF DFP QFB ∠=∠=∠=∠.DFP QFB ∴∆∆ (4分).DF PFQF BF∴= 又,.DFQ PFB DFQ PFB ∠=∠∴∆∆ (5分).DQP DBA ∴∠=∠,tan tan .DQP DBA ∴∠=∠ (6分)即在Rt DPQ ∆和Rt DAB ∆中,.DP DAPQ AB= 33,5,.5DP AD AB CE PQ ===∴= (7分)②线段DQ .21.31-22.11723.0或1 24.③④25+c ,c - 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t ,26.本题考查一次函数及二次函数的应用,难度中等.解:(1)当37t <≤时,设v kt b =+,把(3,2),(7,10)代入得23,107.k b k b =+⎧⎨=+⎩(1分) 解得2,4.k b =⎧⎨=-⎩ (2分)2 4.v t ∴=- (3分) (2)当03t ≤≤时,2s t =. 当37t <≤时,2123[2(24)](3)49.2s t t t t =⨯++--=-+ (6分)∴总路程为2747930-⨯+=,且73021 6.10⨯=>令21s =,得24921.t t -+=解得126,2t t ==-(舍去).∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒. (8分)27.本题是一道几何综合题,考查圆的切线的判定,四边形面积的计算等,难度中等,涉及锐角三角函数的应用,勾股定理,相似三角形的判定和性质等.(1) PD 与O e 相切,理由如下: (1分) 过点D 作直径DE ,连接AE ,则90.DAE ∠=o90.AED ADE ∴∠+∠=o,,ABD AED PDA ABD ∠=∠∠=∠Q.PDA AED ∴∠=∠ (2分)90.PDA ADE ∴∠+∠=o ∴PD 与O e 相切. (3分)(2)连接BE .设3.AH k =3tan ,,4ADB PA AH AC BD ∠==⊥Q 于点H.4,5,3),DH k AD k PA k ∴===.P H P A A H k=+=tan 30,8.DH P P PD k PH ∴==∴∠==o (4分) ,90.BD AC P PDB ⊥∴∠+∠=o Q ,90.PD DE PDB BDE ⊥∴∠+∠=o Q30.BDE P ∴∠=∠=o∵DE 为直径,90,250.DBE DE r ∴∠===o(5分)cos 50cos30BD DE BDE ∴=⋅∠==o (6分)(3)连接CE .DE 为直径,90.DCE ∴∠=4sin sin 5040.5CD DE CED DE CAD ∴=⋅∠=⋅∠=⨯= (7分),,PDA ABD ACD P P ∠=∠=∠∠=∠..PD DA PAPDA PCD PC CD PD∴∆∆∴==8540k k PC ∴==解得64, 3.PC k == (8分)2643)643)7AC PC PA k ∴=-=-=-=+ (9分) ∴四边形ABCD 的面积1122ABD CBD S S S BD AH BD CH ∆∆=+=⋅+⋅11(722BD AC =⋅=⨯+900=+(10分) 28.本题是代数、几何综合压轴题,难度较大,主要考查了学生的阅读理解能力、分类讨论能力、逻辑推理能力等.解:(1)因为抛物线过A 、B 两点,且A 点坐标为(0,-1),B 点坐标为(4,-1),21,1144.2c b c -=⎧⎪∴⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为212 1.2y x x =-+- (3分)(2) ①点A 的坐标为(0,-1),点C 的坐标为(4,3),∴直线AC 的解析式为 1.y x =-设平移前的抛物线的顶点为0P ,则由(1)可得0P 的坐标为(2,1)且0P 在直线AC 上.点P 在直线AC 上滑动,∴可设P 的坐标为(,1)m m -,则平移后的抛物线的函数表达式为21()(1).2y x m m =--+-解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=---+-⎪⎩ 得1212,2,1, 3.x m x m y m y m ==-⎧⎧⎨⎨=-=-⎩⎩ 即点(,1),(2,3).P m m Q m m ---过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴, 则(2)2,(1)(3) 2.PE m m QE m m =--==---=0.PQ AP ∴== (5分)若MPQ ∆为等腰直角三角形,则可分以下两种情况:(i )当PQ 为直角边时,M 到PQ的距离为PQ 的长). 由0(0,1),(4,1),(2,1)A B P --可知,0ABP ∆为等腰直角三角形,且00,BP AC BP ⊥=∴过点B 做直线1l ∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线1l 的解析式为1.y x b =+又点B 的坐标为(4,-1),114,b ∴-=+解得1 5.b =- ∴直线1l 的解析式为 5.y x =-解方程组25,121,2y x y x x =-⎧⎪⎨=-+-⎪⎩得12124,2,1,7.x x y y ==-⎧⎧⎨⎨=-=-⎩⎩ 12(4,1),(2,7).M M --- (7分)(ii )当PQ 为斜边时,2,MP MQ ==可求得M 到PQ. 取AB 的中点F ,则点F 的坐标为(2,-1).由0(0,1),(2,1),(2,1)A F P --可知,0AFP ∆为等腰直角三角形,且F 到AC 的距离.∴过点F 作直线2l ∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线2l 的解析式为2.y x b =+又点F 的坐标为(2,-1),212,b ∴-=+解得2 3.b =- ∴直线2l 的解析式为 3.y x =-解方程组23,121,2y x y x x =-⎧⎪⎨=-+-⎪⎩12121122x x y y ⎧⎧==⎪⎪⎨⎨=-+=--⎪⎪⎩⎩34(12(12M M ∴-- (9分) 综上所述,所有符合条件的点M 的坐标为1234(4,1),(2,7),(12(12M M M M ---+-+---②PQNP BQ+存在最大值,理由如下:由①知PQ =NP BQ +取最小值时,PQNP BQ+有最大值.取点B 关于AC 的对称点'B ,则点'B 的坐标为(0,3),'BQ B Q =.连接',,,QF FN QB 易得FN ∥PQ 且FN = .PQ∴四边形PQFN 为平行四边形. .NP FQ ∴=''NP BQ FQ BQ FB ∴+=+≥==当'B ,Q ,F 三点共线时,NP BQ +最小,最小值为∴PQNP BQ += (12分)。
成都市二O 一四年高中阶段教育学校统一招生考试数 学A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.在-2,-1、0、2这四个数中,最大的数是( )(A)-2 (B)-1 (C)0 (D)2 2.下列几何体的主视图是三角形的是( )(A) (B) (C) (D)3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达290亿元,用科学计数法表示290亿元应为( ) (A )290×810 (B )290×910 (C )2.90×1010 (D )2.90×1110 4.下列计算正确的是( )(A )32x x x =+ (B )x x x 532=+ (C )532)(x x = (D )236x x x =÷ 5.下列图形中,不是..轴对称图形的是( )(A) (B) (C) (D) 6.函数5-=x y 中自变量x 的取值范围是( )(A )5-≥x (B )5-≤x (C )5≥x (D )5≤x7.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )(A )60° (B )50° (C )40° (D )30°8.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( )(A )70分,80分 (B )80分,80分 (C )90分,80分 (D )80分,90分9.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为( ) (A )4)1(2++=x y (B )2)1(2++=x y (C )4)1(2+-=x y (D )2)1(2+-=x y10.在圆心角为120°的扇形AOB 中,半径OA =6cm ,则扇形AOB 的面积是( ) (A )π62cm (B )π82cm (C )π122cm (D )π242cm第Ⅱ卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:=-2_______________.12.如图,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别去OA 、OB 的中点M ,N ,测的MN=32 m ,则A ,B 两点间的距离是_____________m.13.在平面直角坐标系中,已知一次函数12+=x y 的图像经过),(11y x P x ,),(222y x P 两点,若21x x <,则1y ________2y .(填”>”,”<”或”=”) 14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O于点D ,连接AD ,若∠A =25°,则∠C =__________度.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(本小题满分12分,每题6分) (1)计算202)2014(30sin 49--+-π .(2)解不等式组⎩⎨⎧+<+>-②① . , 7)2(2513x x x16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20m ,求树的高度AB .(参考数据:60.037sin ≈ ,80.037cos ≈ ,75.037tan ≈ )17.(本小题满分8分)先化简,再求值:221ba b b a a -÷⎪⎭⎫⎝⎛--,其中13+=a ,13-=b .18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5+=kx y (k 为常数,且0≠k )的图像与反比例函数xy 8-=的图像交于()b A ,2-,B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移)0(>m m 个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.20.(本小题满分10分)如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由; (2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据。
2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.62.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )4.下列运算正确的是( )A.21211-=⎪⎭⎫⎝⎛- B.60000001067=⨯ C.()2222aa= D.523aaa=⋅5.图2中的三视图所对应的几何体是( )A B图1—1 图1—3图1—2DC6.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是..点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图4,则表示8的点落在( )A.段①B.段 ②C.段③D.段④8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y 与x 的函数图像大致是( )图4图3图511.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,下列做法正确的是( )A.要消去y ,可以将25⨯+⨯②①B.要消去x ,可以将)5(3-⨯+⨯②①C.要消去y ,可以将35⨯+⨯②①D.要消去x ,可以将2)5(⨯+-⨯②① 12.若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A.21B.31C.51D.6114.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,则a 可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对于下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③ B.②⑤ C.①③④ D.④⑤16.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)图6图7图817.若02015=a ,则=a18.若02≠=b a ,则aba b a --222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则∠3+∠1-∠2= °20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=三、解答题(本大题共6个小题,共66分。
成都市2013中考(含成都市初三毕业会考)数学考试时间120分钟。
一、选择题(本大题共10个小题,每小题3分,共30分)1。
2的相反数是( )A.2 B 。
-2 C 。
12 D.1-2答案:B解析:2的相反数为-2,较简单。
2.如图所示的几何体的俯视图可能是( )答案:C解析:圆锥的俯视图为一个圆及圆心,圆锥的顶点俯视图是圆心(一个点)。
3.要使分式5x 1-有意义,则X的取值范围是( ) A.x 1≠ B.x 1> C.1x <D.x 1≠-答案:A解析:由分式的意义,得:x -1≠0,即x ≠1,选A 。
4.如图,在△ABC中,B C ∠=∠,AB=5,则AC 的长为( )A 。
2 B.3 C 。
4 D.5答案:D解析:由∠B =∠C ,得AC =AB =5(等角对等边),故选D >5。
下列运算正确的是( )A.1-=3⨯(3)1B.5-8=-3C.-32=6D.0-=0(2013) 答案:B解析:13×(-3)=-1,3128-=,(-2013)0=1,故A 、C 、D 都错,选B 。
6.参加成都市今年初三毕业会考的学生约为13万人,将13万用科学记数法表示应为( ) A.51.310⨯ B 。
41.310⨯ C.50.1310⨯ D. 40.1310⨯ 答案:A解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数13万=130000=51.310⨯7.如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C ’重合。
若AB=2,则'C D 的长为( )A 。
1B 。
2C 。
3D 。
4答案:B解析:由折叠可知,'C D =CD =AB =2。
8。
在平面直角坐标系中,下列函数的图像经过原点的是( )A 。
重庆市2015年初中毕业暨高中招生考试数学试卷(A 卷)(全卷共五个大题,满分150分,120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答。
2.作答前认真阅读答题卡上的注意事项。
3.考试结束,由监考人员将试题和答题卡一并收回。
参考公式;抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为直线2bx a =-一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3 2.下列图形是轴对称图形的是( )3)A. B.C.D.4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b 5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况 B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°6题图7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==9.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20° 10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的 过程中,中途休息了一段时间,设他从山脚出发后所用的时 间为t(分钟),所走的路程为s(米),s与t之间的函数 关系如图所示,下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③A. 21B. 24C. 27D. 30 12.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边 BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x= 的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示9题图10题图12题图为 。
机密★启用前2015年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-18)÷6的结果等于(A)-3 (B)3(C)13-(D)13(2)cos45︒的值等于(A)12(B)22(C)32(D)3(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如 意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计11的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为(A )(3,2) (B )(2,-3)(C )(-3,-2)(D )(3,-2)第(5)题E'A'EBDC A(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm (B )2dm (C )6dm (D )3dm (11)如图,已知在 ABCD 中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为(A )154 (B )92 (C )132 (D )152第(11)题机密★启用前2015年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
年山西省中考数学试题及参考答案2015分)30分,共3小题,每小题10一、选择题(本大题共))的结果是(1(﹣3+.计算﹣1.A4 .﹣D 4 .C 2 .﹣B2 .下列运算错误的是(2 ).D a| ﹣|a|=|. C =2x+xx. B ..晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形3 )但不是轴对称图形的是(.D .C .B .A、D中,点ABC.如图,在△4的周ABC,则△6的周长是DBE的中点.若△BC,AB分别是边E )长是( 8 .A14 .D 12 .C 10 .B 26x=0﹣3x.我们解一元二次方程5,从而=0)2﹣x(3x时,可以运用因式分解法,将此方程化为这种解法体现的数学.=2x,=0x进而得到原方程的解为,2=0﹣x或3x=0得到两个一元一次方程:21 )思想是(.数形结合思想C .函数思想B .转化思想A .公理化思想D ,1=55°)按如图所示放置.若∠A=60°(∠ABC角的直角三角板60°,一块含b∥a.如图,直线6)的度数为(2则∠115°.C 110°.B 105°.A 120°.)的结果是(.化简7.D .C .B .A.我国古代秦汉时期有一部数学著作,堪称是世界数学经典名著.它的出现,标志着我国古代数学8体系的正式确立.它采用按类分章的问题集的形式进行编排.其中方程的解法和正负数加减运算法)则在世界上遥遥领先,这部著作的名称是( 1《五经算术》.D 《孙子算经》.C 《海岛算经》.B 《九章算术》.A)3)班、初一(2)班、初一(1.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(9名同学中随机选取一名志愿者,则被选中的这名同学恰好是初6名同学报名参加.现从这2班各有3一())班同学的概率是(2111.D .C .B .A3263)(的正切值是ABC 则∠都在格点上,C,B,A点,1小正方形的边长均为在网格中,如图,.101552.B 2 .A .D .C 552分)18分,共3小题,每小题6二、填空题(本大题共7>12.的解集是.不等式组116>x3)个图案有1.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(12个图n依此规律,第…个三角形,10)个图案有3个三角形,第(7)个图案有2个三角形,第(4 的代数式表示)n个三角形(用含案有,为C的直径,点O为⊙AB,O内接于⊙ABCD.如图,四边形13A=40°的中点.若∠度.B=则∠其中一个装有标号分别为现有两个不透明的盒子,.14,1另一个装有标号分别为的两张卡片,2,1的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标3,2 .号恰好相同的概率是 2.太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面15上,EF在C,B点,DC⊥AD,AD⊥AB示意图如图所示,,AD=24cm,AB=80cm,HG⊥EH,HG∥EF到地面的距离是A,则点EH=4cm,BC=25cm .cm 折叠,MN沿ABCD将正方形纸片如图,.16若处.C′落在C点,D′对应点为上,AB落在边D使点,则折痕AD′=2,AB=6 .的长为MN分)72个小题,共8三、解答题(本大题共.)计算:1(分)10(.17.)解方程:2(分)阅读与计算:请阅读以下材料,并完成相应的任务.6(.18斐波那契(约)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契1250﹣1170.后来人们在研究它的过程中,发现了许多意想不到数列(按照一定顺序排列着的一列数称为数列)斐的瓣数恰是斐波那契数列中的数.万寿菊等)飞燕草、(如梅花、很多花朵在实际生活中,的结果,波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用..这是用无理数表个数可以用n斐波那契数列中的第)n≥1表示(其中,示有理数的一个范例.个数.2个数和第1任务:请根据以上材料,通过计算求出斐波那契数列中的第,与反比例A轴交于点y的图象与y=3x+2中,一次函数xOy分)如图,在平面直角坐标系6(.19轴交反y⊥AC 作A.过点1的横坐标为B,且点B)在第一象限内的图象交于点k≠0(函数x 3.BC,连接C)的图象于点k≠0(比例函数x )求反比例函数的表达式.1(的面积.ABC)求△2(”低头族“分)随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的8(.201问题进行了随机问卷调查(问卷调查表如图”您如何看待数字化阅读“越来越多.某研究机构针对.请根据统计图中提供的信息,解所示的统计图(均不完整)3和图2所示)并将调查结果绘制成图答下列问题:人.)本次接受调查的总人数是1()请将条形统计图补充完整.2(在扇形统计图中,)3(度.的扇形的圆心角度数为B表示观点,的百分比是E观点()假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的4 建议..ACB=90°是直角三角形,∠ABC分)如图,△10(.21D相切于点AB,使它与C)尺规作图:作⊙1(,保留作图痕迹,不写作法,E相交于点AC,与请标明字母.,求A=30°,∠BC=3)中要求所作的图中,若1)在你按(2(的长. 22 分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:7(.豆角西兰花青椒西红柿蔬菜品种 8 5.4 3.6 4.8 )/kg批发价(元 7.6 14 8.4 5.4 )/kg零售价(元请解答下列问题: 4元钱,这两种蔬菜当1520,用去了300kg)第一天,该经营户批发西红柿和西兰花两种蔬菜共1(天全部售完一共能赚多少元钱?元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少1520)第二天,该经营户用2(?kg元,则该经营户最多能批发西红柿多少1050于分)综合与实践:制作无盖盒子12(.234cm倍,要将其四角各剪去一个正方形,折成高为2,有一块矩形纸板,长是宽的1任务一:如图,3.的无盖长方体盒子(纸板厚度忽略不计)616cm容积为的矩形纸板中画出示意图,用实线表示剪切线,虚线表示折痕.1)请在图1()请求出这块矩形纸板的长和宽.2(中,ABCDE在五边形是其底面,3图,(直棱柱)的无盖的五棱柱盒子4cm是一个高为2图任务二:BC=12cm .EDC=90°∠EAB=,∠BCD=120°∠ABC=,∠AB=DC=6cm,的数量关系,并加以证明.DE与AE中3)试判断图1(所示的示意图,将矩形纸板剪切折合而成,那么这个矩形纸板的4中的五棱柱盒子可按图2)图2(?请直接写出结果(图中实线表示剪切线,虚线表示折痕.纸板厚度及剪切cm长和宽至少各为多少.接缝处损耗忽略不计)分)综合与探究13(.241642与W.抛物线的函数表达式为W中,抛物线xOy,在平面直角坐标系1如图2121l,直线D轴交于点x,它的对称轴与C轴交于点y的右侧,与A在点B两点(点B,A轴交于x 两点.D、C 经过A)求1(的函数表达式.l两点的坐标及直线B、ACF当△,F交于点l的对称轴与直线W′设抛物线,W′轴向右平移得到抛物线x沿W将抛物线)2(的函数表达式.W′的坐标,并直接写出此时抛物线F为直角三角形时,求点(A′C′设.A′C′D′得到△,)m≤5<0(个单位m轴向右平移x沿ACD将△,CB,AC连接,2如图)3M于点l交直线的代数式表m的面积(用含CMNC′.求四边形MN,CC′,连接N于点CB交C′D′,.示) 5参考答案与解析分)30分,共3小题,每小题10一、选择题(本大题共))的结果是(1(﹣3+.计算﹣1 2 .﹣B 2 .A4 .﹣D 4 .C 【知识考点】有理数的加法.【思路分析】根据同号两数相加的法则进行计算即可.,4﹣=)3+1﹣(=)1(﹣3+【解题过程】解:﹣.D故选:【总结归纳】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.).下列运算错误的是(.D a| ﹣.|a|=|.C =2x+xAx.【知识考点】分式的乘除法;绝对值;合并同类项;零指数幂.、原式利用零指数幂法则计算得到结果,即可做出判断;A【思路分析】、原式合并同类项得到结果,即可做出判断;B 、原式利用绝对值的代数意义判断即可;C 、原式利用乘方的意义计算得到结果,即可做出判断.D、原式A 【解题过程】解:,正确;=12 ,错误;=2x、原式B ,正确;a|﹣|a|=|、,正确,、原式D6a B 故选【总结归纳】此题考查了分式的乘除法,绝对值,合并同类项,以及零指数幂,熟练掌握运算法则是解本题的关键..晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形3 )但不是轴对称图形的是(.D .C .B .A 【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.A【解题过程】解:、是轴对称图形,也是中心对称图形.故错误;、不是轴对称图形,是中心对称图形.故正确;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故错误.D .B故选【总结归纳】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图度后与原图重合.180形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 6。
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣5的绝对值是()A.5 B.﹣5C.15-D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A.()2233x x = B.336x y xy +=C.()222x y x y +=+ D.()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A.()1,4-- B.()1,4- C.()1,4 D.()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB AD= B.AC BD ⊥ C.AC BD = D.ACB ACD∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A.142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B.142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C.142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A.ABE CBE ∠=∠B.5BC =C.DE DF= D.53BE EF =【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10.分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14.(1)计算:()02sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒--+42122=+⨯-+-5=+5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即82.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan 5BFC ∠=,45AF =CF 的长和O 的直径.【答案】(1)见详解;(2536.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠= EBC DBF∴ ∽EC CB DF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB ACCF BC∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=,5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=,5CB =,BE y=-222(5)y y ∴++=y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF ∴=DF=DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①.9②.144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【答案】1712+【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BC BF EF =∴221m x x m +=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得1712x +=(负值已舍去),故答案为:1712.【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①.>②.112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线的对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a --=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,∴222461n n n -++=-,解得1271,3n n =-=,∴点720,39D ⎛⎫- ⎪⎝⎭,过点D 作DH AB ⊥于点H ,则72203,339BH DH =-==,则10tan 3DH ABD BH ∠==;【小问3详解】设()2,23,D n an an a --直线AD 解析式为()11y k x =+,则()21231an an a k n --=+,解得13k an a =-,那么直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,如图,则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an a B n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a =+--++∵()22232463ax ax a ax an a x an a --=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.【答案】(1)BD CE 的值为35;(2)7039CF =;(3)直角三角形CDE 的面积分别为4,16,12,4813【解析】【分析】(1)根据3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.证明ADE ABC ≌,5AC AE ====,继而得到DAE BAC ∠=∠,DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,再证明CAE BAD ∽,得到35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,得到ABD ACE ∠=∠,根据中线BM 得到1522BM AM CM AC ====,继而得到MBC MCB ∠=∠,结合90ABD MBC ∠+∠=︒,得到90ACE MCB ∠+∠=︒即90BCE ∠=︒,得到AB CQ ,再证明ABM CQM ≌,得证矩形ABCQ ,再利用勾股定理,三角形相似的判定和性质计算即可.(3)运用分类思想解答即可.【详解】(1)∵3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.∴()SAS ADE ABC ≌,∴5AC AE ====,DAE BAC ∠=∠,∴DAE DAC BAC DAC ∠-∠=∠-∠即CAE BAD ∠=∠,∵1AB AC AD AE==∴CAE BAD ∽,∴35BD AB CE AC ==.(2)连接CE ,延长BM 交CE 于点Q ,根据(1)得CAE BAD ∽,∴ABD ACE ∠=∠,∵BM 是中线∴1522BM AM CM AC ====,∴MBC MCB ∠=∠,∵90ABD MBC ∠+∠=︒,∴90ACE MCB ∠+∠=︒即90BCE ∠=︒,∴AB CQ ,∴,BAM QCM ABM CQM ∠=∠∠=∠,∵BAM QCM ABM CQM AM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS BAM QCM ≌,∴BM QM =,∴四边形ABCQ 是平行四边形,∵90ABC ∠=︒∴四边形ABCQ 矩形,∴3,4,90AB CQ BC AQ AQC ====∠=︒,∴,3PQ CN EQ == ,∴313EP EQ PN QC ===,∴12PQ CN =,设,2PQ x CN x ==,则4AP x =-,∵903EPQ APD EQP ADP EQ AD ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴()AAS EQP ADP ≌,∴4AP EP x ==-,∵222EP PQ EQ =+,∴()22243x x -=+,解得78x =;∴2548AP x =-=,724CN x ==,∵,5PQ CN AC = ,∴APF CNF ∽,∴AP AF CN CF=,∴AP CN AF CF CN CF ++=,∴25758474CF +=,解得7039CF =.(3)如图,当AD 与AC 重合时,此时DEAC ⊥,此时CDE 是直角三角形,故()111·244222CDE S CD DE AC AD DE ==⨯-⨯=⨯⨯=;如图,当AD 在CA 的延长线上时,此时DEAC ⊥,此时CDE 是直角三角形,故()111·8416222CDE S CD DE AC AD DE ==⨯+⨯=⨯⨯= ;如图,当DE EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,∵5AE AC ==,∴12EQ QC EC ==,∵AQ EC ⊥,DE EC ⊥,DE AD ⊥,∴四边形ADEQ 是矩形,∴132AD EQ QC EC ====,∴6EC =,故11641222CDE S EC DE ==⨯⨯= ;如图,当DC EC ⊥时,此时CDE 是直角三角形,过点A 作AQ EC ⊥于点Q ,交DE 于点N ,∴12EQ QC EC x ===,NQ CD ∥,∴1EN EQ DN QC==,∴122DN EN DE ===,12QN DC =,∵,90AND ENQ ADN EQN ∠=∠∠=∠=︒,∴DAN QEN ∠=∠,∴tan tan DAN QEN ∠=∠,∴23QN DN EQ AD ==,∴23QN x =,∴4,23DC x CE x ==,∵222ED DC EC =+,∴()2224423x x ⎛⎫=+ ⎪⎝⎭,∴23613x =,解得13x =;故21144436482223331313CDE S EC DC x x x ==⨯⨯==⨯= .【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。
2015年广州市初中毕业生学业考试数学时间120分钟,满分150分第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.四个数-3.14,0,1,2中为负数的是( ) (A) -3.14(B) 0(C) 1(D) 22.将图1所示的图案以圆心为中心,旋转180°后得到的图案是( )3.已知⊙O 的半径是5,直线l 是⊙O 的切线,则点O 到直线l 的距离是( ) (A) 2.5(B) 3(C) 5(D) 104. 两名同学生进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( ) (A) 众数 (B) 中位数 (C) 方差 (D) 以上都不对5. 下列计算正确的是( ) (A) ab ⋅ab =2ab(B)(2a)4=2a 4(C) 3a -a =3(a≥0)(D) a ⋅b =ab(a ≥0,b ≥0)6.如图2是一个几何体的三视图,则该几何体的展开图可以是 ( )(A)(B) (C)(D) 图1(A )(B ) (C ) (D )图2主视图 左视图俯视图7.已知a 、b 满足方程组⎩⎨⎧a +5b =123a -b =4,则a +b =( )(A) -4 (B) 4 (C) -2 (D) 28. 下列命题中,真命题的个数有( ) ①对角线互相平分的四边形是平行四边形, ②两组对角线分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形. (A) 3个(B) 2个(C) 1个(D) 0个9. 已知圆的半径是23,则该圆的内接正六边形的面积是( ) (A) 3 3(B) 9 3(C) 18 3 (D) 36 310.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) (A) 10(B) 14(C) 10或14(D) 8或10第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.如图3,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1= 50°,则∠2的度数为 .12.根据环保局公布的广州市2013年到2014年PM2.5 的主 要来源的数据,制成扇形统计图(如图4).其中所占百 分比最大的主要来源是 (填主要来源的名称) 13.分解因式:2mx -6my = .14.某水库的水位在5小时内持续上涨,初始的水位高度为 6米,水位以每小时0.3米的速度匀速上升,则水库的 水位高度y 米与时间x 小时0≤x≤5的函数关系式 为 .A B CD图3l1 2 其它19%20.6%11.5%21.7%10.4% 8.6% 8.2% 生物质燃烧扬尘机动车尾气工业工艺源 燃煤生活垃圾图415.如图5,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cosC = . 16.如图6,四边形ABCD 中,∠A =90°,AB =33,AD =3,点M 、N 分别线段BC 、AB 上的动点(含端 点,但点M 不与点B 重合),点E ,F 分别为DM 、 MN 的中点 ,则EF 长度的最大值为 .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分) 解方程:5x =3(x -4).18.(本小题满分9分)如图7.正方形ABCD 中,点E 、F 分别在AD 、CD 上,且AE =DF ,连接BE 、AF.求证:BE =AF.ADEBCF图7ABC DE图 BC DEFM N 图已知A =x 2+2x +1x 2-1-xx -1.(1) 化简A ;(2)当A 满足不等式组⎩⎨⎧x -1≥0x -3<0,且x 为整数时,求A 的值.20.(本小题满分10分)已知反比例函y =m -7x的图象的一支位于第一象限.(1) 判断该函数图象的另一支所在的象限,并求m 的取值范围;(2) 如图8,O 为坐标原点,点A 在该反比例函数位第于第一象限的图象上,点B 与点A 关于x 轴对称,若△OAB 的面积为6,求m 的值.图8某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1) 求2013年到2015年该地区投入教育经费的年平均增长率;(2) 根据 (1) 所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.22.(本小题满分12分)4件同型号的产品中,有1件不合格品和3件合格品.(1) 从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2) 从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3) 在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现:抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?如图9,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.(1) 利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2) 在 (1) 所作的图形中,求△ABE与△CDE的面积之比.AC 图9如图10,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1) 试探究筝形对角线之间的位置关系,并证明你的结论;(2) 在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8.①是否存在一个圆使得A、B、C、D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.OM NT图10已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且OC两点间的距离为3,x1 x2<0,│x1│+│ x2│=4,点A、C在直线y2=-3x+t上.(1) 求点C的坐标;(2) 当y随着x的增大而增大时,求自变量x的取值范围;(3) 当抛物线y1向左平移n(n>0) 个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2-5n的最小值.2015广州中考数学、参考答案一、选择题:1-5 A D C C D 6-10 A B B C B 二、填空题11、50° 12、机动车尾气 13、)3(2y x m - 14、63.0+=x y 15、32 16、3 三、简答题17、6-=x 18、提示:证明△EAB 与△FDA 全等 19、(1)11-x (2)2=x (只能取2)时,A=1 20、(1)7>m (2)13=m21、(1)10% (2)3327.5万元 22、(1)41 (2)21(3)1623、提示(2)设半径为R ,△ABE 与△DCE 相似,在RT △ODC 中利用勾股定理算出DC ,最后求出面积比为相似比的平方等于21。
2015年常州市中考数学试题一、选择题(每小题2分,共16分) 1.-3的绝对值是A .3B .-3C .31D .-312.要使分式23x 有意义,则x 的取值范围是 A .x >2 B .x <2 C .x ≠-2 D .x ≠23.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是A .B .C .D .4.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =40°,则∠ECD 的度数是E DCA .70°B .60°C .50°D .40°5.如图,□ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是ODCAA .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB6.已知a =22,b =33,c =55,则下列大小关系正确的是 A .a >b >c B .c >b >a C .b >a >c D .a >c >b7.已知二次函数y =2x +(m -1)x +1,当x >1时,y 随x 的增大而增大,而m 的取值范围是A .m =-1B .m =3C .m ≤-1D .m ≥-18.将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是A .338cm 2 B .8cm 2 C .3316cm 2 D .16cm 2 二、填空题(每小题2分,共20分) 9.计算12)1(-+-π=_________.10.太阳的半径约为696000km ,把696000这个数用科学记数法表示为_______________________. 11.分解因式:2222y x -=____________________________.12.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是________.13.如图,在△ABC 中,DE ∥BC ,AD :DB =1:2,DE =2,则BC 的长是______.14.已知x =2是关于x 的方程a x a 21)1(=++x 的解,则a 的值是______________. 15.二次函数y =-2x +2x -3图像的顶点坐标是____________.16.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是_______________.m)17.数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2;12=5+7;6=3+3;14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是_______________________________________(请用文字语言表达).18.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是_______________.三、解答题(共10小题,共84分)19.(6分)先化简,再求值:)2()1(2x x x --+,其中x =2.20.(8分)解方程和不等式组: ⑴x x x 311213--=-; ⑵⎩⎨⎧->->+.521,042x x 21.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图: ⑴该调查小组抽取的样本容量是多少?⑵求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图; ⑶请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序. ⑴求甲第一个出场的概率;⑵求甲比乙先出场的概率.23.(8分)如图,在□ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.⑴求证:AE=AF;⑵求∠EAF的度数.D24.(8分)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.光明中学市图书馆光明电影院⑴求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;⑵如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?25.(8分)如图,在四边形ABCD 中,∠A =∠C =45°,∠ADB =∠ABC =105°. ⑴若AD =2,求AB ;⑵若AB +CD =23+2,求AB .C26.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”. ⑴阅读填空如图①,已知矩形ABCD ,延长AD 到E ,使DE =DC ,以AE 为直径作半圆.延长CD 交半圆于点H ,以DH 为边作正方形DFGH ,则正方形DFGH 与矩形ABCD 等积.理由:连接AH ,EH .∵ AE 为直径 ∴ ∠AHE =90° ∴ ∠HAE +∠HEA =90°. ∵ DH ⊥AE ∴ ∠ADH =∠EDH =90° ∴ ∠HAD +∠AHD =90°∴ ∠AHD =∠HED ∴ △ADH ∽_____________. ∴DEDH DH AD ,即2DH =AD ×DE .又∵DE=DC∴2DH=____________,即正方形DFGH与矩形ABCD等积.D⑵操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与□ABCD等积的矩形(不要求写具体作法,保留作图痕迹).⑶解决问题三角形的“化方”思路是:先把三角形转化为等积的_________________(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).⑷拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).27.(10分)如图,一次函数y =-x +4的图像与x 轴、y 轴分别相交于点A 、B ,过点A 作x 轴的垂线l ,点P 为直线l 上的动点,点Q 为直线AB 与△OAP 外接圆的交点,点P 、Q 与点A 都不重合.⑴写出点A 的坐标;⑵当点P 在直线l 上运动时,是否存在点P 使得△OQB 与△APQ 全等?如果存在,求出点P 的坐标;如果不存在,请说明理由.⑶若点M 在直线l 上,且∠POM =90°,记△OAP 外接圆和△OAM 外接圆的面积分别是1S 、2S ,求2111S S 的值.28.(10分)如图,反比例函数y =x k 的图像与一次函数y =41x 的图像交于点A 、B ,点B 的横坐标是4.点P 是第一象限内反比例函数图像上的动点,且在直线AB 的上方. ⑴若点P 的坐标是(1,4),直接写出k 的值和△PAB 的面积;⑵设直线PA 、PB 与x 轴分别交于点M 、N ,求证:△PMN 是等腰三角形;⑶设点Q 是反比例函数图像上位于P 、B 之间的动点(与点P 、B 不重合),连接AQ 、BQ ,比较∠PAQ 与∠PBQ 的大小,并说明理由.常州市2015年中考数学试题答案一、选择题(每小题2分,共16分)1、A2.D3.B4.C5.C6.A7.D8.B二、填空题(每小题2分,共20分)三、解答题(共10小题,共84分)。
四川省内江市2016年中考数学试卷A卷(共100分)一、选择题(每小题3分,共36分)1.-2016的倒数是( )A.-2016 B.-12016C.12016D.20162.2016年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A.918×104B.9.18×105C.9.18×106D.9.18×1073.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75°B.65°C.45°D.30°4.下列标志既是轴对称图形又是中心对称图形的是( )5.下列几何体中,主视图和俯视图都为矩形的是( )6.在函数y=3x-中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠47.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A.最高分B.中位数C.方差D.平均数8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-9.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形10.如图2,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )A.π-4 B.23π-1 C.π-2 D.23π-2图130°45°1A.B.C.D.A.B.C.D.11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )ABC .32D .不能确定 12.一组正方形按如图3所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2016B 2016C 2016D 2016的边长是( )A .(12)2015 B .(12)2016 C .)2016 D .)2015 二、填空题(每小题5分,共20分)13.分解因式:ax 2-ay 2=______.14.化简:(23a a -+93a-)÷3a a +=______. 15.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE ⊥BC ,垂足为点E ,则OE =______.16.将一些半径相同的小圆按如图5所示的规律摆放,请仔细观察,第n 个图形有______个小圆.(用含n 的代数式表示)三、解答题(本大题共5小题,共44分)17.(7分)计算:|-3|tan 30°-(2016-π)0+(12)-1.图2 DOCEBA 图4 第1个图 第2个图 第3个图 第4个图图518.(9分)如图6所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.19.(9分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A .篮球、B .乒乓球、C .跳绳、D .踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图7(1),图7(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).20.(9分)如图8,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).图7(1)图7(2)DC EF B A图6图821.(10分)如图9,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG·HB的值.图9B卷一、填空题(每小题6分,共24分)22.任取不等式组30,250k k -⎧⎨+⎩≤>的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为______.23.如图10,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于______.24.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,则P ,Q 的大小关系是______.25.如图12所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______.二、解答题(每小题12分,共36分)26.(12分)问题引入:(1)如图13①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC =______(用α表示);如图13②,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC =______(用α表示). (2)如图13③,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,请猜想∠BOC =______(用α表示),并说明理由.类比研究:(3)BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n∠ECB ,∠A =α,请猜想∠BOC =______. 27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.OC B A 图13②ABCO 图13① O C B A E D 图13③图12图11 图1028.(12分)如图15,已知抛物线C :y =x 2-3x +m ,直线l :y =kx (k >0),当k =1时,抛物线C 与直线l 只有一个公共点.(1)求m 的值;(2)若直线l 与抛物线C 交于不同的两点A ,B ,直线l 与直线l 1:y =-3x +b 交于点P ,且1OA +1OB =2OP,求b 的值; (3)在(2)的条件下,设直线l 1与y 轴交于点Q ,问:是否存在实数k 使S △APQ =S △BPQ ,若存在,求k 的值;若不存在,说明理由.四川省内江市2016年中考数学试卷 解析一、选择题(每小题3分,共36分)1.-2016的倒数是( )A .-2016B .-12016 C .12016D .2016 [答案]B答案图图15图14[解析]非零整数n的倒数是1n,故-2016的倒数是12016-=-12016,故选B.2.2016年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A.918×104B.9.18×105C.9.18×106D.9.18×107[答案]C[解析] 把一个大于10的数表示成a×10n(1≤a<10,n是正整数)的形式,这种记数的方法叫科学记数法.科学记数法中,a是由原数的各位数字组成且只有一位整数的数,n比原数的整数位数少1.故选C.3.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75°B.65°C.45°D.30°[答案]A[解析]方法一:∠1的对顶角所在的三角形中另两个角的度数分别为60°,45°,∴∠1=180°-(60°+45°)=75°.方法二:∠1可看作是某个三角形的外角,根据三角形的外角等于与它不相邻的两个内角的和计算.故选A.4.下列标志既是轴对称图形又是中心对称图形的是( )[答案]A[解析]选项B中的图形是轴对称图形,选项C中的图形是中心对称图形,选项D中的图形既不是轴对称图形也不是中心对称图形.只有选项A中的图形符合题意.故选A.5.下列几何体中,主视图和俯视图都为矩形的是( )[答案]B选项A 选项B 选项C 选项D主视图三角形矩形矩形梯形俯视图圆(含圆心) 矩形圆矩形故选B.6.在函数y=3x-中,自变量x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4[答案]D[解析]欲使根式有意义,则需x-3≥0;欲使分式有意义,则需x-4≠0.图130°45°1A.B.C.D.A.B.C.D.∴x 的取值范围是30,40.x x -⎧⎨-⎩≥≠解得x ≥3且x ≠4.故选D . 7.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A .最高分B .中位数C .方差D .平均数[答案]B[解析]这里中位数是预赛成绩排序后第13名同学的成绩,成绩大于中位数则能进入决赛,否则不能. 故选B .8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地,已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( )A .1102x +=100xB .1100x =1002x +C .1102x -=100xD .1100x =1002x - [答案]A[解析]依题意可知甲骑自行车的平均速度为(x +2)千米/时.因为他们同时到达C 地,即甲行驶110千米所需的时间与乙行驶100千米所需时间相等,所以1102x +=100x. 故选A .9.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形[答案]C[解析]满足选项A 或选项B 中的条件时,不能推出四边形是平行四边形,因此它们都是假命题.由选项D 中的条件只能推出四边形是菱形,因此也是假例题.只有选项C 中的命题是真命题.故选C .10.如图2,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )A .π-4B .23π-1C .π-2D .23π-2[答案]C[解析]∵∠O =2∠A =2×45°=90°.∴S 阴影=S 扇形OBC -S △OBC =2902360πg -12×2×2=π-2. 故选C .11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )ABC .32D .不能确定 [答案]B[解析]如图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC, 图2CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于H .则BH =32,AH. 连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △ABC . ∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH . ∴PD +PE +PF =AH. 故选B .12.一组正方形按如图3所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……则正方形A 2016B 2016C 2016D 2016的边长是( )A .(12)2015 B .(12)2016 C .)2016 D .)2015 [答案] D[解析]易知△B 2C 2E 2∽△C 1D 1E 1,∴2211B C C D =2211B E C E =1111D E C E =tan 30°. ∴B 2C 2=C 1D 1·tan 30°.∴C 2D 2. 同理,B 3C 3=C 2D 2·tan 30°=)2; 由此猜想B n C n =)n -1. 当n =2016时,B 2016C 2016=)2015. 故选D .二、填空题(每小题5分,共20分)13.分解因式:ax 2-ay 2=______.[答案]a (x -y )(x +y ).[解析]先提取公因式a ,再用平方差公式分解.原式=a (x 2-y 2)=a (x -y )(x +y ).故选答案为:a (x -y )(x +y ). P B ADEF 答案图 C H14.化简:(23a a -+93a-)÷3a a +=______. [答案]a .[解析]先算小括号,再算除法.原式=(23a a --93a -)÷3a a +=293a a --÷3a a +=(a +3)·3a a +=a . 故答案为:a .15.如图4,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE ⊥BC ,垂足为点E ,则OE =______.[答案]125[解析]∵菱形的对角线互相垂直平分,∴OB =3,OC =4,∠BOC =90°.∴BC5.∵S △OBC =12OB ·OC ,又S △OBC =12BC ·OE , ∴OB ·OC =BC ·OE ,即3×4=5OE .∴OE =125. 故答案为:125. 16.将一些半径相同的小圆按如图5所示的规律摆放,请仔细观察,第n 个图形有______个小圆.(用含n 的代数式表示)[答案] n 2+n +4 [解析]每个图由外围的4个小圆和中间的“矩形”组成,矩形的面积等于长成宽.由此可知第1个图中小圆的个数=1×2+4,第2个图中小圆的个数=2×3+4,第3个图中小圆的个数=3×4+4,……第n 个图中小圆的个数=n (n +1)+4=n 2+n +4.故答案为:n 2+n +4.三、解答题(本大题共5小题,共44分)17.(7分)计算:|-3|tan 30°-(2016-π)0+(12)-1. 第1个图 第2个图 第3个图 第4个图图5DOC EBA 图4解:原式=3-2-1+2 ································································· 5分 =3+1-2-1+2 ························································································· 6分=3. ········································································································ 7分18.(9分)如图6所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.(1)证明:∵点E 是AD 的中点,∴AE =DE .∵AF ∥BC ,∴∠AFE =∠DCE ,∠F AE =∠CDE .∴△EAF ≌△EDC . ····················································································· 3分∴AF =DC .∵AF =BD ,∴BD =DC ,即D 是BC 的中点. ··································································· 5分(2)四边形AFBD 是矩形.证明如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形. ····································································· 7分∵AB =AC ,又由(1)可知D 是BC 的中点,∴AD ⊥BC .∴□AFBD 是矩形. ····················································································· 9分19.(9分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A .篮球、B .乒乓球、C .跳绳、D .踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图7(1),图7(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).解:(1)由扇形统计图可知:扇形A 的圆心角是36°,所以喜欢A 项目的人数占被调查人数的百分比=36360×100%=10%. ···················· 1分 由条形图可知:喜欢A 类项目的人数有20人,所以被调查的学生共有20÷10%=200(人). ······················································ 2分(2)喜欢C 项目的人数=200-(20+80+40)=60(人), ·········································· 3分图7(1)图7(2)DC EF B A图6因此在条形图中补画高度为60的长方条,如图所示.·········································································· 4分(3)画树状图如下:分 (7)从树状图或表格中可知,从四名同学中任选两名共有12种结果,每种结果出现的可能性相等,其中选中甲乙两位同学(记为事件A )有2种结果,所以P (A )=212=16. ·························································································· 9分20.(9分)如图8,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).解:如图,过点C 作CH ⊥AB 于H ,则△BCH 是等腰直角三角形.设CH =x ,则BH =x ,AH =CH ÷tan 30°. ·····························································2分∵AB =200,∴x =200.∴x 1). ········································································· 4分 ∴BC x =). ······································································ 6分∵两船行驶4小时相遇,∴可疑船只航行的平均速度=)÷4=). ························ 8分答:可疑船只航行的平均速度是每小时)海里. ································· 9分答案图 甲 乙 丙 丁 乙 甲 丙 丁 丙 甲 乙 丁 丁甲 乙 丙图8答案图21.(10分)如图9,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F .⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接BD ,FH .(1)试判断BD 与⊙O 的位置关系,并说明理由;(2)当AB =BE =1时,求⊙O 的面积;(3)在(2)的条件下,求HG ·HB 的值.(1)直线BD 与⊙O 相切.理由如下:如图,连接OB ,∵BD 是Rt △ABC 斜边上的中线,∴DB =DC .∴∠DBC =∠C .∵OB =OE ,∴∠OBE =∠OEB =∠CED .∵∠C +∠CED =90°,∴∠DBC +∠OBE =90°.∴BD 与⊙O 相切; ······················································································ 3分(2)连接AE .∵AB =BE =1,∴AE.∵DF 垂直平分AC ,∴CE =AE.∴BC =1. ····································· 4分∵∠C +∠CAB =90°,∠DF A +∠CAB =90°,∴∠CAB =∠DF A .又∠CBA =∠FBE =90°,AB =BE ,∴△CAB ≌△FEB .∴BF =BC =1. ························································ 5分∴EF 2=BE 2+BF 2=12+(1)2=4+. ·················································· 6分∴S ⊙O =14π·EF 2. ······································································· 7分 (3)∵AB =BE ,∠ABE =90°,∴∠AEB =45°.∵EA =EC ,∴∠C =22.5°. ··········································································· 8分∴∠H =∠BEG =∠CED =90°-22.5°=67.5°.∵BH 平分∠CBF ,∴∠EBG =∠HBF =45°.∴∠BGE =∠BFH =67.5°. ∴BG =BE =1,BH =BF =1. ································································ 9分∴GH =BH -BG.∴HB ·HG×(1)=2. ························································· 10分B 卷一、填空题(每小题6分,共24分)图9答案图22.任取不等式组30,250k k -⎧⎨+⎩≤>的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为______.[答案]13[解析]不等式组30,250k k -⎧⎨+⎩≤>的解集为-52<k ≤3,其整数解为k =-2,-1,0,1,2,3. 其中,当k =-2,-1时,方程2x +k =-1的解为非负数.所以所求概率P =26=13. 故答案为:13. 23.如图10,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于______. [答案]32[解析]设点A 的坐标为(a ,5a). ∵AB ∥x 轴,∴点B 的纵坐标为5a . 将y =5a 代入y =8x ,求得x =85a .∴AB =85a -a =35a . ∴S △OAB =12·35a ·5a =32.故答案为:32.24.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,则P ,Q 的大小关系是______.[答案]P >Q[解析]∵抛物线的开口向下,∴a <0.∵-2b a=1,∴b >0且a =-2b . ∴|2a +b |=0,|2a -b |=b -2a .∵抛物线与y 轴的正半轴相交,∴c >0.∴|3b +2c |=3b +2c .由图象可知当x =-1时,y <0,即a -b +c <0. ∴-2b -b +c <0,即3b -2c >0.∴|3b -2c |=3b -2c . ∴P =0+3b -2c =3b -2c >0,Q =b -2a -(3b +2c )=-(b +2c )<0.∴P >Q .故答案为:P >Q .25.如图12所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是______.图10图11 图12[答案]10[解析]作点C 关于y 轴的对称点C 1(-1,0),点C 关于x 轴的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=10.即△CDE 周长的最小值是10.故答案为:10.二、解答题(每小题12分,共36分)26.(12分)问题引入:(1)如图13①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A =α,则∠BOC =______(用α表示);如图13②,∠CBO =13∠ABC ,∠BCO =13∠ACB ,∠A =α,则∠BOC =______(用α表示). (2)如图13③,∠CBO =13∠DBC ,∠BCO =13∠ECB ,∠A =α,请猜想∠BOC =______(用α表示),并说明理由.类比研究:(3)BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的n 等分线,它们交于点O ,∠CBO =1n ∠DBC ,∠BCO =1n∠ECB ,∠A =α,请猜想∠BOC =______. 解:(1)第一个空填:90°+2α; ······································································ 2分 第一个空填:90°+3α. ················································································ 4分 第一空的过程如下:∠BOC =180°-(∠OBC +∠OCB )=180°-12(∠ABC +∠ACB )=180°-12(180°-∠A )=90°+2α. 第二空的过程如下:∠BOC =180°-(∠OBC +∠OCB )=180°-13(∠ABC +∠ACB )=180°-13(180°-∠OC B A 图13②ABCO 图13① O C B A E D 图13③A )=120°+3α. (2)答案:120°-3α.过程如下: ∠BOC =180°-(∠OBC +∠OCB )=180°-13(∠DBC +∠ECB )=180°-13(180°+∠A )=120°-3α. 8分(3)答案:120°-3α.过程如下: ∠BOC =180°-(∠OBC +∠OCB )=180°-1n (∠DBC +∠ECB )=180°-1n (180°+∠A )=1n n -·180°-nα. ······································································································· 12分 27.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.解:(1)苗圃园与墙平行的一边长为(30-2x )米.依题意可列方程x (30-2x )=72,即x 2-15x +36=0. ······························································· 2分解得x 1=3,x 2=12. ···················································································· 4分(2)依题意,得8≤30-2x ≤18.解得6≤x ≤11.面积S =x (30-2x )=-2(x -152)2+2252(6≤x ≤11). ①当x =152时,S 有最大值,S 最大=2252; ······················································· 6分 ②当x =11时,S 有最小值,S 最小=11×(30-22)=88. ······································· 8分(3)令x (30-2x )=100,得x 2-15x +50=0.解得x 1=5,x 2=10. ·················································································· 10分∴x 的取值范围是5≤x ≤10. ······································································· 12分28.(12分)如图15,已知抛物线C :y =x 2-3x +m ,直线l :y =kx (k >0),当k =1时,抛物线C 与直线l 只有一个公共点.(1)求m 的值;(2)若直线l 与抛物线C 交于不同的两点A ,B ,直线l 与直线l 1:y =-3x +b 交于点P ,且1OA +1OB =2OP,求b 的值; (3)在(2)的条件下,设直线l 1与y 轴交于点Q ,问:是否存在实数k 使S △APQ =S △BPQ ,若存在,求k 的值;若不存在,说明理由.图14解:(1)∵当k =1时,抛物线C 与直线l 只有一个公共点,∴方程组23,y x x m y x⎧=-+⎨=⎩有且只有一组解. ····················································· 2分 消去y ,得x 2-4x +m =0,所以此一元二次方程有两个相等的实数根.∴△=0,即(-4)2-4m =0.∴m =4. ··································································································· 4分(2)如图,分别过点A ,P ,B 作y 轴的垂线,垂足依次为C ,D ,E ,则△OAC ∽△OPD ,∴OP OA =PD AC . 同理,OP OB =PD BE . ∵1OA +1OB =2OP ,∴OP OA +OP OB =2. ∴PD AC +PD BE =2. ∴1AC +1BE =2PD ,即AC BE AC BE +g =2PD. ······················································ 5分 解方程组,3y kx y x b =⎧⎨=-+⎩得x =3b k +,即PD =3b k +. ··········································· 6分 由方程组2,34y kx y x x =⎧⎨=-+⎩消去y ,得x 2-(k +3)x +4=0.∵AC ,BE 是以上一元二次方程的两根,∴AC +BE =k +3,AC ·BE =4. ···································································· 7分 ∴34k +=23bk +. 解得b =8. ································································································ 8分(3)不存在.理由如下: ················································································· 9分 假设存在,则当S △APQ =S △BPQ 时有AP =PB ,于是PD -AC =PE -PD ,即AC +BE =2PD .由(2)可知AC +BE =k +3,PD =83k +, ∴k +3=2×83k +,即(k +3)2=16. 解得k =1(舍去k =-7). ············································································ 11分 当k =1时,A ,B 两点重合,△QAB 不存在.图15答案图。
2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.62.下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )4.下列运算正确的是( )A.21211-=⎪⎭⎫⎝⎛- B. 60000001067=⨯ C.()2222aa= D.523aaa=⋅5.图2中的三视图所对应的几何体是( )A B图1—1 图1—3图1—2DC6.如图3,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是..点O的是( ) A.△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图4,则表示8的点落在( )A.段①B.段②C.段③D.段④8.如图5,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图像大致是( )图4图3图511.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,下列做法正确的是( )A.要消去y ,可以将25⨯+⨯②①B.要消去x ,可以将)5(3-⨯+⨯②①C.要消去y ,可以将35⨯+⨯②①D.要消去x ,可以将2)5(⨯+-⨯②① 12.若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥113.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.21 B.31 C.51 D.6114.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,则a 可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对于下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( ) A.②③ B.②⑤ C.①③④ D.④⑤16.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A.甲、乙都可以B.甲、乙都不可以C.甲不可以,乙可以D.甲可以,乙不可以二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上) 17.若02015=a ,则=a图6图7图818.若02≠=b a ,则aba b a --222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图9,则∠3+∠1-∠2= °20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=三、解答题(本大题共6个小题,共66分。
2015年贵州省毕节市中考数学试题及参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个选项正确)1.12-的倒数的相反数等于()A.﹣2 B.12C.12-D.22.下列计算正确的是()A.a6÷a2=a3B.a6•a2=a12C.(a6)2=a12D.(a﹣3)2=a2﹣93.2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A.6.2918×105元B.6.2918×1014元C.6.2918×1013元D.6.2918×1012元4.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是15.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A B.C.6,7,8 D.2,3,46.如图,将四个“米”字格的正方形内涂上阴影,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,128.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°9.如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是()A .B .C .D .10.下列因式分解正确的是( )A .a 4b ﹣6a 3b+9a 2b=a 2b (a 2﹣6a+9)B .221142x x x ⎛⎫-+=- ⎪⎝⎭ C .x 2﹣2x+4=(x ﹣2)2 D .4x 2﹣y 2=(4x+y )(4x ﹣y )11.如图,直线a ∥b ,直角三角形ABC 的顶点B 在直线a 上,∠C=90°,∠β=55°,则∠α的度数为( )A .15°B .25°C .35°D .55°12.若关于x 的一元二次方程x 2+(2k ﹣1)x+k 2﹣1=0有实数根,则k 的取值范围是( )A .54k ≥ B .54k > C .54k < D .54k ≤ 13.在△ABC 中,DE ∥BC ,AE :EC=2:3,DE=4,则BC 等于( )A .10B .8C .9D .614.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式错误的是( )A .a <0B .b >0C .b 2﹣4ac >0D .a+b+c <015.已知不等式组2x x a ⎧⎨⎩><的解集中共有5个整数,则a 的取值范围为( ) A .7<a≤8 B .6<a≤7 C .7≤a <8 D .7≤a≤8二、填空题(本大题共5小题,每小题5分,共25分)16.实数a,b|a﹣b|=.17.关于x的方程x2﹣4x+3=0与121x x a=-+有一个解相同,则a=.18.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为.19.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=20.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.三、解答及证明(本大题共7小题,共80分)21.(8分)计算:()2 012015|12cos453-⎛⎫-+-︒-⎪⎝⎭.22.(8分)先化简,再求值:2212111x xx x x x⎛⎫++-÷-⎪--⎝⎭,其中x=﹣3.23.(10分)某中学号召学生利用假期开展社会实践活动,开学初学校随机地通过问卷形式进行了调查,其中将学生参加社会实践活动的天数,绘制了下列两幅不完整的统计图:请根据图中提供的信息,完成下列问题(填入结果和补全图形):(1)问卷调查的学生总数为人;(2)扇形统计图中a的值为;(3)补全条形统计图;(4)该校共有1500人,请你估计“活动时间不少于5天”的大约有人;(5)如果从全校1500名学生中任意抽取一位学生准备作交流发言,则被抽到的学生,恰好也参加了问卷调查的概率是.24.(12分)如图,将▱ABCD的AD边延长至点E,使DE=12AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.25.(12分)某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A 商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?26.(14分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.27.(16分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个选项正确)1.12-的倒数的相反数等于()A.﹣2 B.12C.12-D.2【知识考点】倒数;相反数.【思路分析】根据倒数和相反数的定义分别解答即可.【解答过程】解:12-的倒数为﹣2,所以12-的倒数的相反数是:2.故选;D.【总结归纳】此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.下列计算正确的是()A.a6÷a2=a3B.a6•a2=a12C.(a6)2=a12D.(a﹣3)2=a2﹣9【知识考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;。
山东省淄博市2015年中考数学试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.(4分)(2015•淄博)比﹣2015小1的数是()A.﹣2014 B.2014 C.﹣2016 D.2016考点:有理数的减法.分析:根据题意列式即可求得结果.解答:解:﹣2015﹣1=﹣2016.故选C.点评:本题考查了有理数的减法,熟记有理数的减法的法则是解题的关键.2.(4分)(2015•淄博)下列式子中正确的是()A.()﹣2=﹣9 B.(﹣2)3=﹣6 C.=﹣2D.(﹣3)0=1考点:二次根式的性质与化简;有理数的乘方;零指数幂;负整数指数幂.分析:根据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐一运算,判断即可.解答:解:A、=9,故本项错误;B、(﹣2)3=﹣8,故本项错误;C、,故本项错误;D、(﹣3)0=1,故本项正确,故选:D.点评:本题考查了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,熟练掌握运算法则是解题的关键.3.(4分)(2015•淄博)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.解答:解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选A.点评:本题考查了正方体的展开图形,解题关键是从相邻面入手进行分析及解答问题.4.(4分)(2015•淄博)已知x=,y=,则x2+xy+y2的值为()A.2B.4C.5D.7考点:二次根式的化简求值.分析:先把x、y的值代入原式,再根据二次根式的性质把原式进行化简即可.解答:解:原式=(x+y)2﹣xy=(+)2﹣×=()2﹣=5﹣1=4.故选B.点评:本题考查的是二次根式的化简求值,熟知二次根式混合运算的法则是解答此题的关键.5.(4分)(2015•淄博)已知是二元一次方程组的解,则2m﹣n的平方根为()A.±2 B.C.±D.2考点:二元一次方程组的解;平方根.分析:由x=2,y=1是二元一次方程组的解,将x=2,y=1代入方程组求出m与n的值,进而求出2m﹣n的值,利用平方根的定义即可求出2m﹣n的平方根.解答:解:∵将代入中,得:,解得:∴2m﹣n=6﹣2=4,则2m﹣n的平方根为±2.故选:A.点评:此题考查了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法;代入消元法.6.(4分)(2015•淄博)某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率()A.B.C.D.考点:列表法与树状图法.分析:列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.解答:解:列表:0 10 20 30第二次第一次0 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)==.故选:C.点评:本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)(2015•淄博)若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°考点:锐角三角函数的增减性.专题:应用题.分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出45°<α<90°;再由特殊角的三角函数值及正切函数随锐角的增大而增大,得出0<α<60°;从而得出45°<α<60°.解答:解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.点评:本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.8.(4分)(2015•淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理.专题:压轴题.分析:根据三角形的中位线求出EF=BD,EF∥BD,推出△AEF∽△ABD,得出=,求出==,即可求出△AEF与多边形BCDFE的面积之比.解答:解:连接BD,∵F、E分别为AD、AB中点,∴EF=BD,EF∥BD,∴△AEF∽△ABD,∴==,∴△AEF的面积:四边形EFDB的面积=1:3,∵CD=AB,CB⊥DC,AB∥CD,∴==,∴△AEF与多边形BCDFE的面积之比为1:(3+2)=1:5,故选C.点评:本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,难度适中.9.(4分)(2015•淄博)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A.B.C.D.考点:菱形的性质;全等三角形的判定与性质;等腰三角形的判定与性质.专题:计算题;压轴题.分析:可通过构建全等三角形求解.延长GP交DC于H,可证三角形DHP和PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(AAS),于是两三角形全等,那么HP=PG,可根据三角函数来得出PG、CP的比例关系.解答:解:如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,由题意可知DC∥GF,∴∠GFP=∠HDP,∵∠GPF=∠HPD,∴△GFP≌△HDP,∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∴CG=CH,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠ABC=∠BEF=60°,∴∠GCP=60°,∴=;故选B.点评:本题主要考查了菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.10.(4分)(2015•淄博)若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠8考点:分式方程的解.分析:先得出分式方程的解,再得出关于m的不等式,解答即可.解答:解:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,因为关于x的方程+=2的解为正数,可得:,解得:m<6,因为x=2时原方程无解,所以可得,解得:m≠0.故选C.点评:此题考查分式方程,关键是根据分式方程的解法进行分析.11.(4分)(2015•淄博)如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是()A.πcm2B.2πcm2C.4πcm2D.8πcm2考点:三角形的内切圆与内心.分析:当该圆为三角形内切圆时面积最大,设内切圆半径为r,则该三角形面积可表示为:=21r,利用三角形的面积公式可表示为•BC•AD,利用勾股定理可得AD,易得三角形ABC的面积,可得r,求得圆的面积.解答:解:如图1所示,S△ABC=•r•(AB+BC+AC)==21r,过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,∴S△ABC==×7×12=42,∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π•22=4π(cm2),故选C.点评:本题主要考查了三角形的内切圆的相关知识及勾股定理的运用,运用三角形内切圆的半径表示三角形的面积是解答此题的关键.12.(4分)(2015•淄博)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB 上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q.设AP=x,△APQ的面积为y,则y与x之间的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:首先过点C作CD⊥AB于点D,由△ABC中,∠ACB=90°,∠A=30°,可求得∠B的度数与AD的长,再分别从当0≤AD≤12时与当12<x≤16时,去分析求解即可求得答案.解答:解:过点C作CD⊥AB于点D,∵∠ACB=90°,∠A=30°,AB=16,∴∠B=60°,BC=AB=8,∴∠BCD=30°,∴BD=BC=4,∴AD=AB﹣BD=12.如图1,当0≤AD≤12时,AP=x,PQ=AP•tan30°=x,∴y=x•x=x2;如图2:当12<x≤16时,BP=AB﹣AP=16﹣x,∴PQ=BP•tan60°=(16﹣x),∴y=x•(16﹣x)=﹣x2+8x,故选D.点评:此题考查了动点问题,注意掌握含30°直角三角形的性质与二次函数的性质;注意掌握分类讨论思想的应用.二、填空题:本题共5小题,满分15分.只要求填写最后结果,每小题填对得4分.13.(3分)(2015•淄博)计算:=3.考点:二次根式的乘除法.分析:根据二次根式的乘法法则计算.解答:解:原式===3.故填3.点评:主要考查了二次根式的乘法运算.二次根式的乘法法则=.14.(3分)(2015•淄博)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=36度.考点:多边形内角与外角;平行线的性质.分析:首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.解答:解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.点评:本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.15.(3分)(2015•淄博)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.考点:一次函数与一元一次不等式.分析:由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x 轴下方的部分对应的x的取值即为所求.解答:解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(3分)(2015•淄博)现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为18°.考点:圆锥的计算.分析:已知扇形底面半径是10cm,就可以知道展开图扇形的弧长是20πcm,根据弧长公式l=nπr÷180得到.解答:解:20π=,解得:n=90°,∵扇形彩纸片的圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为:18°.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.17.(3分)(2015•淄博)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.考点:二次函数综合题.分析:连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO 的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.解答:解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.点评:本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(4分)(2015•淄博)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再找出不等式组的解集,最后在数轴上表示出来即可.解答:解:∵解不等式①得:x>﹣1,解不等式②得:x≥3,∴不等式组的解集是x≥3,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,解此题的关键是求出不等式组的解集.19.(4分)(2015•淄博)如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.考点:作图—复杂作图.分析:(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD=DC,利用△ABD的周长=AB+BD+AD=AB+AC 即可求解.解答:解:(1)如图1,(2)如图2,∵DE是BC边的垂直平分线,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周长=AB+BD+AD=AB+AC=4+6=10cm.点评:本题主要考查了作图﹣复杂作图及垂直平分线的性质,解题的关键是熟记作垂直平分线的方法.20.(9分)(2015•淄博)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?考点:一元一次不等式组的应用.分析:(1)设组建中型两类图书角x个、小型两类图书角(30﹣x)个,由于组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.若组建一个中型图书角的费用是860本,组建一个小型图书角的费用是570本,因此可以列出不等式组,解不等式组然后去整数即可求解.(2)根据(1)求出的数,分别计算出每种方案的费用即可.解答:解:(1)设组建中型图书角x个,则组建小型图书角为(30﹣x)个.由题意,得,化简得,解这个不等式组,得18≤x≤20.由于x只能取整数,∴x的取值是18,19,20.当x=18时,30﹣x=12;当x=19时,30﹣x=11;当x=20时,30﹣x=10.故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个.(2)方案一的费用是:860×18+570×12=22320(元);方案二的费用是:860×19+570×11=22610(元);方案三的费用是:860×20+570×10=22900(元).故方案一费用最低,最低费用是22320元.点评:此题主要考查了一元一次不等式组在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题,同时也利用了一次函数.21.(10分)(2015•淄博)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲 6.7 6 3.41 90% 20%乙7.17.5 1.6980% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.考点:条形统计图;算术平均数;中位数;方差.专题:计算题.分析:(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的中位数,乙的平均数和方差;(2)比较两组的中位数进行判断;(3)通过乙组的平均数、中位数或方差进行说明.解答:解:(1)甲组:3,6,6,6,6,6,7,8,9,10,中位数为6;乙组:5,5,6,7,7,8,8,8,8,9,平均数=7.1,S乙2=1.69;(2)因为甲组的中位数为6,所以7分在甲组排名属中游略偏上;故答案为6,7.1,1.69;甲;(3)乙组的平均数高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.点评:本题考查了条形统计图:从条形图可以很容易看出数据的大小,便于比较.也考查了中位数和方差.22.(10分)(2015•淄博)如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42cm,AB=43cm,CF=42cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1cm.参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)考点:解直角三角形的应用.专题:应用题.分析:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,先在Rt△BFH中,利用∠FBH的正弦计算出BF≈48.28,则BC=BF+CF=≈90.3(cm),再分别在Rt△BDQ和Rt△ADQ中,利用正切定义用DQ表示出BQ和AQ,得BQ=,AQ=,则利用BQ+AQ=AB=43得到+=43,解得DQ≈56.999,然后在Rt△ADQ中,利用sin∠DAQ的正弦可求出AD的长.解答:解:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,在Rt△BFH中,∵sin∠FBH=,∴BF=≈48.28,∴BC=BF+CF=48.28+42≈90.3(cm);在Rt△BDQ中,∵tan∠DBQ=,∴BQ=,在Rt△ADQ中,∵tan∠DAQ=,∴AQ=,∵BQ+AQ=AB=43,∴+=43,解得DQ≈56.999,在Rt△ADQ中,∵sin∠DAQ=,∴AD=≈58.2(cm).答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm.点评:本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(10分)(2015•淄博)如图1,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,有一过点C 的动圆⊙O与斜边AB相切于动点P,连接CP.(1)当⊙O与直角边AC相切时,如图2所示,求此时⊙O的半径r的长;(2)随着切点P的位置不同,弦CP的长也会发生变化,试求出弦CP的长的取值范围.(3)当切点P在何处时,⊙O的半径r有最大值?试求出这个最大值.考点:圆的综合题.分析:(1)先根据勾股定理求出AB的长,再由切线的性质求出PB的长,过P作PQ⊥BC 于Q,过O作OR⊥PC于R,根据PQ∥AC得出PC的长,再由△COR∽△CPQ即可得出r 的值;(2)根据最短PC为AB边上的高,最大PC=BC=4即可得出结论;(3)当P与B重合时,圆最大.这时,O在BD的垂直平分线上,过O作OD⊥BC于D,由BD=BC=2,由于AB是切线可知∠ABO=90°,∠ABD+∠OBD=∠BOD+∠OBD=90°,故可得出∠ABC=∠BOD,根据锐角三角函数的定义即可得出结论.解答:(1)解:如图1,∵在Rt△ACB中,∠ACB=90°,AC=3,BC=4,∴AB===5.∵AC、AP都是圆的,圆心在BC上,AP=AC=3,∴PB=2,过P作PQ⊥BC于Q,过O作OR⊥PC于R,∵PQ∥AC,∴===,∴PQ=,BQ=,∴CQ=BC﹣BQ=,∴PC==,∵点O是CE的中点,∴CR=PC=,∴∠PCE=∠PCE,∠CRO=∠CQP,∴△COR∽△CPQ,∴=,即=,解得r=;(2)解:∵最短PC为AB边上的高,即PC==,最大PC=BC=4,∴≤PC≤4;(3)解:如图2,当P与B重合时,圆最大.O在BD的垂直平分线上,过O作OD⊥BC 于D,由BD=BC=2,∵AB是切线,∴∠ABO=90°,∴∠ABD+∠OBD=∠BOD+∠OBD=90°,∴∠ABC=∠BOD,∴=sin∠BOD=sin∠ABC==,∴OB=,即半径最大值为.点评:本题考查的是圆的综合题,熟知切线的性质、勾股定理、相似三角形的判定与性质等知识是解答此题的关键.24.(10分)(2015•淄博)(1)抛物线m1:y1=a1x2+b1x+c1中,函数y1与自变量x之间的部分对应值如表:x …﹣2 ﹣1 1 2 4 5 …y1…﹣5 0 4 3 ﹣5 ﹣12 …设抛物线m1的顶点为P,与y轴的交点为C,则点P的坐标为(1,4),点C的坐标为(0,3).(2)将设抛物线m1沿x轴翻折,得到抛物线m2:y2=a2x2+b2x+c2,则当x=﹣3时,y2=12.(3)在(1)的条件下,将抛物线m1沿水平方向平移,得到抛物线m3.设抛物线m1与x轴交于A,B两点(点A在点B的左侧),抛物线m3与x轴交于M,N两点(点M在点N 的左侧).过点C作平行于x轴的直线,交抛物线m3于点K.问:是否存在以A,C,K,M 为顶点的四边形是菱形的情形?若存在,请求出点K的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)先利用待定系数法求出抛物线m1的解析式为y1=﹣x2+2x+3,再配成顶点式可得到P点坐标,然后计算自变量为0时的函数值即可得到C点坐标;(2)根据抛物线的几何变换得到抛物线m1与抛物线m2的二次项系数互为相反数,然后利用顶点式写出抛物线m2的解析式,再计算自变量为﹣3时的函数值;(3)先确定A点坐标,再根据平移的性质得到四边形AMKC为平行四边形,根据菱形的判定方法,当CA=CK时,四边形AMKC为菱形,接着计算出AC=,则CK=,然后根据平移的方向不同得到K点坐标.解答:解:(1)把(﹣1,0),(1,4),(2,3)分别代入y1=a1x2+b1x+c1得,解得.所以抛物线m1的解析式为y1=﹣x2+2x+3=﹣(x﹣1)2+4,则P(1,4),当x=0时,y=3,则C(0,3);(2)因为抛物线m1沿x轴翻折,得到抛物线m2,所以y2=(x﹣1)2﹣4,当x=﹣3时,y2=(x+1)2﹣4=(﹣3﹣1)2﹣4=12.故答案为(1,4),(0,3),12;(3)存在.当y1=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(0,3),∵抛物线m1沿水平方向平移,得到抛物线m3,∴CK∥AM,CK=AM,∴四边形AMKC为平行四边形,当CA=CK时,四边形AMKC为菱形,而AC==,则CK=,当抛物线m1沿水平方向向右平移个单位,此时K(,3);当抛物线m1沿水平方向向左平移个单位,此时K(﹣,3).点评:本题考查了二次函数的综合题:熟练掌握二次函数的性质和菱形的判定;会利用待定系数法求二次函数解析式;会运用数形结合的数学思想方法解决问题.。
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分•在每小题给出的四个选项中,只有一项是符合题目要求的)1计算(-18)吒的结果等于()A • - 3B • 3C _D •33考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(-18)%= - 3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.2 . cos45°的值等于()A .B . :C . —D .二2 2 2考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入求解.解答:解:cos45°=二.2故选B .点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3. (3分)(2015?天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A .点评:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4. (3分)(2015?天津)据2015年5月4日《天津日报》报道,五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()7 6 5 4A . 0.227X0B . 2.27 >10C . 22.7X0D . 227 X10考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为aX10n的形式,其中1弓a|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将2270000用科学记数法表示为 2.27»06.故选B .点评:此题考查科学记数法的表示方法. 科学记数法的表示形式为a>10n的形式,其中1哼a| v 10,n为整数,表示时关键要正确确定a的值以及n的值.5. (3分)(2015?天津)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A .点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6. (3分)(2015?天津)估计* 11的值在()A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间考点:估算无理数的大小.专题:计算题.分析:由于9 v 11v 16,于是1v迪v#| ,从而有3<甘| . v 4.解答:解:9 v 11 v 16,•••.丁,••• 3v v 4.故选C.点评:本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7. (3分)(2015 ?天津)在平面直角坐标系中,把点P (- 3, 2)绕原点O顺时针旋转180 °所得到的对应点P'的坐标为()A . (3, 2)B. (2,- 3)C. ( - 3,- 2)D. (3, - 2)考点:坐标与图形变化-旋转.分析:将点P绕原点O顺时针旋转180 °实际上是求点P关于原点的对称点的坐标.解答:解:根据题意得,点P关于原点的对称点是点P',••• P点坐标为(-3, 2),•点P的坐标(3, - 2).故选:D.点评:本题考查了坐标与图形的变换-旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.23& (3分)(2015?天津)分式方程.=的解为()x _3 xA. x=0B. x=5C. x=3D. x=9考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x - 9,解得:x=9 ,经检验x=9是分式方程的解,故选D .点评:此题考查了解分式方程,解分式方程的基本思想是转化思想”,把分式方程转化为整式方程求解•解分式方程一定注意要验根.9. (3分)(2015?天津)己知反比例函数y—‘,当1<x v 3时,y的取值范围是()xA . 0<y< I B. 1< y< 2 C. 2< y< 6 D. y>6考点:反比例函数的性质.分析:利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.解答:解:T k=6 >0,•••在每个象限内y随x的增大而减小,又•••当x=1 时,y=6,当x=3 时,y=2 ,•••当1< x< 3 时,2< y < 6.故选C.点评:本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k< 0时,在每一个象限,y随x的增大而增大.210.(3分)(2015?天津)己知一个表面积为12dm的正方体,则这个正方体的棱长为()A . 1dm B. :dm C . 栏dm D . 3dm考点:算术平方根.分析:根据正方体的表面积公式:s=6a2,解答即可.解答:解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=:.故选B .点评:此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.11. (3分)(2015?天津)如图,已知?ABCD中,AE丄BC于点E,以点B为中心,取旋转角等于/ ABC ,把厶BAE顺时针旋转,得到△ BA 'E',连接DA 若/ ADC=60 ° / ADA =50 ° 则/ DA E的大小为()A . 130°B. 150°C. 160°D. 170°考点:旋转的性质;平行四边形的性质.分析:根据平行四边形对角相等、邻角互补,得/ ABC=60 ° / DCB=120 °再由/ A'DC=10 °可运用三角形外角求出/ DA B=130 °再根据旋转的性质得到/ BA 'E'= / BAE=30 °从而得到答案.解答:解:•••四边形ABCD是平行四边形,/ ADC=60 °•••/ ABC=60 ° / DCB=120 °•••/ ADA =50 °•••/ A'DC=10 °•••/ DA B=130 °••• AE丄BC于点E,•••/ BAE=30 °•••△ BAE顺时针旋转,得到△ BA 'E',•••/ BA E'= / BAE=30 °•••/ DA E = / DA B+ / BA 'E '=160°故选:C.点评:本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出/ DA B和/ BA E'2 :12. (3分)(2015?天津)已知抛物线y= - x +三x+6与x轴交于点A,点B,与y轴交于6 2点C .若D为AB的中点,贝y CD的长为()A .二B .二C. D.点4 2 2 2考点:抛物线与x轴的交点.-2 ';分析:令y=0 ,则-—x + x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD6 2的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.解答:解:令y=0,则-一x2+±x+6=0 ,6 2解得:XI=12, X2=- 3•A、B两点坐标分别为(12, 0)(- 3, 0)•/ D为AB的中点,•- D (4.5, 0),•OD=4.5 ,当x=0 时,y=6 ,•OC=6 ,•CD=「=三.故选:D.点评:本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13. (3分)(2015?天津)计算;x2?x5的结果等于x7.考点:同底数幕的乘法.分析:根据同底数幕的乘法,可得答案.解答:解:x2?x5=x2+5=x7,故答案为:x7.点评:本题考查了同底数幕的乘法,同底数幕的乘法底数不变指数相加.14. (3分)(2015?天津)若一次函数y=2x+b (b为常数)的图象经过点(1, 5),则b的值为 3 .考点:一次函数图象上点的坐标特征.分析:把点(1, 5)代入函数解析式,利用方程来求b的值.解答:解:把点(1, 5)代入y=2x+b,得5=2X1+b,解得b=3.故答案是:3.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.15. (3分)(2015?天津)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是:.一9—考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:•••共4+3+2=9个球,有2个红球,•••从袋子中随机摸出一个球,它是红球的概率为•:,9故答案为::.9点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=::.n16. (3分)(2015?天津)如图,在△ ABC中,DE // BC,分别交AB , AC于点D、E.若则DE的长为 3.6考点:相似三角形的判定与性质.分析:根据平行线得出△ ADE ABC,根据相似得出比例式,代入求出即可.解答:解:AD=3 , DB=2 ,• AB=AD+DB=5•/ DE // BC ,• △ ADE ABC ,•辿卫■/ AD=3 , AB=5 , BC=6 ,•二工• ■,• DE=3.6 .故答案为:3.6.点评:本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17. (3分)(2015?天津)如图,在正六边形ABCDEF中,连接对角线AC, CE, DF, EA , FB,可以得到一个六角星.记这些对角线的交点分别为H , I, J, K , L、M,则图中等边三角形共有8个.考点:正多边形和圆;等边三角形的判定.分析:在正六边形ABCDEF的六个顶点是圆的六等分点,即可求得图中每个角的度数,即可判断等边三角形的个数.解答:解:等边三角形有△ AML、△ BHM、△ CHI、△ DIJ、△ EKJ、△ FLK、△ ACE、△ BDF共有8个.故答案是:&点评:本题考查了正六边形的性质,正确理解正六边形ABCDEF的六个顶点是圆的六等分点是关键.18. (3分)(2015?天津)在每个小正方形的边长为1的网格中.点A , B , D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF .(I)如图①,当BE= •'时,计算AE+AF的值等于:一一L2 _ 2 —(H)当AE+AF取得最小值时,请在如图② 所示的网格中,用无刻度的直尺,画出线段AE , AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H , K ,连接BH , CK,相交于点P,连接AP,与BC相交,得点E,取格点M , N连接DM , CN,相交于点G,连接AG,与BD相交,得点F,线段AE , AF即为所求. .图①图②考点:轴对称-最短路线问题;勾股定理.专题:作图题.分析:(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=、「;-|" 一 - ,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF 移到AE 的延长线上,因此可以构造全等三角形,首先选择格点H使/ HBC= / ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH=.,,;q__.,丄=5,结合相似三角形选出格点K,根据•’二,得BP= BH^ ,=4=DA,易证△ ADF ◎△ PBE,因此可得到5 5 °PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB丄BC ,因此首先确定格点M使DM丄DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到',得DG=Z DM=2拓=3,易证△ DFG也BEA,因此可得DC DG 3 5 5到AE=GF,故线段AG即为所求的AE+AF的最小值.解答:解:(1)根据勾股定理可得:DB=因为BE=DF=_,2所以可得AF= • |尸2.5,2根据勾股定理可得:AE=二;-* ---'',所以AE+AF=. -故答案为:仝二;2(2)如图,构造长度BP使BP=AD=4 ,根据勾股定理可知BH= -=5,结合相似三角形选出格点HK HP 1 A dK,根据…'■"•,得BP= :BH^ . ! .=4=DA,易证△ ADF ◎△ PBE,因此可得到PE=AF ,D C D P4 5 5线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB丄BC ,因此首先确定格点M使DM丄DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到* 「 :得DG= ‘DM= —拓=3,易证△ DFG也BEA,因此可得到AE=GF ,DC DG 3 5 5故线段AG即为所求的AE+AF的最小值.故答案为:取格点 H , K ,连接BH , CK ,相交于点 P ,连接AP ,与BC 相交,得点E ,取 格点M , N 连接DM , CN ,相交于点 G ,连接AG ,与BD 相交,得点F ,线段AE , AF 即 为所求. 点评: 此题考查最短路径问题,关键是根据轴对称的性质进行分析解答.三、解答题(本大题共 7小题,共66分•解答应写出文字说明、演算算步骤或推理过程)请结合题意填空,完成本题的解答.(I )不等式①,得 X 绍; (n )不等式②,得 x 老 ;(川)把不等式 ①和② 的解集在数轴上表示出来I I Q I I I I 去0 12 3 4 5 6(W )原不等式组的解集为 3纟<5 .考点: 解一元一次不等式组;在数轴上表示不等式的解集.分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 解答: 解:(I )不等式①,得x 為;(n )不等式②,得x <5;(川)把不等式 ①和② 的解集在数轴上表示出来0 1 2 3 4 —5~6^(W )原不等式组的解集为 3纟<5.故答案分别为:x 為,x 老,3<老.点评: 本题考查的是解一元一次不等式组, 熟知 同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20. ( 8分)(2015?天津)某商场服装部为了解服装的销售情况,统计了每位营业员在某月 的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图 ①和图②.请根据相关信息,解答下列问题.(1) 该商场服装部营业员的人数为 25 ,图①中m 的值为 28 (n )求统计的这组销售额额数据的平均数、众数和中位数.考点: 条形统计图;扇形统计图;加权平均数;中位数;众数. 分析: (1)根据条形统计图即可得出样本容量根据扇形统计图得出 m 的值即可;(2) 利用平均数、中位数、众数的定义分别求出即可; 解答: 解:(1)根据条形图2+5+7+8+3=25 (人), m=100 - 20 - 32 - 12 - 8=28;19. (8分)(2015?天津)解不等式组(x+3>6, ©[2x-②人数图②故答案为:25, 28 .(2)观察条形统计图,••—二12X 2+15冬5+]8存了+21冬8+24勺3=18 6•'下•••这组数据的平均数是18.6,••在这组数据中,21出现了8次,出现的次数最多,•这组数据的众数是21,••将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,•这组数据的中位数是18.点评:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识. 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21. (10分)(2015?天津)已知A、B、C是O O上的三个点.四边形OABC是平行四边形,过点C 作O O的切线,交AB的延长线于点 D .(I)如图①,求/ ADC的大小.(n)如图②,经过点O作CD的平行线,与AB交于点E,与"•交于点F,连接AF,求考点:切线的性质;平行四边形的性质.分析:(I)由CD是O O的切线,C为切点,得到OC丄CD,即/ OCD=90。
成都市二〇一五年高中阶段教育学校统一招生考试数学A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.的倒数是(A)(B)(C)(D)2.如图所示的三棱柱的主视图是(A)(B)(C)(D)3.今年月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。
新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为万平方米,用科学计数法表示万为(A)(B)(C)(D)4.下列计算正确的是(A)(B)(C)(D)5.如图,在中,,,,, 则的长为(A)(B)(C)(D)6.一次函数的图像不经过(A)第一象限(B)第二象限(C)第三象限(D)第四象限7.实数、在数轴上对应的点的位置如图所示,计算的结果为(A)(B)(C)(D)8.关于的一元二次方程有两个不相等实数根,则的取值范围是(A)(B)(C)(D)且9.将抛物线向左平移个单位长度,再向下平移个单位长度,得到的抛物线的函数表达式为A、 B、C、 D、10.如图,正六边形内接于圆,半径为,则这个正六边形的边心距和弧的长分别为(A)、(B)、(C)、(D)、第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.因式分解:__________.12.如图,直线,为等腰直角三角形,,则________度.第12题图第13题图第14题图13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中阅读时间的中位数是_______小时.14.如图,在平行四边形中,,,将平行四边形沿翻折后,点恰好与点重合,则折痕的长为__________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)(1)计算:(2)解方程组:16. (本小题满分6分)化简:17.(本小题满分8分)如图,登山缆车从点A出发,途经点B后到达终点C.其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67 ,cos42°≈0.74 ,tan42°≈0.90)18. (本小题满分8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)求获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请使用画树状图或列表的方法求恰好选到A,B两所学校的概率.19. (本小题满分10分)如图,一次函数的图象与反比例(为常数,且)的图象交于,两点.(1)求反比例函数的表达式及点的坐标;(2)在轴上找一点,使的值最小,求满足条件的点的坐标及的面积.20.(本小题满分10分)如图,在中,,的垂直平分线分别与,及的延长线相交于点,,,且.是的外接圆,的平分线交于点,交于点,连接,.(1)求证:;(2)试判断与的位置关系,并说明理由;(3)若,求的值.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.比较大小:________.(填,,或)22.有9张卡片,分别写有这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则关于x的不等式组有解的概率为_________.23.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2B2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则点An的坐标为____________.24.如图,在半径为5的中,弦,是弦所对的优弧上的动点,连接,过点作的垂线交射线于点,当是等腰三角形时,线段的长为 .图(1)图(2)图(3)25.如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)①方程是倍根方程;②若是倍根方程,则;③若点在反比例函数的图像上,则关于的方程是倍根方程;④若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为.二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上)26、(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用元购进了一批这种衬衫,面市后果然供不应求,商家又用元够进了第二批这种衬衫,所购数量是第一批购进量的倍,但单价贵了元。
(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完利润率不低于(不考虑其它因素),那么每件衬衫的标价至少是多少元?27、(本小题满分10分)已知分别为四边形和的对角线,点在内,。
(1)如图①,当四边形和均为正方形时,连接。
1)求证:∽;2)若,求的长。
(2)如图②,当四边形和均为矩形,且时,若,求的值;(3)如图③,当四边形和均为菱形,且时,设,试探究三者之间满足的等量关系。
(直接写出结果,不必写出解答过程)28.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线y=ax 2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.备用图E2015成都中考参考答案及详细解析一、选择题1、【答案】:A【解析】:根据倒数的定义,很容易得到的倒数是,选A。
2、【答案】:B【解析】:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。
从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选B。
3、【答案】:C【解析】:科学记数法的表示形式为的形式,其中,n为整数。
确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数。
将126万用科学记数法表示1.26×106元,选B。
4、【答案】:C【解析】:A、与是同类项,能合并,。
故本选项错误。
B、与是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。
故本选项错误。
C、根据幂的乘方法则。
故本选项正确。
D、根据完全平方公式。
故本选项错误。
综上,选C。
5、【答案】:B【解析】:根据平行线段的比例关系,,即,,选B。
6、【答案】:D【解析】:∵,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,选D。
7、【答案】:C【解析】:根根据数轴上两数的特点判断出a、b的符号及绝对值的大小,再对进行分析即可。
由图可知a<0,b>0。
所以a-b<0。
为的相反数,选C。
8、【答案】:D【解析】:这是一道一元二次方程的题,首先要是一元二次,则,然后有两个不想等的实数根,则,则有,所以且,因此选择。
9、【答案】:A【解析】:这个题考的是平移,函数的平移:左加右减,上加下减。
向左平移个单位得到:,再向下平移个单位得到:,选择。
10、【答案】:D【解析】:在正六边形中,我们连接、可以得到为等边三角形,边长等于半径。
因为为边心距,所以,所以,在边长为的等边三角形中,边上的高。
弧所对的圆心角为,由弧长计算公式:,选D。
二、填空题11、【答案】:【解析】:本题考查了平方差公式,,因此,。
12、【答案】:【解析】:本题考查了三线八角,因为为等腰直角三角形,所以,又,13、【答案】:1【解析】:把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
此题,显然中位数是1。
14、【答案】:3【解析】:点恰好与点重合,且四边形是平行四边形,根据翻折的性质,则,,在中,由勾股定理得三、解答题15、(1)【答案】:8【解析】:原式(2)【答案】:【解析】:两式相加得,解得,将代入第一个式子,解得,所以方程组的解为。
16、【答案】:【解析】:原式=17、【答案】:234m【解析】:如图所示,缆车从点A运行到点C的垂直上升的距离为,又∵和均为直角三角形,∴18、【答案】:(1)30人;(2)【解析】:(1)由图可知三等奖占总的25%,总人数为人,一等奖占,所以,一等奖的学生为人(2)这里提供列表法:A B C DA AB AC ADB AB BC BDC AC BC CDD AD BD CD从表中我们可以看到总的有12种情况,而AB分到一组的情况有2种,故总的情况为19、【答案】:(1),;(2)P ,【解析】:(1)由已知可得,,,∴反比例函数的表达式为,联立解得或,所以。
(2)如答图所示,把B点关于x轴对称,得到,连接交x轴于点,连接,则有,,当P点和点重合时取到等号。
易得直线:,令,得,∴,即满足条件的P的坐标为,设交x轴于点C,则,∴,即20、【答案】:(1)见解析(2)见解析(3)【解析】:(1)由已知条件易得,,又,∴()(2)与相切。
理由:连接,则,∴,∴。
(3)连接,,由于为垂直平分线,∴,∴,又∵为角平分线,∴,∴,∴,∴,即,∵在等腰中,∴B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【答案】:<【解析】:为黄金数,约等于0.618,,显然前者小于后者。