苏科版八年级下册数学期中试卷(带答案)-百度文库
- 格式:doc
- 大小:1.21 MB
- 文档页数:26
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.302.下列调查中,最适合采用普查的是()A.长江中现有鱼的种类B.八年级(1)班36名学生的身高C.某品牌灯泡的使用寿命D.某品牌饮料的质量3.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5004.下列图标中,是中心对称图形的是()A.B.C.D.5.如果把分式aa b中的a、b都扩大2倍,那么分式的值一定()A.是原来的2倍B.是原来的4倍C.是原来的12D.不变6.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为()A.4cm B.6cm C.8cm D.10cm7.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.10.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.5⊥交AB于点F,若11.如图所示,在矩形ABCD中,E为AD上一点,EF CE=,求AE的长( )DE=,矩形ABCD的周长为16,且CE EF2A.2B.3C.4D.612.下列调查中,最适宜采用全面调查方式的是()A.调查某市成年人的学历水平B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.了解某个班级学生的视力情况二、填空题13.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm2,则阴影部分的面积为_____cm2.14.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.15.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.16.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______ 。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.如图是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =( )A .4cmB .6cmC .8cmD .10cm2.将下列分式中x ,y (xy ≠0)的值都扩大为原来的2倍后,分式的值一定不变的是( )A .312x y +B .232x yC .232x xyD .3232x y3.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 和BD 相交于点O ,OE ⊥BD 交AD 于E ,则ΔABE 的周长为( )A .4cmB .6cmC .8cmD .10cm4.如图,▱ABCD 的周长为22m ,对角线AC 、BD 交于点O ,过点O 与AC 垂直的直线交边AD 于点E ,则△CDE 的周长为( )A .8cmB .9cmC .10cmD .11cm5.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4 D .4或-2 6.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( )A .10B .40C .96D .1927.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( )A .B .C .D .8.如图,在四边形ABCD 中,AD BC =,BC ,E 、F 、G 分别是AB 、CD 、AC 的中点,若10DAC ∠=︒,66ACB ∠=︒,则FEO ∠等于( )A .76°B .56°C .38°D .28°9.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x=图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .403910.下列说法正确的是( ) A .矩形的对角线相等垂直 B .菱形的对角线相等 C .正方形的对角线相等D .菱形的四个角都是直角二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.12.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .13.已知()22221140ab a b a b +=≠+,则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为_____.14.在平行四边形ABCD 中,对角线AC 与BD 相交于点O .要使四边形ABCD 是正方形,还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).15.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.16.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.17.在函数y =1xx +中,自变量x 的取值范围是_____. 18.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.19.若分式方程211x m x x-=--有增根,则m =________. 20.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.三、解答题21.先化简:22241a a a a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a 的值代入求值.22.已知:如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,且BE =DF 求证:AC 、EF 互相平分.23.解方程:224124x x x +-=-- 24.我校对本校的八年级学生对待学习的态度进行了一次抽样调查,结果分成“非常感兴趣”、“比较感兴趣”、“一般般”、“不感兴趣”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题:(1)本次问卷共随机调查了_________名学生,扇形统计图中m _________,扇形D 所对应的圆心角为_________°;(2)请根据数据信息补全条形统计图;(3)若该校有2000名学生,估计选择“非常感兴趣”、“比较感兴趣”共约有多少人? 25.如图,在平面直角坐标系中,△ABC 和△A 'B 'C '的顶点都在格点上.(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.26.如图,已知一次函数y=x+2的图象与x轴、y轴分别交于点A,B两点,且与反比例函数y=mx的图象在第一象限交于点C,CD⊥x轴于点D,且OA=OD.(1)求点A的坐标和m的值;(2)点P是反比例函数y=mx在第一象限的图象上的动点,若S△CDP=2,求点P的坐标.27.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.28.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF , ∴四边形ECDF 是正方形, ∴DC=EC=BC-BE , ∵四边形ABCD 是矩形, ∴BC=AD=10, ∴DC=10-6=4(cm ). 故选A.2.C解析:C 【分析】根据分式的基本性质解答. 【详解】解:∵分式中x ,y (xy ≠0)的值都扩大为原来的2倍,∴A. 23161224x x y y ⨯++=⨯,分式的值发生改变;B. 222332(2)4x xy y ⨯=⨯,分式的值发生改变;C. 223(2)32222x x x y xy ⨯=⨯⨯,分式的值一定不变;D.33223(2)32(2)x x y y⨯=⨯,分式的值发生改变; 故选:C .【点睛】本题考查了分式的基本性质:分式的分子和分母都乘以或除以同一个不为0的数(或式子),分式的值不变.3.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD的周长为20cm,∴AB+AD=10cm∴△ABE的周长=10cm.故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!4.D解析:D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,AO=CO,可得AD+CD=11cm,由线段垂直平分线的性质可得AE=CE,即可求△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AO=CO,又∵EO⊥AC,∴AE=CE,∵▱ABCD的周长为22cm,∴2(AD+CD)=22cm∴AD+CD=11cm∴△CDE的周长=CE+DE+CD=AE+DE+CD=AD+CD=11cm故选:D.【点睛】本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本题的关键.5.C解析:C 【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩,由40x -=,得:4x =, 由20x +≠,得:2x ≠-. 综上,得4x =,即x 的值为4. 故选:C . 【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.6.C解析:C 【分析】根据菱形的面积等于对角线乘积的一半即可解决问题. 【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =, ∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C . 【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型.7.B解析:B 【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项. 【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数ky x=-的图象分布在二、四象限,没有选项符合题意;当k 0<时,函数1y kx =+的图象经过一、二、四象限,反比例函数ky x=-的图象分布在一、三象限,B 选项正确, 故选:B . 【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大.8.D解析:D 【分析】利用EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线,求出EG FG =,从而得出FGC ∠和EGC ∠,再根据EG FG =,利用三角形内角和定理即可求出FEG ∠的度数.【详解】解:∵E 、F 、G 分别是AB 、CD 、AC 的中点, ∴EG 、FG 分别是ABC ∆和ADC ∆两个三角形的中位线, ∴//EG BC ,//FG AD ,且22AD BCEG FG ===, ∴10FGC DAC ∠=∠=︒,180114EGC ACB ∠=︒-∠=︒, ∴124EGF FGC EGC ∠=∠+∠=︒, 又∵EG FG =,∴()()111801801242822FEG EGF ∠=-∠=-︒=︒︒︒. 故本题答案为:D . 【点睛】本题考查了三角形内角和定理,等腰三角形的判定与性质,三角形中位线定理.解决本题的关键是正确理解题意,熟练掌握三角形中位线定理,通过等腰三角形的性质找到相等的角.9.A解析:A 【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x=中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x ...2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x=, 得:1y 、2y 、3y …2020y202040392019.5 2y==,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k≠0)的图象是双曲线;图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.C解析:C【分析】根据矩形、菱形的性质和正方形的性质判断即可.【详解】解:A、矩形的对角线相等且平分,选项错误,不符合题意;B、菱形的对角线垂直且平分,选项错误,不符合题意;C、正方形的对角线相等,选项正确,符合题意;D、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意;故选:C.【点睛】本题考查矩形、菱形和正方形的性质,正确区分矩形、菱形和正方形的性质是解题的关键.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D 、E 分别是△ABC 的边AB 、AC 的中点,所以DE 是△ABC 的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE 是△ABC 的中位线,从而得解.【详解】因为点D 、E 分别是△ABC 的边AB 、AC 的中点,所以DE 是△ABC 的中位线,所以DE=12BC=3. 故答案为3.考点:三角形的中位线定理.13.0或-2【分析】根据(ab≠0),可以得到a 和b 的关系,从而可以求得所求式子的值.【详解】解:∵(ab≠0),∴,∴(a2+b2)2=4a2b2,∴(a2﹣b2)2=0,∴a2=b2解析:0或-2【分析】 根据2222114a b a b+=+(ab ≠0),可以得到a 和b 的关系,从而可以求得所求式子的值.【详解】 解:∵2222114a b a b +=+(ab ≠0), ∴2222224b a a b a b+=+, ∴(a 2+b 2)2=4a 2b 2,∴(a 2﹣b 2)2=0,∴a 2=b 2,∴a =±b ,经检验:a b =±符合题意,当a =b 时,2019202020192020110,b a a b ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭当a =﹣b 时,()()2019202020192020112,b a a b ⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭ 故答案为:0或﹣2.【点睛】 本题考查的是代数式的值,同时考查了因式分解的应用,类解分式方程的方法,掌握以上知识是解题是关键.14.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC=BD ,∴四边形ABCD 是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD 是平行四边形,AB =AD ,∴四边形ABCD 是菱形,又∵AC =BD ,∴四边形ABCD 是正方形,①正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AC ⊥BD ,∴四边形ABCD 是正方形,②正确;∵四边形ABCD 是平行四边形,AB ⊥AD ,∴四边形ABCD 是矩形,又∵AB =AD ,∴四边形ABCD 是正方形,③正确;④AB =BD ,且AB ⊥BD ,无法得出四边形ABCD 是正方形,故④错误;∵四边形ABCD 是平行四边形,OB =OC ,∴四边形ABCD 是矩形,又∵OB ⊥OC ,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键.15.18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,解析:18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.18.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.19.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.20.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适, 故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.三、解答题21.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.22.证明见解析【分析】连接AE 、CF ,证明四边形AECF 为平行四边形即可得到AC 、EF 互相平分.【详解】解:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD ﹦BC ,又∵DF ﹦BE ,∴AF ﹦CE ,又∵AF ∥CE ,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.23.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x 2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.(1)50;32;43.2 (2)见解析 (3)1120人【分析】(1)由A 的数据即可得出调查的人数,得出16100%32%50m =⨯=(2)求出C 的人数即可;(3)由1000(16%40%)⨯+,计算即可.【详解】(1)816%50÷=(人),16100%32%50⨯=,10016403236043.2100---⨯︒=︒ 故答案为:50,32,43.2(2)5040%20⨯=(人),补全条形统计图如图所示(3)()200016%40%1120⨯+=(人);答:估计选择“非常了解”、“比较了解”共约有1120人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)见解析 (2)(3,4)【分析】(1)根据网格结构找出点A 、C 绕点B 顺时针旋转90°后的对应点A 1、C 1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.26.(1)(-2,0);8 (2)(1,8)或(3,83)【分析】(1)根据待定系数法就可以求出函数的解析式;(2)1||2CDP P C S CD x x =⨯⨯-△,即可求解. 【详解】解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2), OA OD =,故点(2,0)D ,则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,将点C 的坐标代入反比例函数表达式得:42m =, 解得:8m =,故点A 的坐标为(2,0)-,8m =;(2)1142222CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,故点P 的坐标为(1,8)或8(3,)3.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.27.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×2505000=18°,故答案为:18;(4)在扇形统计图中表示观点E的百分比是:2005000×100%=4%,故答案为:4%.【点睛】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.28.t=2【分析】当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,∵EF∥AB,BF∥AE,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t=2秒时,EF∥AB.【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.下面的图形中,是中心对称图形的是()A.B.C.D.2.下列图标中,是中心对称图形的是()A.B.C.D.3.下列成语故事中所描述的事件为必然发生事件的是()A.水中捞月B.瓮中捉鳖C.拔苗助长D.守株待兔4.一个事件的概率不可能是()A.32B.1 C.23D.05.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ平行于AB的次数是()A.2 B.3 C.4 D.56.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体7.下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式8.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件9.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.510.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()A.200(1+ a%)2=148 B.200(1- a%)2=148C.200(1- 2a%)=148 D.200(1-a2%)=148二、填空题11.不透明的袋子里装有3只相同的小球,给它们分别标上序号1、2、3后搅匀.事件“从中任意摸出1只小球,序号为4”是_____事件(填“必然”、“不可能”或“随机”).12.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.13.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.302.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2603.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5004.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.120°B.112°C.110°D.100°5.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为()A.4cm B.6cm C.8cm D.10cm6.已知关于x的分式方程22x mx+-=3的解是5,则m的值为()A.3 B.﹣2 C.﹣1 D.8 7.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=08.用配方法解一元二次方程2620x x --=,以下正确的是( ) A .2(3)2x -= B .2(3)11x -= C .2(3)11x +=D .2(3)2x +=9.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .10.若分式42x x -+的值为0,则x 的值为( ) A .0B .-2C .4D .4或-211.已知关于x 的方程23x mx -=+的解是负数,则m 的取值范围为( ) A .6m >-且3m ≠- B .6m >-C .6m <-且3m ≠-D .6m <-12.下面图形中,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .二、填空题13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.14.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.15.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .17.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值=___.18.如图,在正方形ABCD 中,△ABE 为等边三角形,连接DE ,CE ,延长AE 交CD 于F 点,则∠DEF 的度数为_____.19.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.20.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积()3mV 的反比例函数,其图像如图所示.则其函数解析式为_________.21.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.22.如果用A表示事件“三角形的内角和为180°”,那么P(A)=_____.23.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是 .24.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.三、解答题25.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.26.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.27.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.28.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)作出点C 关于x 轴的对称点P .若点P 向右平移x (x 取整数)个单位长度后落在△A 2B 2C 2的内部,请直接写出x 的值.29.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG . (1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.30.如图,在正方形ABCD 内有一点P 满足AP AB =,PB PC =.连接AC 、PD .(1)求证:APB DPC ∆∆≌; (2)求PAC ∠的度数.31.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCDE分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 32.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F ,连接CF . (1)求证:AF=BD .(2)求证:四边形ADCF 是菱形.33.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点. (1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.34.在Rt △AEB 中,∠AEB =90°,以斜边AB 为边向Rt △AEB 形外作正方形ABCD ,若正方形ABCD 的对角线交于点O (如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形. 35.(发现)(1)如图1,在▱ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F .求证:△AOE ≌△COF ;(探究)(2)如图2,在菱形ABCD 中,点O 是对角线的交点,过点O 的直线分别交AD ,BC 于点E ,F ,若AC =4,BD =8,求四边形ABFE 的面积. (应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)36.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.2.A解析:A【解析】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.3.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.4.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.5.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD的周长为20cm,∴AB+AD=10cm∴△ABE的周长=10cm.故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!6.C解析:C【分析】将x=5代入分式方程中进行求解即可.【详解】把x=5代入关于x的分式方程22x mx+-=3得:25352m⨯+=-,解得:m=﹣1,故选:C.【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解.7.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.8.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=.故选:B.【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键. 9.B解析:B【分析】根据轴对称图形和中心对称图形的概念求解即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,又是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,不是中心对称图形,故此选项错误.故答案为B .【点睛】本题考查了轴对称图形和中心对称图形的识别,掌握轴对称图形和中心对称图形的概念是解答本题的关键.10.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值. 【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题. 11.A解析:A【分析】解分式方程,得到含有m 得方程的解,根据“方程的解是负数”,结合分式方程的分母不等于零,得到两个关于m 得不等式,解之即可.解:方程两边同时乘以1x +得:3(1)x m x -=+,解得:6=--x m ,又∵方程的解是负数,∴60--<m ,解不等式得:6m >-,综上可知:6m >-且3m ≠-,故本题答案为:A.【点睛】本题考查了分式方程的解;解一元一次不等式.解决本题的关键是熟练掌握分式方程的解法过程,注意分式方程分母不为0这一要求.12.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义对每个选项进行判断即可.【详解】A 项是轴对称图形,不是中心对称图形;B 项是中心对称图形,不是轴对称图形;C 项是中心对称图形,不是轴对称图形;D 项是中心对称图形,也是轴对称图形;故选:D .【点睛】本题考查了轴对称图形的定义和中心对称图形的定义,掌握知识点是解题关键.二、填空题13.∠B=90°.【分析】根据旋转的性质得AB=CD ,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD 为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD ,∠BAC=∠DCA ,则AB ∥CD ,得到四边形ABCD 为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,∴AB=CD ,∠BAC=∠DCA ,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.14.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.15.18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,解析:18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠解析:020.【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.17.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解解析:【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为5【点睛】本题考查轴对称-最短路线问题;菱形的性质.18.105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度解析:105°【分析】根据四边形ABCD是正方形,可得AB=AD,∠BAD=90°,△ABC为等边三角形,可得AE=BE=AB,∠EAB=60°,从而AE=AD,∠EAD=30°,进而求得∠AED的度数,再根据平角定义即可求得∠DEF的度数.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ABE为等边三角形,∴AE=BE=AB,∠EAB=60°,∴AE=AD,∠EAD=∠BAD﹣∠BAE=30°,∴∠AED=∠ADE=12(180°﹣30°)=75°,∴∠DEF=180°﹣∠AED=180°﹣75°=105°.故答案为105°.【点睛】本题考查了正方形的性质、等边三角形的性质,解决本题的关键是综合运用正方形的性质和等边三角形的性质.19.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率10.10.30.40.2=---=【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.20.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴.故答案为:解析:96 PV =【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.21.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.22.1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】解析:1【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【详解】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.23.6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,解析:6【分析】由菱形的性质可得AB=BC,再由∠ABC=60°得△ABC为等边三角形即可求得答案.【详解】根据菱形的性质可得AB=BC=6,∵∠ABC=60°,则△ABC为等边三角形,则AC=AB=6,故答案为:6.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.24.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16,所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.三、解答题25.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF 是平行四边形.26.(1)见解析;(2)15;见解析.【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求.(2)证明△ABE 的周长=AB +AD 即可.【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形∴AD =BC =10,AB =CD =5又由(1)知BE =DE∴15ABE AB AE BE AB AE ED AB C AD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键.27.见解析【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明.【详解】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠ABC =∠ADC ,∴∠ADF =∠DFC ,ED ∥BF ,∵∠ABE =∠CDF ,∴∠ABC -∠ABE =∠ADC -∠CDF ,即∠EBC =∠ADF ,∴∠EBC =∠DFC ,∴EB ∥DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.28.(1)图见解析;(2)图见解析;(3)x 的值为6或7.【分析】(1)分别作出B 、C 的对应点B 1,C 1即可解决问题;(2)分别作出A 、B 、C 的对应点A 2、B 2、C 2即可解决问题;(3)观察图形即可解决问题.【详解】(1)作图如下:△AB 1C 1即为所求;(2)作图如下:△A 2B 2C 2即为所求;(3)P 点如图,x 的值为6或7.【点睛】本题考查旋转、中心对称图形,格点作图,熟练掌握对称、旋转及网格作图的特征是解题关键.29.(1)见解析;(2)2AC AB 时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.30.(1)见解析;(2)15°【分析】(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可;(2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果.【详解】解:(1)∵四边形ABCD 为正方形,∴∠ABC=∠DCB=90°,AB=CD ,∵BP=PC ,∴∠PBC=∠PCB ,∴∠ABP=∠DCP ,又∵AB=CD ,BP=CP ,在△APB 和△DPC 中,AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△APB ≌△DPC (SAS );(2)由(1)得AP=DP=AB=AD ,∴△PAD 为等边三角形,∴∠PAD=60°,∠PAB=30°,在正方形ABCD 中,∠BAC=∠DAC=45°,∴∠PAC=∠PAD-∠CAD=60°-45°=15°.【点睛】本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键.31.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人.【解析】分析:(1)根据C 组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a 的值,m 的值;(2)根据a 的值补全频数分布直方图;(3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a =50﹣4﹣20﹣8﹣2=16,A 组所占的百分比是450=8%,则m =8. 故答案为50,16,8; (2)补全频数分布直方图如图:(3)扇形统计图中扇形B 的圆心角度数是360°×1650=115.2°; (4)每月零花钱的数额x 在30≤x <90范围的人数是1000×162050+=720(人). 答:每月零花钱的数额x 在30≤x <90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小.32.(1)见解析;(2)见解析.【分析】(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形.【详解】(1)∵AF ∥BC ,∴∠AFE=∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,∴AE=DE ,BD=CD在△AFE 和△DBE 中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFE ≌△DBE (AAS ))∴AF=BD(2)由(1)知,AF=BD ,且BD=CD ,∴AF=CD ,且AF ∥BC ,∴四边形ADCF 是平行四边形∵∠BAC=90°,D 是BC 的中点,∴AD =12BC =DC ∴四边形ADCF 是菱形【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.33.(1)见解析;(2)当∠A =90°时,FG ⊥FH .【分析】(1)根据等腰三角形的性质得到∠ABC =∠ACB ,根据平行线的性质、等腰三角形的判定定理得到AD =AE ,得到DB =EC ,根据三角形中位线定理证明结论;(2)延长FG 交AC 于N ,根据三角形中位线定理得到FH ∥AC ,FN ∥AB ,根据平行线的性质解答即可.【详解】(1)证明:∵AB =AC .∴∠ABC =∠ACB ,∵DE ∥BC ,∴∠ADE =∠ABC ,∠AED =∠ACB ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.34.(1)求证见解析;(2)2OE=EB+EA;(3)见解析.【分析】(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.【详解】(1)证明:延长EA至点F,使AF=BE,连接OF,如图所示:∵四边形ABCD是正方形,∴∠BOA=90°,OB=OA,∵∠AEB=90°,∴∠OBE+∠OAE=360°﹣90°﹣90°=180°,∵∠OAE+∠OAF=180°,。
苏科版八年级下册数学期中试卷(带答案)-百度文库doc一、选择题1.下面的图形中,是中心对称图形的是()A.B.C.D.2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.123.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.120°B.112°C.110°D.100°4.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱5.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()A.1000 B.1500 C.2000 D.25006.下列调查中,适宜采用普查方式的是()A.一批电池的使用寿命B.全班同学的身高情况C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家7.下列分式中,属于最简分式的是()A.62aB.2xxC.11xx--D.21xx+8.下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .调查某新型防火材料的防火性能,采用普查的方式9.下列图形不是轴对称图形的是( )A .等腰三角形B .平行四边形C .线段D .正方形 10.如图,是一组由菱形和矩形组成的图案,第1个图中菱形的面积为S (S 为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第2020个图中阴影部分的面积可以用含S 的代数式表示为( )(S ≥2且S 是正整数)A .20184SB .20194SC .20204SD .20214S二、填空题11.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.12.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.13.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b 1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.14.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.15.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有A.1组B.2组C.3组D.4组2.满足下列条件的四边形,不一定是平行四边形的是()A.两组对边分别平行B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等3.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A.5 B.8 C.10 D.124.下列调查中,适合采用普查的是()A.了解一批电视机的使用寿命B.了解全省学生的家庭1周内丢弃塑料袋的数量C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.了解扬州市中学生的近视率5.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=26°,则∠A′DB的度数是()A.120°B.112°C.110°D.100°6.下列图标中,是中心对称图形的是()A.B.C.D.7.下列成语故事中所描述的事件为必然发生事件的是()A.水中捞月B.瓮中捉鳖C.拔苗助长D.守株待兔8.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ平行于AB的次数是()A.2 B.3 C.4 D.59.已知关于x的分式方程22x mx+-=3的解是5,则m的值为()A.3 B.﹣2 C.﹣1 D.810.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体11.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20 B.25 C.30 D.10012.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形二、填空题13.如图,菱形ABCD的对角线AC、BD相交于点O,∠OBC=30°,则∠OCD=_____°.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.15.在平行四边形ABCD中,对角线AC与BD相交于点O.要使四边形ABCD是正方形,还需添加一组条件.下面给出了五组条件:①AB=AD,且AC=BD;②AB⊥AD,且AC⊥BD;③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD;⑤OB=OC,且OB⊥OC.其中正确的是_____(填写序号).16.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____.17.如图,在菱形ABCD 中,若AC =24 cm ,BD =10 cm ,则菱形ABCD 的高为________cm .18.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.19.若点()23,在反比例函数k y x=的图象上,则k 的值为________. 20.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.21.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.22.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.23.如图,点E在▱ABCD内部,AF∥BE,DF∥CE,设▱ABCD的面积为S1,四边形AEDF的面积为S2,则12SS的值是_____.24.▱ABCD的周长是32cm,∠ABC的平分线交AD所在直线于点E,且AE:ED=3:2,则AB的长为_____.三、解答题25.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.26.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.27.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.28.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.29.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.30.解方程:224124x x x +-=-- 31.化简求值:221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中31x = 32.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆;(2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.33.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了 名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ︒;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.34.如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F .(1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由;(3)△BEF 的周长为 .35.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?36.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形;(2)∵AB ∥CD ,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD ,∴∠BAD+∠ABC=180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形;(3)∵在四边形ABCD 中,AO =CO ,BO =DO ,∴四边形ABCD是平行四边形;(4)∵在四边形ABCD中,AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.故选C.2.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.3.C解析:C【分析】由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.【详解】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=OD,OC=OA,∠ABC=90°∴OC=OD,∴四边形CODE是菱形∵AB=4,BC=3225∴+=AC AB BC∴OC=5 2∴四边形CODE的周长=4×52=10故选:C.【点睛】本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.4.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.5.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.6.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.7.B解析:B【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A、水中捞月是不可能事件,故A错误;B、瓮中捉鳖是必然事件,故B正确;C、拔苗助长是不可能事件,故C错误;D、守株待兔是随机事件,故D错误;故选B.考点:随机事件.8.C解析:C【分析】当QP∥AB时,由AP∥BQ可得到ABQP为平行四边形,然后依据矩形的性质可得到AP=BQ,然后求得AP=BQ的次数即可.【详解】解:当QP∥AB时,∵在在矩形ABCD,AD∥BC,∴四边形ABQP为平行四边形,∴AP=BQ,∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.9.C解析:C【分析】将x =5代入分式方程中进行求解即可.【详解】把x =5代入关于x 的分式方程22x m x +-=3得:25352m ⨯+=-, 解得:m =﹣1,故选:C .【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解. 10.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A 、每个学生的身高是个体,故A 正确;B 、本次调查是抽样调查,故B 错误;C 、样本容量是500,故C 错误;D 、八年级10000名学生的身高是总体,故D 错误;故选:A .【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.11.B解析:B【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数.【详解】解:∵容量是50的,某一组的频率是0.5,∴样本数据在该组的频数0.55025⨯== .故答案为B .【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.解析:A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题13.60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°解析:60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°,∴∠OCD=90°﹣30°=60°,故答案为:60.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.14..【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解解析:6013.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB22A BCC+22512+=13,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=12BC•AC=12AB•CD,即12×12×5=12×13•CD,解得:CD=60 13,∴EF=60 13.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.15.①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方解析:①②③⑤【分析】】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【详解】∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,②正确;∵四边形ABCD是平行四边形,AB⊥AD,∴四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形,③正确;④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;∵四边形ABCD是平行四边形,OB=OC,∴四边形ABCD是矩形,又∵OB⊥OC,∴四边形ABCD是正方形,⑤正确;故答案为:①②③⑤.【点睛】本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 16.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17.【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=1解析:120 13【分析】先根据菱形的面积=两条对角线积的一半得出面积,再求出菱形的边长,由面积即可得出菱形的高.【详解】解:作DE⊥AB于E,如图所示:∵四边形ABCD是菱形,对角线AC=24,BD=10,∴AC⊥BD,OA=12AC=12,OB=12BD=5,菱形ABCD的面积=12AC·BD=12×24×10=120,AB=2212+5=13,又∵菱形ABCD的面积=AB·DE=120,∴DE=120 13,故答案为:120 13.【点睛】本题考查了菱形的性质、勾股定理、菱形面积的计算;根据菱形的性质由勾股定理求出边长是解题的关键.18.【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O解析:5【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB长为3,CE长为1,点O和点O′为正方形中心,∴OH=12×(3+1)=2,O′H=12×(3-1)=12×2=1,∴在直角三角形OHO′中:222+15【点睛】本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.19.6解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:620.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.21.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积,根据三角形面积公式求得△BOC面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,解析:1【分析】由题可知△DEO ≌△BFO ,阴影面积就等于△BOC 面积,根据三角形面积公式求得△BOC 面积即可.【详解】解:由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,阴影面积=△BOC 面积=12×2×1=1. 故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC 面积是解题的关键. 22.20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD⊥EF,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=,由勾股定理得:DE 5=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.23.2【分析】首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中, CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD , ∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12S S =2, 故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.24.6cm 或12cm .【分析】证△ABE 是等腰三角形,分“点E 在线段AD 上” 和“点E 在AD 的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E 在线段AD 上,如图1,∵四边解析:6cm 或12cm .【分析】证△ABE 是等腰三角形,分“点E 在线段AD 上” 和“点E 在AD 的延长线上”两种情况,分别求得答案即可.【详解】解:分两种情况:①点E 在线段AD 上,如图1,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,AD =BC ,∴AB +AD =12×32=16(cm ),∠AEB =∠CBE , ∵∠ABC 的平分线交AD 所在的直线于点E ,∴∠ABE =∠CBE ,∴∠ABE =∠AEB ,∴AB =AE ,∵AE :ED =3:2,∴AB :AD =3:5,∵平行四边形ABCD 的周长为32cm .∴AB的长为:16×38=6(cm).②点E在AD的延长线上,如图2,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴AB+AD=12×32=16(cm),∠AEB=∠CBE,∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE:ED=3:2,∴AB:AD=3:1,∵平行四边形ABCD的周长为32cm.∴AB的长为:16×34=12(cm);故答案为:6cm或12cm.【点睛】本题考查了平行四边形与角平分线线的综合应用,熟知以上知识点及应用是解题的关键.三、解答题25.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.26.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF是平行四边形.27.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.28.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.29.当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明见解析.【分析】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF,而OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【详解】当点O运动到AC的中点(或OA=OC)时,四边形AECF是矩形.证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO,又∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点睛】本题考查了角平分线的性质、平行线的性质、平行四边形的判定、矩形的判定.解题的关键是利用对角线互相平分的四边形是平行四边形开证明四边形AECF是平行四边形,并证明∠ECF是90°.30.-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:(x+2)2-4=x2-4,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.31.11x +;33【分析】通分合并同类项,再约分,代入求值.【详解】原式222111(1)x x x x x x -=⋅=+-+ 代入得原式33311==-+. 【点睛】本题考查分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(1)见解析 (2)见解析【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可. 【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.33.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°;(4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.34.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.一个事件的概率不可能是( )A .32B .1C .23D .02.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )A .15°B .22.5°C .30°D .45°3.如图,已知正方形ABCD ,对角线的交点M (2,2).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(﹣2012,2)B .(﹣2012,﹣2)C .(﹣2013,﹣2)D .(﹣2013,2) 4.下列方程中,关于x 的一元二次方程是( )A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=0 5.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是( )A .每个学生的身高是个体B .本次调查采用的是普查C .样本容量是500名学生D .10000名学生是总体 6.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)-B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 7.若顺次连接四边形ABCD 各边的中点得到一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形8.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:若抛掷硬币的次数为3000,则“正面朝上”的频数最接近( )A .1000B .1500C .2000D .2500 9.在□ ABCD 中,∠A =4∠D ,则∠C 的大小是( ) A .36°B .45°C .120°D .144° 10.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的两根,则该三角形的周长为( )A .13B .15C .18D .13或18 二、填空题11.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.12.要使代数式5x -有意义,字母x 必须满足的条件是_____.13.若关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,则k 的取值范围是_____.14.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____.15.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)16.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.17.在△ABC 中,点D ,E 分别为BC ,AC 的中点,若DE =2,则AB 的长为_____.18.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,则y 1,y 2的大小关系是y 1_____y 2.19.若分式方程211x m x x-=--有增根,则m =________. 20.如图,正方形ABCD 的边长为a ,对角线AC 和BD 相交于点O ,正方形A 1B 1C 1O 的边OA 1交AB 于点E ,OC 1交BC 于点F ,正方形A 1B 1C 1O 绕O 点转动的过程中,与正方形ABCD 重叠部分的面积为_____(用含a 的代数式表示)三、解答题21.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?22.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.23.已知:如图,AC 、BD 相交于点O ,且点O 是AC 、BD 的中点,点E 在四边形ABCD 的形外,且∠AEC =∠BED =90°.求证:四边形ABCD 是矩形.24.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形25.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是.①随机抽取一个班级的40名学生的成绩;②在八年级学生中随机抽取40名女学生的成绩;③在八年级10个班中每班各随机抽取4名学生的成绩.(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:①m=,n=;②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.26.如图,在矩形ABCD中,AB=1,BC=3.(1)在图①中,P是BC上一点,EF垂直平分AP,分别交AD、BC边于点E、F,求证:四边形AFPE是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)27.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.28.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C、D选项的概率都有可能,∵32>1,∴A不成立.故选:A.【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.2.B解析:B【分析】由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.【详解】∵四边形ABCD是正方形,∴∠ABD=45°,∵∠ABD=∠E+∠BDE,∵BD=BE,∴∠BDE=∠E.∴∠E=12×45°=22.5°,故选:B.【点睛】本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.3.A解析:A【分析】根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得结果.【详解】解:∵对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点睛】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M 的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.4.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.5.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A、每个学生的身高是个体,故A正确;B、本次调查是抽样调查,故B错误;C、样本容量是500,故C错误;D、八年级10000名学生的身高是总体,故D错误;故选:A.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D解析:D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.7.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.8.B解析:B【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,故选:B.【点睛】本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.9.D解析:D【解析】【分析】由四边形ABCD是平行四边形可知∠A+∠D=180°,结合∠A=4∠D,可求出∠D的值,从而可求出∠C的大小.【详解】∵四边形ABCD是平行四边形,∴∠A+∠D=180°,∵∠A=4∠D,∴4∠D +∠D=180°,∴∠D=36°,∴∠C=180°-36°=144°.故选D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边行的性质是解答本题的关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.10.A解析:A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.二、填空题11.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.12.x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∵代数式有意义,∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二解析:x≥5【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【详解】∴x﹣5≥0,解得x≥5.故答案是:x≥5.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为:k<﹣1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b−3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.15.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质.16.【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O解析:5【分析】先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.【详解】过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:∵AB长为3,CE长为1,点O和点O′为正方形中心,∴OH=12×(3+1)=2,O′H=12×(3-1)=12×2=1,∴在直角三角形OHO′中:222+15【点睛】本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.17.4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:解析:4【分析】根据三角形中位线定理即可得到结论.【详解】解:∵在△ABC中,点D,E分别为BC,AC的中点,∴DE是△ABC的中位线,∴AB=2DE,∵DE=2,∴AB=4,故答案为:4.【点睛】本题主要考查中位线的定义和性质,解决本题的关键是要熟练掌握中位线的定义和性质.18.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.19.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.20.a2.【分析】由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,由全等三角形的性解析:14a2.【分析】由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的14,即可求解.【详解】解:在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°,∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中OAE OBF OA OBAOE BOF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF 是本题的关键. 三、解答题21.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.22.见解析【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明.【详解】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠ABC =∠ADC ,∴∠ADF =∠DFC ,ED ∥BF ,∵∠ABE =∠CDF ,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.23.见解析【分析】连接EO,证四边形ABCD是平行四边形,在Rt△AEC中EO=12AC,在Rt△EBD中,EO=12BD,得到AC=BD,即可得出结论.【详解】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=12 BD,在Rt△AEC中,∵O为AC的中点,∴EO=12 AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【点睛】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.24.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE≌△CDF即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.25.(1)③;(2)①16,0.2;②见解析【分析】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;(2)①用40减去A 类,C 类和D 类的频数,即可得到m 值,用C 类的频数除以40即可得到n 值;②根据频数分布表画出扇形统计图即可.【详解】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,故答案为:③;(2)①m=40-12-8-4=16, n=840=0.2; ②扇形统计图如下:.【点睛】本题考查了数据的整理和应用,由图表获取数据是解题关键.26.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.27.(1)证明见详解;(2)①5或6;②9或10或496.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=160cm2,而x>0,∴x=4cm,则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.由运动知,AM=20-2t,AN=2t,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10 当DE=DM ,则2t-8=10,∴t=9;当ED=EM ,则点M 运动到点A ,∴t=10;当MD=ME=2t-8,如图,过点E 作EF 垂直AB 于F ,∵ED=EA ,∴DF=AF=12AD=6, 在Rt △AEF 中,EF=8;∵BM=2t ,BF=BD+DF=8+6=14,∴FM=2t-14在Rt △EFM 中,(2t-8)2-(2t-14)2=82,∴t=496. 综上所述,符合要求的t 值为9或10或496. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.28.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s =或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s = ∴综上所述,存在8163t s s =或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =,②当83t≥时,由题意有382382tt at-⎛⎫-=+⎪⎝⎭,解得3/a cm s=,∴综上所述,存在3/a cm s=时,BPQ∆恒为以BP为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.下列图案中,是中心对称图形的是( ) A .B .C .D .2.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =3.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC 的度数为( )A .35°B .40°C .45°D .60°4.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是() A .必然事件 B .不可能事件C .随机事件D .必然事件或不可能事件5.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD ,则四边形ABCD 面积的最大值是( )A .15B .16C .19D .206.下列图形中是轴对称图形但不是中心对称图形的是( )A.B.C.D.7.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体8.下列调查中,适合普查方式的是()A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命9.下列说法正确的是()A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角10.在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直 D.一组邻边相等,对角线互相平分二、填空题11.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm2,则阴影部分的面积为_____cm2.13.某口袋中有红色、黄色小球共40个,这些球除颜色外都相同.小明通过多次摸球试验后,发现摸到红球的频率为30%,则口袋中黄球的个数约为_____.14.如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.15.如图,在平面直角坐标系中,一次函数y =2x ﹣5的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为_____.16.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB =16,EF =1,∠AFB =90°,则BC 的长为_____.17.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____. 18.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,设▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2,则12S S 的值是_____.19.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C1D 1,则点C 1的纵坐标的最小值为_____.20.若关于x 的分式方程233x a x x+--=2a 无解,则a 的值为_____. 三、解答题21.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.如图,在ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.23.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.24.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(-6,0),D(-7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P、Q的坐标;若不存在,请说明理由.25.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是.①随机抽取一个班级的40名学生的成绩;②在八年级学生中随机抽取40名女学生的成绩;③在八年级10个班中每班各随机抽取4名学生的成绩.(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:①m=,n=;②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.26.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.27.如图,在平面直角坐标系中,△ABC和△A'B'C'的顶点都在格点上.(1)将△ABC绕点B顺时针旋转90°后得到△A1BC1;(2)若△A'B'C'是由△ABC绕某一点旋转某一角度得到,则旋转中心的坐标是.28.(发现)(1)如图1,在▱ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F.求证:△AOE≌△COF;(探究)(2)如图2,在菱形ABCD中,点O是对角线的交点,过点O的直线分别交AD,BC于点E,F,若AC=4,BD=8,求四边形ABFE的面积.(应用)(3)如图3,边长都为1的5个正方形如图摆放,试利用无刻度的直尺,画一条直线平分这5个正方形组成的图形的面积.(要求:保留画图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题根据中心对称图形的概念求解. 【详解】A 选项是中心对称图形,故本选项符合题意;B 选项是轴对称图形,故本选项不合题意;C 选项是轴对称图形,故本选项不合题意;D 选项是轴对称图形,故本选项不合题意. 故选:A . 【点睛】本题考查中心对称图形的识别,按照其定义求解即可,注意与轴对称图形的区别.2.D解析:D 【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.3.C解析:C【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAE=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAE=∠ABE=45°,又∵AB=AC,∴∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°,∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∵EF=12BC(直角三角形斜边中线等于斜边的一半),∴BF=EF=CF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故选:C.【点睛】此题考查等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE是等腰直角三角形是解题的关键.4.C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.5.A解析:A【解析】如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,∵S四边形ABCD=AE⋅BC=AF⋅CD,∴BC=CD,∴平行四边形ABCD是菱形.如图2,,设AB=BC=x,则BE=9−x,∵BC2=BE2+CE2,∴x2=(9−x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选A.6.B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,不是轴对称图形,此选项错误;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案.【详解】解:A、每个学生的身高是个体,故A正确;B、本次调查是抽样调查,故B错误;C、样本容量是500,故C错误;D、八年级10000名学生的身高是总体,故D错误;故选:A.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B.【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.9.C解析:C【分析】根据矩形、菱形的性质和正方形的性质判断即可.【详解】解:A、矩形的对角线相等且平分,选项错误,不符合题意;B、菱形的对角线垂直且平分,选项错误,不符合题意;C、正方形的对角线相等,选项正确,符合题意;D、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意;故选:C.【点睛】本题考查矩形、菱形和正方形的性质,正确区分矩形、菱形和正方形的性质是解题的关键.10.C解析:C【分析】根据所给条件逐一进行判断即可得.【详解】A选项中,根据“对边平行且相等和对角线相等”只能判定该四边形是矩形;B选项中,根据“一组对边平行,一组对角相等”只能判定该四边形是平行四边形;C选项中,根据“对角线互相平分且相等,对角线互相垂直”可判定该四边形是正方形;D选项中,根据“一组邻边相等,对角线互相平分”只能判定该四边形是菱形;故选C.二、填空题11.1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:1解析:1【详解】解:由题意可知,正方形的面积为4平方米,因为小石子落在不规则区域的频率稳定在常数0.25附近,所以不规则区域的面积约是4×0.25=1平方米.故答案为:112.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×20=10(cm2).故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.13.28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个解析:28【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,所以用黄球的频率乘以总球数求解.【详解】解:根据题意得:40×(1﹣30%)=28(个)答:口袋中黄球的个数约为28个.故答案为:28.【点晴】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,∵点E. F 分别是BD 、CD 的中点,故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.解析:3【解析】【详解】∵四边形ABCD 是平行四边形,∴BC =AD =6,∵点E. F 分别是BD 、CD 的中点,116 3.22EF BC ∴==⨯= 故答案为3.【点睛】三角形的中位线平行于第三边而且等于第三边的一半.15.10【分析】过点C 作CM ⊥x 轴于点M ,过点A 作AN ⊥y 轴于点N ,易得△OCM ≌△OAN ;由CM =ON ,OM =ON ;设点C 坐标(a ,b ),可求得A (2a ﹣5,﹣a ),则a =3,可求OC =,所以正方解析:10【分析】过点C 作CM ⊥x 轴于点M ,过点A 作AN ⊥y 轴于点N ,易得△OCM ≌△OAN ;由CM =ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=10,所以正方形面积是10.【详解】解:过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.16.18【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,解析:18【分析】根据直角三角形的性质得到DF =8,根据EF =1,得到DE =9,根据三角形中位线定理解答即可.【详解】解:∵∠AFB =90°,点D 是AB 的中点,∴DF =12AB =8, ∵EF =1,∴DE =9, ∵D 、E 分别是AB ,AC 的中点,∴BC =2DE =18,故答案为:18【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.18.2【分析】首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥B解析:2【分析】首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12S ▱ABCD ,进而可求出12S S 的值. 【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ABC +∠BAD =180°,∵AF ∥BE ,∴∠EBA +∠BAF =180°,∴∠CBE =∠DAF ,同理得∠BCE =∠ADF ,在△BCE 和△ADF 中,CBE DAF BC ADBCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△ADF (ASA ),∴S △BCE =S △ADF ,∵点E 在▱ABCD 内部,∴S △BEC +S △AED =12S ▱ABCD ,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=12S▱ABCD,∵▱ABCD的面积为S1,四边形AEDF的面积为S2,∴12SS=2,故答案为:2.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.19.【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=BC=1,CE =,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,解析:23-【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE=3,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE3∴2223OC OE CE=+=∴当点C1在y轴上时,点C1的纵坐标有最小值为3-,故答案为:23-【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键. 20.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值.三、解答题21.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.22.(1)见解析;(2)见解析【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.23.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可; (2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个, 11x +=0.25,解得x =3. 答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.24.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为k y x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6y x=. (3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n). 以P 、Q 、B ′、D ′四个点为顶点的四边形是平行四边形分两种情况:①B ′D ′为对角线时,∵四边形B ′PD ′Q 为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质、全等三角形的判定及性质、平行四边形的性质以及解方程组,解题的关键是:(1)证出△ADE≌△BAF;(2)找出关于k、t的二元一次方程组;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,利用反比例函数图形上点的坐标表示出来反比例函数系数k是关键.25.(1)③;(2)①16,0.2;②见解析【分析】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;(2)①用40减去A类,C类和D类的频数,即可得到m值,用C类的频数除以40即可得到n值;②根据频数分布表画出扇形统计图即可.【详解】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,故答案为:③;(2)①m=40-12-8-4=16,n=840=0.2;②扇形统计图如下:.【点睛】本题考查了数据的整理和应用,由图表获取数据是解题关键.26.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.【详解】证明:∵BE∥DF,∴∠BEO=∠DFO,在△BEO与△DFO中,BEO DFO BO DOBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEO≌△DFO(ASA),∴EO=FO,∵AE=CF,∴AE+EO=CF+FO,即AO=CO,∵BO=DO,∴四边形ABCD为平行四边形.【点睛】本题考查了平行四边形的判定定理,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.27.(1)见解析(2)(3,4)【分析】(1)根据网格结构找出点A、C绕点B顺时针旋转90°后的对应点A1、C1的位置,然后顺次连接即可;(2)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)三角形的旋转可以分开看作每条边的旋转,分别找到对应的点,连接即可,故△A 1BC 1如图所示;(2)连接'AA 并作其垂直平分线,连接'CC 并作其垂直平分线,交点即为旋转中心.如图所示,旋转中心为(3,4),故答案为(3,4).【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.28.(1)见解析 (2)8 (3)见解析【分析】(1)根据ASA 证明三角形全等即可.(2)证明S 四边形ABFE =S △ABC 可得结论.(3)利用中心对称图形的性质以及数形结合的思想解决问题即可(答案不唯一).【详解】(1)【发现】证明:如图1中,∵四边形ABCD 是平行四边形,∴AO =OC ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ).(2)【探究】解:如图2中,由(1)可知△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △ABC ,∵四边形ABCD 是菱形,∴S △ABC =12S 菱形ABCD ,∵S菱形ABCD=12•AC•BD=12×4×8=16,∴S四边形ABFE=12×16=8.(3)【应用】①找出上面小正方形的对角线交点,以及下面四个小正方形组成的矩形的对角线交点,连接即可;②连接下面左边数第二个小正方形右上角和左下角的顶点;③分别找出第二列两个小正方形的对角线交点,并连接,与最上面的小正方形最上面的边交于一点,把这个点与图形底边中点连接即可.如图3中,直线l即为所求(答案不唯一).【点睛】本题考查全等三角形的判定、菱形的性质以及中心对称图形的性质,掌握数形结合的思想是解决本题的关键.。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C 的对应点为点F,若BE=6cm,则CD=( )A.4cm B.6cm C.8cm D.10cm2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.“明天会下雨”这是一个()A.必然事件B.不可能事件C.随机事件D.以上说法都不对4.如果a32+,b32,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b5.若顺次连接四边形ABCD各边的中点得到一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.为了解某校八年级320名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是()A.320名学生的全体是总体B.80名学生是总体的一个样本C.每名学生的体重是个体D.80名学生是样本容量7.下列条件中,不能..判定平行四边形ABCD为矩形的是()A.∠A=∠C B.∠A=∠B C.AC=BD D.AB⊥BC8.若分式5xx-的值为0,则()A.x=0 B.x=5 C.x≠0 D.x≠59.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.510.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()A.200(1+ a%)2=148 B.200(1- a%)2=148C.200(1- 2a%)=148 D.200(1-a2%)=14811.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG,下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12AD.其中正确的有( )A.①②B.①②④C.①③④D.①②③④12.“明天下雨的概率是80%”,下列说法正确的是()A.明天一定下雨B.明天一定不下雨C.明天下雨的可能性比较大D.明天80%的地方下雨二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为_____.15.小明用a 元钱去购买某种练习本.这种练习本原价每本b 元(b >1),现在每本降价1元,则他现在可以购买到这种练习本的本数为_____.16.如图,在平面直角坐标系中,一次函数y =2x ﹣5的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为_____.17.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.18.某次测验后,将全班同学的成绩分成四个小组,第一组到第三组的频率分别为0.1,0.3,0.4,则第四组的频率为_________.19.在函数y =1x x +中,自变量x 的取值范围是_____. 20.如图,在 ABCD 中,若∠A =2∠B ,则∠D =________°.21.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.22.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.23.如图,正方形ABCD 的边长为a ,对角线AC 和BD 相交于点O ,正方形A 1B 1C 1O 的边OA 1交AB 于点E ,OC 1交BC 于点F ,正方形A 1B 1C 1O 绕O 点转动的过程中,与正方形ABCD 重叠部分的面积为_____(用含a 的代数式表示)24.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AB 边中点,菱形ABCD 的周长为24,则OH 的长等于___.三、解答题25.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.5 69.5~79.579.5~89.5 89.5~100.5 合计 频数2 a 20 16 4 50 频率 0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a = ,b = ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.26.解下列方程:(1)9633x x=+- ; (2)241111x x x -+=-+ . 27.先化简:22241a a a a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a 的值代入求值.28.如图,在ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:AEF ≌△DEB ;(2)若∠BAC =90°,求证:四边形ADCF 是菱形.29.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF的周长是16cm,AC的长为8cm,求线段AB的长度.30.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.31.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是.①随机抽取一个班级的40名学生的成绩;②在八年级学生中随机抽取40名女学生的成绩;③在八年级10个班中每班各随机抽取4名学生的成绩.(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:①m=,n=;②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.32.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.33.解方程:x21 x1x-= -.34.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?35.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.36.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.2.D解析:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.C解析:C【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.据此可得.【详解】解:“明天会下雨”这是一个随机事件,故选:C.【点晴】本题主要考查随机事件,解题的关键是掌握随机事件的概念:在一定条件下,可能发生也可能不发生的事件,称为随机事件.4.A解析:A【分析】先利用分母有理化得到a2),从而得到a与b的关系.【详解】2),∵a而b2,∴a=﹣b,即a+b=0.故选:A.【点睛】﹣2是解答本题的关键.5.D解析:D【分析】先画出图形,再根据中位线定理、矩形的定义、平行线的性质即可得.【详解】如图,点,,,E F G H 分别为,,,AB BC CD AD 的中点,四边形EFGH 是矩形 连接AC 、BD由中位线定理得://,//AC GH BD EH四边形EFGH 是矩形90EHG ∴∠=︒,即EH GH ⊥EH AC ∴⊥BD AC ∴⊥即四边形ABCD 一定是对角线互相垂直的四边形故选:D .【点睛】本题考查了中位线定理、矩形的定义、平行线的性质,依据题意,正确画出图形,并掌握中位线定理是解题关键.6.C解析:C【分析】根据总体、样本、样本容量及个体的定义对选项逐一判断即可得答案.【详解】A 、320名学生的体重情况是总体,故该选项错误;B 、80名学生的体重情况是样本,故该选项错误;C 、每个学生的体重情况是个体,故该选项正确;D 、样本容量是80,故该选项错误;故选:C .【点睛】本题考查总体、个体、样本、样本容量的定义,熟练掌握相关定义是解题关键.7.A解析:A【分析】根据矩形的判定定理再结合平行四边形的性质对选项逐一进行推理即可.【详解】A 、∠A=∠C 不能判定这个平行四边形为矩形,故此项错误;B 、∵∠A=∠B ,∠A+∠B=180°,∴∠A=∠B=90°,可以判定这个平行四边形为矩形,故此项正确;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故此项正确;D、AB⊥BC,即∠B=90°,可以判定这个平行四边形为矩形,故此项正确;故选:A.【点睛】本题考查了平行四边形的性质和矩形的判定,掌握知识点是解题关键.8.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】解:∵分式5xx-的值为0,∴x﹣5=0且x≠0,解得:x=5.故选:B.【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.9.D解析:D【分析】连接DN,根据三角形中位线定理得到EF=12DN,根据题意得到当点N与点B重合时,DN最大,根据勾股定理计算,得到答案.【详解】连接DN,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=12 DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN22AB AD+10,∴EF长度的最大值为:12×10=5,故选:D.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.10.B解析:B【分析】根据题意可得出两次降价后的售价为200(1- a%)2,列方程即可.【详解】解:根据题意可得出两次降价后的售价为200(1- a%)2,∴200(1- a%)2=148故选:B.【点睛】本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.11.D解析:D【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=12CD=12AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=12CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选D.【点睛】运用了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.12.C解析:C【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有C合题意.故选:C.【点睛】本题考查了概率的意义,解决本题的关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.二、填空题13.5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC=2268+=10(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.14.4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中解析:4【分析】连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.【详解】∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=22BC AC+=2234+=5,连接CP,如图所示:∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∵1122BC AC AB CP⋅=⋅,∴DE =CP =345⨯=2.4, 故答案为:2.4.【点睛】 本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE 的最小值转化为其相等线段CP 的最小值.15.【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元,则购买到这种练习本的本数为(本),故答案为. 解析:1a b - 【分析】先由已知条件求出现在每本练习本的单价,再根据“金额÷单价=数量”列出代数式便可.【详解】解:根据题意得,现在每本单价为(b ﹣1)元, 则购买到这种练习本的本数为1a b -(本), 故答案为1a b -. 【点睛】 本题考查的是列代数式,掌握列代数式的方法是解题的关键.16.10【分析】过点C 作CM⊥x 轴于点M ,过点A 作AN⊥y 轴于点N ,易得△OCM≌△OAN;由CM =ON ,OM =ON ;设点C 坐标(a ,b ),可求得A (2a ﹣5,﹣a ),则a =3,可求OC =,所以正方解析:10【分析】过点C 作CM ⊥x 轴于点M ,过点A 作AN ⊥y 轴于点N ,易得△OCM ≌△OAN ;由CM =ON ,OM =ON ;设点C 坐标(a ,b ),可求得A (2a ﹣5,﹣a ),则a =3,可求OC =,所以正方形面积是10.【详解】解:过点C 作CM ⊥x 轴于点M ,过点A 作AN ⊥y 轴于点N ,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.17.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频解析:2【分析】根据一个事件频率总和等于1即可求出【详解】解:第四组的频率10.10.30.40.2=---=【点睛】本题考查了在一个实验过程中,通过其它组频率求相应组频率,解决本题的关键是正确理解频率的意义,明白在一个实验中频率总和为1.19.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.20.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.21.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠解析:65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,又∵∠B=70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF,∴∠BAE=∠FAG=40°,∵△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.22.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角解析:103或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即ΔABE沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=5,可计算出CB′=8,设BE=a,则EB′=a,CE=12-a,然后在Rt△CEB′中运用勾股定理可计算出a.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示,连结AC,在Rt△ABC中,AB=5,BC=12,∴=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+, 解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.23.a2.【分析】由题意得OA =OB ,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA 可证△AOE≌△BOF,由全等三角形的性解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF .在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2. 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE ≌△BOF 是本题的关键. 24.【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB==6,∵四边形ABCD 是菱形,∴AC ⊥BD ,解析:【分析】根据已知可求得菱形的边长,再根据对角线互相垂直平分,H 为AB 的中点,从而求得OH 的长.【详解】∵菱形ABCD 的周长等于24,∴AB =244=6, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∵H 为AB 边中点,∴在Rt △AOB 中,OH 为斜边上的中线,∴OH =12AB =3. 故答案为:3.【点睛】本题主要考查了菱形的性质,直角三角形斜边上的中线的性质,掌握“直角三角形中,斜边上的中线等于斜边的一半”是正确解答本题的关键.三、解答题25.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.26.(1)35x ;(2)原方程无解【分析】(1)分式方程两边同乘以(3+x)(3﹣x)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即得结果.【详解】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=35,检验:当x=35时,(3+x)(3﹣x)≠0,∴x=35是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x =﹣1,检验:当x =﹣1时,(x +1)(x ﹣1)=0,∴x =﹣1是增根,原方程无解.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键.27.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.28.(1)见解析;(2)见解析【分析】(1)由AF ∥BC 得∠AFE =∠EBD ,继而结合∠AEF =∠DEB 、AE =DE 即可判定全等; (2)根据平行四边形的判定和性质以及菱形的判定证明即可.【详解】证明:(1)∵E 是AD 的中点,∴AE =DE ,∵AF ∥BC ,∴∠AFE =∠DBE ,∵∠AEF =∠DEB ,∴△AEF ≌△DEB ;(2)∵△AEF ≌△DEB ,∴AF =DB ,∵AD 是BC 边上的中线,∴DC =DB ,∴AF =DC ,∵AF ∥DC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,AD 是BC 边上的中线,∴AD=DC,∴□ADCF是菱形.【点睛】此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.29.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.30.(1)k=1;(2)证明见解析.【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 31.(1)③;(2)①16,0.2;②见解析【分析】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;(2)①用40减去A类,C类和D类的频数,即可得到m值,用C类的频数除以40即可得到n值;②根据频数分布表画出扇形统计图即可.【详解】(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,故答案为:③;(2)①m=40-12-8-4=16,n=840=0.2;②扇形统计图如下:.【点睛】本题考查了数据的整理和应用,由图表获取数据是解题关键.32.(1)见解析;(2)①②③④;(3)①证明见解析;②3【分析】(1)根据准矩形和准菱形的特点画图即可;(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.【详解】(1);(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;故答案为:①②③④;(3)①证明:∵AC=EC,AF=EF,CF=CF,∴△ACF≌△ECF(SSS).∴∠ACF=∠ECF,∠AFC=∠EFC,∵∠ACE=∠AFE,∴∠ACF=∠EFC,∠ECF=∠AFC,∴AC∥EF,AF∥CE,∴准菱形ACEF是平行四边形,∵AC=EC,∴准菱形ACEF是菱形;②如图:取AC的中点M,连接BM、DM,∵四边形ACEF是菱形,∴AE⊥CF,∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点M是圆心,。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.下列命题中,是假命题的是( )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形 2.已知关于x 的分式方程22x m x +-=3的解是5,则m 的值为( ) A .3 B .﹣2C .﹣1D .8 3.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .32B .26C .25D .234.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .5.用配方法解一元二次方程2620x x --=,以下正确的是( )A .2(3)2x -=B .2(3)11x -=C .2(3)11x +=D .2(3)2x += 6.若分式42x x -+的值为0,则x 的值为( ) A .0B .-2C .4D .4或-2 7.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( )A .10B .40C .96D .192 8.我们把顺次连接四边形各边中点所得的四边形叫做中点四边形.若一个任意..四边形的面积为a ,则它的中点四边形面积为( )A .12aB . 23aC .34aD .45a 9.若分式5x x-的值为0,则( )A.x=0 B.x=5 C.x≠0 D.x≠510.一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20 B.25 C.30 D.10011.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.7 C.6 D.512.下列图形不是轴对称图形的是()A.等腰三角形B.平行四边形C.线段D.正方形二、填空题13.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.14.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.15.如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是___.16.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .17.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.18.计算326⨯的结果是_____.19.已知a ,b 是一元二次方程x 2﹣2x ﹣2020=0的两个根,则a 2+2b ﹣3的值等于_____.20.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.21.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大. 22.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点D 、B 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为_______.23.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若 6 cm AB =,8 cm BC =则AEF 的周长=______cm .24.如图,正方形ABCD 的边长为a ,对角线AC 和BD 相交于点O ,正方形A 1B 1C 1O 的边OA 1交AB 于点E ,OC 1交BC 于点F ,正方形A 1B 1C 1O 绕O 点转动的过程中,与正方形ABCD 重叠部分的面积为_____(用含a 的代数式表示)三、解答题25.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.26.已知:如图,在 ABCD中,点E、F分别在AD、BC上,且∠ABE=∠CDF.求证:四边形BFDE是平行四边形.27.如图,在▱ABCD中,E为BC边上一点,且AB=AE(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.28.如图,在平面直角坐标系中,点O为坐标原点,AB// OC,点B,C的坐标分别为(15,8),(21,0),动点M从点A沿A→B以每秒1个单位的速度运动;动点N从点C沿C→O以每秒2个单位的速度运动.M,N同时出发,设运动时间为t秒.(1)在t=3时,M点坐标,N点坐标;(2)当t为何值时,四边形OAMN是矩形?(3)运动过程中,四边形MNCB能否为菱形?若能,求出t的值;若不能,说明理由.29.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.30.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点),ABC ∆的顶点均在格点上,请在所给的平面直角坐标系中解答下列问题:(1)作出ABC ∆绕点A 逆时针旋转90°后的111A B C ∆;(2)作出111A B C ∆关于原点O 成中心对称的222A B C ∆.31.如图,在ABC 中,∠BAC =90°,DE 是ABC 的中位线,AF 是ABC 的中线.求证DE =AF .证法1:∵DE 是ABC 的中位线,∴DE = .∵AF 是ABC 的中线,∠BAC =90°,∴AF = ,∴DE =AF .请把证法1补充完整,连接EF ,DF ,试用不同的方法证明DE =AF证法2:32.如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F .(1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由;(3)△BEF 的周长为 .33.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .34.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.35.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.36.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别利用平行四边形的性质以及矩形的性质与判定方法分析得出即可.【详解】解:A 、平行四边形的两组对边分别相等,正确,不合题意;B、两组对边分别相等的四边形是偶像四边形,正确,不合题意;C、矩形的对角线相等,正确,不合题意;D、对角线相等的四边形是矩形,错误,等腰梯形的对角线相等,故此选项正确.故选D.“点睛”此题主要考查了命题与定理,正确把握矩形的判定与性质是解题的关键. 2.C解析:C【分析】将x=5代入分式方程中进行求解即可.【详解】把x=5代入关于x的分式方程22x mx+-=3得:25352m⨯+=-,解得:m=﹣1,故选:C.【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解.3.B解析:B【分析】连接EG,由折叠的性质可得BE=EF又由E是BC边的中点,可得EF=EC,然后证得Rt△EGF≌Rt△EGC(HL),得出FG=CG=2,继而求得线段AG的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC =AD=.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键. 4.B解析:B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A 、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B 、图形不是中心对称轴图形,是轴对称图形,此选项正确;C 、图形是中心对称轴图形,也是轴对称图形,此选项错误;D 、图形是中心对称轴图形,不是轴对称图形,此选项错误;故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.【详解】解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=.故选:B.【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键. 6.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值. 【详解】解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.7.C解析:C【分析】根据菱形的面积等于对角线乘积的一半即可解决问题.【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =,∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C .【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型. 8.A解析:A【分析】由E 为AB 中点,且EF 平行于AC ,EH 平行于BD ,得到△BEK 与△ABM 相似,△AEN 与△ABM 相似,利用面积之比等于相似比的平方,得到△EBK 面积与△ABM 面积之比为1:4,且△AEN 与△EBK 面积相等,进而确定出四边形EKMN 面积为△ABM 的一半,同理得到四边形KFPM 面积为△BCM 面积的一半,四边形QGPM 面积为△DCM 面积的一半,四边形HQMN 面积为△DAM 面积的一半,四个四边形面积之和即为四个三角形面积之和的一半,即为四边形ABCD 面积的一半,即可得出答案.【详解】解:如图,画任意四边形ABCD ,设AC 与EH ,FG 分别交于点N ,P ,BD 与EF ,HG 分别交于点K ,Q ,则四边形EFGH 即为它的中点四边形,∵E 是AB 的中点,EF//AC ,EH//BD ,∴△EBK ∽△ABM ,△AEN ∽△ABM , ∴EBK ABM S S ∆∆=14,S △AEN =S △EBK , ∴EKMNABM S S ∆四边形=12, 同理可得:KFPMBCMS S ∆四边形=12,QGPM DCM S S ∆四边形=12,HQMN DAM S S ∆四边形=12, ∴EFGHABCD S S 四边形四边形=12, ∵四边形ABCD 的面积为a , ∴四边形EFGH 的面积为12a ,故选:A .【点睛】本题考查了三角形中位线的性质,相似三角形的判定和性质,掌握知识点是解题关键.9.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】 解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0,解得:x =5.故选:B .【点睛】 本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.10.B解析:B【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数.【详解】解:∵容量是50的,某一组的频率是0.5,∴样本数据在该组的频数0.55025⨯== .故答案为B .【点睛】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.11.D解析:D【分析】连接DN ,根据三角形中位线定理得到EF =12DN ,根据题意得到当点N 与点B 重合时,DN 最大,根据勾股定理计算,得到答案.【详解】连接DN ,∵点E ,F 分别为DM ,MN 的中点,∴EF 是△MND 的中位线,∴EF =12DN , ∵点M ,N 分别为线段BC ,AB 上的动点,∴当点N 与点B 重合时,DN 最大,此时DN 22AB AD +10, ∴EF 长度的最大值为:12×10=5, 故选:D .【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键. 12.B解析:B【分析】根据轴对称图形的概念判断即可.【详解】等腰三角形是轴对称图形,故A 错误;平行四边形不是轴对称图形,故B正确;线段是轴对称图形,故C错误;正方形是轴对称图形,故D错误;故答案为:B.【点睛】本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.二、填空题13.5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD 、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD解析:5【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.5cm,故答案为2.5.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.14.∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△A解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.15..【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解解析:60.13【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出求解即可.【详解】解:如图,连接CD.∵∠ACB=90°,AC=5,BC=12,∴AB22512+=13,C+22A BC∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=12BC•AC=12AB•CD,即12×12×5=12×13•CD,解得:CD=60 13,∴EF=60 13.故答案为:60 13.【点睛】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.16.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147.考点:概率公式.17.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】=2=2×3=6.故答案为:6.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.解析:【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】===.故答案为:.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.19.2021【分析】根据一元二次方程的根与系数的关系得出,再结合原方程可知,由此进一步求解即可.【详解】∵a是一元二次方程的一个根,∴,再由根与系数的关系可知:,∴a2+2b −3=a2−解析:2021【分析】根据一元二次方程的根与系数的关系得出2a b +=,再结合原方程可知222020a a -=,由此进一步求解即可.【详解】∵a 是一元二次方程的一个根,∴222020a a -=,再由根与系数的关系可知:2a b +=,∴a 2+2b −3=a 2−2a +2a +2b −3,=2020+2(a +b )−3=2020+2×2−3=2021,故答案为:2021.【点睛】本题主要考查了一元二次方程的性质与根与系数的关系的运用,熟练掌握相关概念是解题关键.20.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适, 故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.21.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16,所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.22.7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF解析:7【解析】【详解】因为ABCD是正方形,所以AB=AD,∠BFA=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△DEA,所以AF=DE=4,BF=AE=3,则EF=AF+AE=4+3=7.23.9【解析】【分析】【详解】在中,,∵点、分别是、的中点,∴是的中位线,,,,∴的周长,故答案为:9.解析:9【解析】【分析】【详解】在Rt ABC中,10AC cm == ,∵点E 、F 分别是AO 、AD 的中点,∴EF 是AOD △的中位线,12141452E F O D B D A C ====,11422AF AD BC cm === ,115242AE AO AC === , ∴AEF 的周长9AE AF EF cm =++=,故答案为:9.24.a2.【分析】由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE+∠EOB =90°,∠BOF+∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性 解析:14a 2. 【分析】 由题意得OA =OB ,∠OAB =∠OBC =45°又因为∠AOE +∠EOB =90°,∠BOF +∠EOB =90°可得∠AOE =∠BOF ,根据ASA 可证△AOE ≌△BOF ,由全等三角形的性质可得S △AOE =S △BOF ,可得重叠部分的面积为正方形面积的14,即可求解. 【详解】解:在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°,∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°,∴∠AOE =∠BOF . 在△AOE 和△BOF 中OAE OBF OA OBAOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOF (ASA ),∴S △AOE =S △BOF ,∴重叠部分的面积21144AOB ABCD SS a ===正方形, 故答案为:14a 2.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,证明△AOE≌△BOF 是本题的关键.三、解答题25.解:(1)如图所示:点A1的坐标(2,﹣4).(2)如图所示,点A2的坐标(﹣2,4).【解析】试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.26.见解析【分析】先根据平行四边形的性质,得出ED∥BF,再结合已知条件∠ABE=∠CDF推断出EB∥DF,即可证明.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠ABC=∠ADC,∴∠ADF=∠DFC,ED∥BF,∵∠ABE=∠CDF,∴∠ABC-∠ABE=∠ADC-∠CDF,即∠EBC=∠ADF,∴∠EBC=∠DFC,∴EB∥DF,∴四边形BFDE是平行四边形.【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键.27.(1)见解析;(2)∠AED=75°.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)先根据等腰三角形的性质可得∠BAE =50°,求出∠BAC 的度数,即可得∠AED 的度数.【详解】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,AB AE ABC EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B =∠AEB ,∴∠BAE =50°,∴∠BAC =∠BAE+∠EAC =50°+25°=75°,∵△ABC ≌△EAD ,∴∠AED =∠BAC =75°.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质,注意掌握平行四边形的对边平行且相等的性质.28.(1)(3,8);(15,0);(2)t =7;(3)能,t =5.【分析】(1)根据点B 、C 的坐标求出AB 、OA 、OC,然后根据路程=速度×时间求出AM 、CN,再求出ON,然后写出点M 、N 的坐标即可;(2)根据有一个角是直角的平行四边形是矩形,当AM =ON 时,四边形OAMN 是矩形,然后列出方程求解即可;(3)先求出四边形MNCB 是平行四边形的t 值,并求出CN 的长度,然后过点B 作BC ⊥OC 于D,得到四边形OABD 是矩形,根据矩形的对边相等可得OD =AB,BD =OA,然后求出CD,再利用勾股定理列式求出BC,然后根据邻边相等的平行四边形是菱形进行验证.【详解】解:(1)∵B (15,8),C (21,0),∴AB =15,OA =8,OC =21,当t =3时,AM =1×3=3,CN =2×3=6,∴ON =OC-CN =21﹣6=15,∴点M (3,8),N (15,0);故答案为:(3,8);(15,0);(2)当四边形OAMN是矩形时,AM=ON,∴t=21-2t,解得t=7秒,故t=7秒时,四边形OAMN是矩形;(3)存在t=5秒时,四边形MNCB能否为菱形.理由如下:四边形MNCB是平行四边形时,BM=CN,∴15-t=2t,解得:t=5秒,此时CN=5×2=10,过点B作BD⊥OC于D,则四边形OABD是矩形,∴OD=AB=15,BD=OA=8,CD=OC-OD=21-15=6,在Rt△BCD中,BC=22=10,BD CD∴BC=CN,∴平行四边形MNCB是菱形,故,存在t=5秒时,四边形MNCB为菱形.【点睛】本题主要考查了四边形综合以及矩形的性质,平行四边形与菱形的关系,梯形的问题、勾股定理等知识,根据矩形、菱形与平行四边形的联系列出方程是解题的关键.29.(1)求证见解析;(22OE=EB+EA;(3)见解析.【分析】(1)延长EA至点F,使AF=BE,连接OF,由SAS证得△OBE≌△OAF,得出OE=OF,∠BEO=∠AFO,由等腰三角形的性质与等量代换即可得出结论;(2)判断出△EOF是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA证得△ABE≌△ADH,△ABE≌△BCF,△ADH≌△DCG,△DCG≌△CBF,得出FG=EF=EH=HG,再由∠F=∠H=∠AEB=90°,由此可得出结论.【详解】(1)证明:延长EA至点F,使AF=BE,连接OF,如图所示:∵四边形ABCD 是正方形,∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°,∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△OAF (SAS ),∴OE =OF ,∠BEO =∠AFO ,∴∠AEO =∠AFO ,∴∠BEO =∠AEO ,∴EO 平分∠AEB ;(22OE =EB +EA ,理由如下:由(1)得:△OBE ≌△OAF ,∴OE =OF ,∠BOE =∠AOF ,∵∠BOE +∠AOE =90°,∴∠AOF +∠AOE =90°,∴∠EOF =90°,∴△EOF 是等腰直角三角形,∴2OE 2=EF 2,∵EF =EA +AF =EA +EB ,∴2OE 2=(EB +EA )2, 2OE =EB +EA , 2OE =EB +EA ;(3)证明:∵CF ⊥EB ,DH ⊥EA ,∴∠F =∠H =∠AEB =90°,∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°,∴∠EAB =∠HDA ,∠ABE =∠DAH .在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ),∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.30.(1)见解析 (2)见解析【分析】(1)本题考查图形的旋转变换以及作图,根据网格结构找出点A 、B 、C 绕点A 逆时针旋转90°后的点1A 、1B 、1C 的位置,然后顺次连接即可.(2)本题考查中心对称图形的作图,找出点1A 、1B 、1C 关于原点O 成中心对称的点2A 、2B 、2C 的位置,然后顺次连接即可.【详解】【点睛】解答此类型题目首先要清楚旋转图形和中心对称图形的性质,按照图形定义进行作图,作图时先找点,继而由点连成线.31.2BC ,2BC ,证明见解析 【分析】 证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论;证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.【详解】证法1:∵DE 是△ABC 的中位线,∴DE=12BC , ∵AF 是△ABC 的中线,∠BAC=90°,∴AF=12BC , ∴DE=AF ,证法2:连接DF 、EF ,∵DE 是△ABC 的中位线,AF 是△ABC 的中线,∴DF 、EF 是△ABC 的中位线,∴DF ∥AC ,EF ∥AB ,∴四边形ADFE 是平行四边形,∵∠BAC=90°,∴四边形ADFE 是矩形,∴DE=AF .故答案为:12BC ;12BC . 【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.32.(1)见解析;(2)DF ⊥ON ,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE ≌△DCE 即可;(2)由第一题所得条件和已知条件可推出∠EDC =∠CBN ,再利用90°的代换即可证明; (3)过D 点作DG 垂直于OM ,交点为G ,结合已知条件推出DF 和BF 的长,再根据第一题结论得出△BEF 的周长等于DF 加BF 即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.33.t=2【分析】当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,∵EF∥AB,BF∥AE,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t=2秒时,EF∥AB.【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.34.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,。
苏科版八年级下册数学期中试卷(带答案)-百度文库一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .44 2.平行四边形的一条边长为8,则它的两条对角线可以是( ) A .6和12B .6和10C .6和8D .6和63.下列图标中,是中心对称图形的是( ) A .B .C .D .4.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .45.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .6.在菱形ABCD 中,12AC =,16BD =,则该菱形的面积是( ) A .10 B .40C .96D .1927.若分式5x x-的值为0,则( ) A .x =0B .x =5C .x ≠0D .x ≠58.下列分式中,属于最简分式的是( ) A .62aB .2x xC .11xx -- D .21x x + 9.下面调查方式中,合适的是( )A .试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B .了解一批袋装食品是否含有防腐剂,选择普查方式C .为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .调查某新型防火材料的防火性能,采用普查的方式10.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( ) A .平均数B .中位数C .众数D .方差二、填空题11.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.12.如图,点D 、E 分别是△ABC 的边AB 、AC 的中点,若BC=6,则DE= .13.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .14.如图,AB ∥CD ,AB =7,CD =3,M 、N 分别是AC 和BD 的中点,则MN 的长度_____.15.在函数y =1xx 中,自变量x 的取值范围是_____.16.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.17.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2. 18.若分式方程211x m x x-=--有增根,则m =________. 19.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.20.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.三、解答题21.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.22.如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1)求直线AC所表示的函数的表达式;(2)如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3)如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.23.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)24.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.25.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.26.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?27.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.28.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可. 【详解】解:∵AD ∥BE ,AC ∥DE , ∴四边形ACED 是平行四边形, ∴AC=DE=6,在RT△BCO中,BO=224AB AO-=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.A解析:A【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OB与OC的长,然后根据三角形的三边关系,即可求得答案.【详解】解:如图:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,若BC=8,根据三角形三边关系可得:|OB-OC|<8<OB+OC.A、6和12,则OB+OC=3+6=9>8,OB-OC=6-3=3<8,能组成三角形,故本选项符合题意;B、6和10,则OB+OC=3+5=8,不能组成三角形,故本选项不符合题意;C、6和8,则OB+OC=3+4=7<8,不能组成三角形,故本选项不符合题意;D、6和6,则OB+OC=3+3=6<8,不能组成三角形,故本选项不符合题意;故选:A.【点睛】此题考查了平行线的性质与三角形三边关系,解题的关键是注意掌握平行四边形的对角线互相平分,注意三角形三边关系知识的应用.3.D解析:D【分析】根据中心对称图形的概念,中心对称图形绕着对称中心旋转180°与原来的图形重合求解即可.【详解】解:A、不是中心对称图形,本选项不合题意;B、不是中心对称图形,本选项不合题意要;C、不是中心对称图形,本选项不合题意;D、是中心对称图形,本选项符合题意.故选:D.【点睛】本题主要考查中心对称图形的判断选择的知识.记住中心对称图形绕着对称中心旋转180°与原来的图形重合的特点,是解答本题的关键.4.A解析:A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD是菱形,设AB,CD交于O点,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB=2234=5,∵S菱形ABCD=12×AC×BD=AB×DH,∴12×8×6=5×DH,∴DH=245,故选A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.5.B解析:B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解. 【详解】A 、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;B 、图形不是中心对称轴图形,是轴对称图形,此选项正确;C 、图形是中心对称轴图形,也是轴对称图形,此选项错误;D 、图形是中心对称轴图形,不是轴对称图形,此选项错误; 故选:B . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.C解析:C 【分析】根据菱形的面积等于对角线乘积的一半即可解决问题. 【详解】解:∵四边形ABCD 是菱形,12AC =,12BD =, ∴菱形ABCD 的面积1112169622AC BD =⋅⋅=⨯⨯=. 故选:C . 【点睛】本题考查菱形的性质,解题的关键是记住菱形的面积等于对角线乘积的一半,属于中考常考题型.7.B解析:B 【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案. 【详解】 解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0, 解得:x =5. 故选:B . 【点睛】本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.8.D解析:D 【解析】 【分析】根据最简分式的概念判断即可. 【详解】 解:A. 62a分子分母有公因式2,不是最简分式; B. 2xx 的分子分母有公因式x ,不是最简分式; C. 11xx --的分子分母有公因式1-x ,不是最简分式; D.21xx +的分子分母没有公因式,是最简分式. 故选:D【点睛】本题考查的是最简分式,需要注意的公因式包括因数.9.C解析:C 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】A 、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B 、了解一批袋装食品是否含有防腐剂,适合抽样调查;C 、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D 、调査某新型防火材料的防火性能,适合抽样调查. 故选:C . 【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.C解析:C 【解析】 【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数. 【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数. 故选(C) 【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;二、填空题11.【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C ∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1解析:【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.12.3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=BC=3.故答案为3.考点:三角形的中解析:3【分析】先判断DE是△ABC的中位线,从而得解.【详解】因为点D、E分别是△ABC的边AB、AC的中点,所以DE是△ABC的中位线,所以DE=12BC=3.故答案为3.考点:三角形的中位线定理.13..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠20.解析:0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.14.2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE=CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM交AB于E,解析:2【分析】连接并延长DM交AB于E,证明△AME≌△CMD,根据全等三角形的性质得到AE=CD=3,DM=ME,求出BE,根据三角形中位线定理计算即可.【详解】连接并延长DM交AB于E,∵AB ∥CD ,∴∠C =∠A ,在△AME 和△CMD 中,A C AM CMAME CMD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△CMD (ASA )∴AE =CD =3,DM =ME ,∴BE =AB ﹣AE =4,∵DM =ME ,DN =NB ,∴MN 是△DEB 的中位线,∴MN =12BE =2, 故答案为:2.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必 解析:x≠﹣1【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.16.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.17.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.18.-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【解析:-1【分析】首先根据分式方程的解法求出x的值,然后根据增根求出m的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.19.20【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.【详解】解:如解析:20【分析】连接BD 交AC 于点O ,则可证得OE =OF ,OD =OB ,可证四边形BEDF 为平行四边形,且BD ⊥EF ,可证得四边形BEDF 为菱形;根据勾股定理计算DE 的长,可得结论.【详解】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD =OB =OA =OC ,∵AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF ,∴四边形BEDF 为菱形,∴DE =DF =BE =BF ,∵AC =BD =8,OE =OF =8232-=, 由勾股定理得:DE =2222435OD OE +=+=,∴四边形BEDF 的周长=4DE =4×5=20,故答案为:20.【点睛】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.20.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】 本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.三、解答题21.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14. 【点睛】 本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.22.(1)483y x =-+;见解析;(2)()6,5D ;见解析;(3)12或694,见解析. 【分析】(1)利用矩形的性质,求出点A 、C 的坐标,再用待定系数法即可求解;(2)Rt △AED 中,由勾股定理得:222AE DE AD +=,即可求解;(3)①当EC =EO 时,ON =12OC =4=EM ,则△OEA 的面积=12×OA ×EM ;②当OE =OC时,利用勾股定理得:22222NE EC CN EO ON =﹣=﹣,求出ON =234,进而求解. 【详解】 解:(1)∵点B 的坐标为()68,且四边形OABC 是矩形, ∴点A 、C 的坐标分别为()()6008,、,, 设AC 的表达式为y kx b +=,把A 、C 两点的坐标分别代入上式得608k b b +=⎧⎨=⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 所表示的函数的表达式483y x =-+; (2)∵点A 的坐标为()60,,点C 的坐标为()08,, ∴OA =6,OC =8.∴Rt △AOC 中,AC =226+8=10,∵四边形OABC 是矩形,∴∠B =90°,BC =6,AB =8,∵沿CD 折叠,∴∠CED =90°,BD =DE ,CE =6,AE =4,∴∠AED =90°,设BD =DE =a ,则AD =8﹣a ,∵Rt △AED 中,由勾股定理得:222AE DE AD +=,∴()22248a a +-=,解得a =3, ∴点D 的坐标为()65,; (3)过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ,∵EN ⊥OC ,EM ⊥OA ,OC ⊥OA ,∴∠ENO =∠NOM =∠OME =90°,∴四边形OMEN 是矩形,∴EM =ON .①当EC =EO 时,∵EC =EO ,NE ⊥OC ,∴ON =12OC =4=EM , △OEA 的面积=12×OA ×EM =12×6×4=12; ②当OE =OC 时,∵EN ⊥OC ,∴∠ENC =∠ENO =90°,设ON =b ,则CN =8﹣b ,在Rt △NEC 中,222NE EC CN -=,在Rt △ENO 中,222NE EO ON -=,即()2222688b b ---=,解得:b =234, 则EM =ON =234, △OEA 的面积=12×OA ×EM =12×6×234=694; 故△OEA 的面积为12或694. 【点睛】本题主要考查矩形的性质与判定、勾股定理及一次函数,关键是灵活运用知识点及函数的性质,求线段的长常用勾股定理这个方法.23.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形, AB AD ∴=,90BAD ∠=︒, 90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒, ABE DAF ∴∠=∠,()ABE ADF AAS ∴△≌△, BE AF ∴=,AE DF =, EF AE AF =-, 2.5DF =,1BE = 2.51 1.5EF DF BE ∴=-=-=. 故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形, AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒, 180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒, 180ADF FAD AFD ∠+∠+∠=︒, BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△, 1DF AE AF EF AF ∴==+=+,AF BE =, 90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=,58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.24.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整; (3)根据选B 的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B 的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E 的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C 的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×2505000=18°,故答案为:18;(4)在扇形统计图中表示观点E的百分比是:2005000×100%=4%,故答案为:4%.【点睛】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)见解析(2)10【分析】(1)根据平行四边形的性质得到AD=BC=3,AD∥BC,得到AD=CE,推出四边形ACED 是平行四边形,由垂直的定义得到∠ACE=90°,于是得到结论;(2)根据三角形的中位线定理得到OC=12DE=12AC=1,由勾股定理即可得到结论.【详解】(1)证明:∵在平行四边形ABCD中,AD=BC=3,AD∥BC,∵CE=3,∴AD=CE,∴四边形ACED是平行四边形,∵AC⊥BC,∴∠ACE=90°,∴四边形ACED为矩形;(2)解:连接OE,如图,∵BO=DO,BC=CE,∴OC =12DE =12AC =1, ∵∠ACE =90°,∴OE ==【点睛】本题主要考查了平行四边形的性质,结合三角形中位线定理和勾股定理进行求解. 26.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭化简得2281920x x -+=,解得112x =,216x = 又8860%x -<⨯12.8x ∴≤ 16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.27.(1)证明见详解;(2)①5或6;②9或10或496. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.【详解】(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=160cm2,而x>0,∴x=4cm,则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.由运动知,AM=20-2t,AN=2t,①当MN∥BC时,AM=AN,即20-2t=2t,∴t=5;当DN∥BC时,AD=AN,∴12=2t,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②存在,理由:Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=10当DE=DM,则2t-8=10,∴t=9;当ED=EM,则点M运动到点A,∴t=10;当MD=ME=2t-8,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=6,在Rt△AEF中,EF=8;∵BM=2t,BF=BD+DF=8+6=14,在Rt △EFM 中,(2t-8)2-(2t-14)2=82,∴t=496. 综上所述,符合要求的t 值为9或10或496. 【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.28.(1);BC a c -;(2)①BE DC =,证明见解析,②3;(3)AM最小为(6,P或(3.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,BAD EAC BD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴=②而3DC BC BD ≥-=BE最小值为3,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯= 纵坐标为222222322AP AP ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭((33,3P ∴-或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.。