地质统计学与随机建模原理4-随机模拟
- 格式:ppt
- 大小:8.66 MB
- 文档页数:72
储层多点地质统计学随机建模方法摘要:多点地质统计学使用训练图像代替变差函数,将更多的地质资料整合到储层建模过程中,使得最终模型更加符合地质认识。
随着研究的不断深入,越来越多的地质工作人员开始熟悉这一方法,凭借自身的独特优势,多点地质统计学将在储层建模领域占得重要的一席。
关键词:多点地质统计学训练图像储层建模一、多点地质统计学与训练图像基于变差函数的传统地质统计学随机模拟是目前储层非均质性模拟的常用方法。
然而,变差函数只能建立空间两点之间的相关性,难于描述具有复杂空间结构和几何形态的地质体的连续性和变异性。
针对这一问题,多点地质统计学方法应运而生。
该方法着重表达空间中多点之间的相关性,能够有效克服传统地质统计学在描述空间形态较复杂的地质体方面的不足。
多点地质统计学的基本工具是训练图像,其地位相当于传统地质统计学中的变差函数。
对于沉积相建模而言,训练图像相当于定量的相模式,实质上就是一个包含有相接触关系的数字化先验地质模型,其中包含的相接触关系是建模者认为一定存在于实际储层中的。
二、地质概念模型转换成图像训练地质工作人员擅于根据自己的先验认识、专业知识或现有的类比数据库来建立储层的概念模型。
当地质工作人员认为某些特定的概念模型可以反映实际储层的沉积微相接触关系时,这些概念模型就可以转换或直接作为训练图像来使用。
利用训练图像整合先验地质认识,并在储层建模过程中引导井间相的预测,是多点地质统计学模拟的一个突破性贡献。
可以将训练图像看作是一个显示空间中相分布模式的定量且直观的先验模型。
地质解释成果图、遥感数据或手绘草图都可以作为训练图像或建立训练图像的要素来使用。
理想状态下,应当建立一个训练图像库,这样一来建模人员就可以直接选取和使用那些包含目标储层典型沉积模式的训练图像,而不需要每次都重新制作训练图像。
三、多点模拟原理进行多点模拟,需要使用地质统计学中的序贯模拟。
但是,多点模拟与传统的基于变差函数的两点模拟是不同的。
随机模拟总结引言随机模拟是一种常见的数值计算方法,通过对概率分布进行随机抽样来模拟某种现象的统计特性。
它在各个领域都有广泛的应用,如金融、物理学、生物学等。
本文将介绍随机模拟的基本原理、常见的应用场景以及优缺点,并提供一些实例来帮助读者更好地理解和应用随机模拟方法。
随机模拟的基本原理随机模拟的基本原理是基于概率论和随机过程的理论,通过生成服从特定概率分布的随机变量来模拟某个随机现象。
在随机模拟中,我们通常使用随机数发生器来生成伪随机数序列,然后利用这些伪随机数来模拟目标分布。
随机模拟通常包括以下几个步骤:1.选择合适的概率分布函数:根据所模拟的现象和问题的特点,选择合适的概率分布函数作为随机模拟的基础。
2.生成随机数:利用随机数发生器生成服从选定概率分布函数的随机数。
3.运用模拟方法:使用生成的随机数来模拟目标现象,并收集统计数据。
4.分析结果:对模拟得到的数据进行统计分析,得出所关注问题的结果或得到近似解。
随机模拟的应用场景随机模拟在各个领域都有广泛的应用,以下是一些常见的应用场景:金融领域在金融领域,随机模拟常用于风险管理、投资组合优化等问题。
通过模拟市场价格的随机变动和投资组合的收益率,可以评估不同投资策略的风险水平和回报潜力,帮助投资者做出更明智的决策。
物理学领域在物理学研究中,随机模拟常用于模拟粒子运动、统计物理系统的行为等问题。
通过生成服从特定概率分布的随机数,可以模拟粒子在给定势能场中的运动轨迹,从而研究物理系统的性质和行为。
生物学领域在生物学研究中,随机模拟常用于模拟遗传演化、蛋白质折叠等问题。
通过生成服从特定概率分布的随机数,可以模拟基因突变的发生、蛋白质的折叠过程等,从而深入了解生物体内的复杂过程和机制。
随机模拟的优缺点随机模拟方法具有一些显著的优点和一些限制性缺点。
优点1.灵活性:随机模拟方法可以适应各种问题和模型,能够模拟多种复杂的现象和系统。
2.实用性:随机模拟方法可以直接从统计样本中获取信息,使得相关问题的求解更加直观和实用。
随机模拟随机模拟又称为Monte Carlo 方法,是一种采用统计抽样理论近似地求解数学问题或物理问题的方法。
它既可以用来研究概率问题,也可以用来研究非概率问题。
基本想法: 首先建立与描述该问题有相似性的概率模型。
利用这种相似性把概率模型的某些特征(如随机事件的概率或随机变量的平均值等)与数学分析问题的解答(如积分值,微分方程的解等)联系起来,然后对模型进行随机模拟统计抽样,再利用所得的结果求出这些特征的统计估计值作为原来的分析问题的近似解。
基本理论依据:大数定律。
一 引入随机模拟方法用于近似数值计算领域已有近百年的历史。
可追溯到历史上著名的蒲丰(Buffon )投针问题。
(1) 蒲丰(Buffon )投针问题平面上,画有等距离的平行线,平行线之间的距离为a ,(a>0),向平面上任意投一枚长为l (a l <)的针,试求针与平行线之间相交的概率。
又以φ表示针与此直线的夹角。
则:πφ≤≤≤≤02/0a x令A :“针与平行线相交”,显然有“针与平行线相交”⇔“φsin 2lx ≤”。
则由几何概型有al d lS SA P a A ππϕϕπ2sin 2)(20=⋅==⎰Ω(*)若在(*)中以Nn 替代(估计))(A P ,⇒an lN2=π。
历史上有几位科学家做过此实验。
下表列出了其中的一部分实验结果: 人名 年份 N n 针长πWolf 1850 5000 2532 0.8 3.1596 Smith 1855 3204 1218 0.6 3.1514 Laggerini 1901 3408 1808 0.83 3.1415929 (2) 用Monte Carlo 方法计算面积考虑积分dx x f I ⎰=1)(,设],1,0[∈x 1)(0≤≤x f 。
这时积分I 等于由曲线)(x f y =,ox 轴和oy 轴以及x =1所围成的区域G 的面积。
现在向单位正方形区域(010,1≤≤≤≤y x )中,随机地投掷一点,即它的两个坐标),(y x d i i ..~]1,0[U 。
多点地质统计学随机建模方法原理详细教程多点地质统计学(Multiple-Point Geostatistics,简称MPGS)是一种用于地质建模的统计学方法,旨在综合考虑多个地质属性之间的空间关系,可以用于模拟地质体结构和属性的空间分布。
下面是一个详细的MPGS建模方法的教程。
1.数据收集和准备首先,需要收集和准备地质数据。
这些数据可以包括钻孔数据、采矿数据、地球物理数据等。
数据应该包括多个不同属性的测量结果。
2.数据预处理对收集的数据进行预处理是为了消除异常值、填充缺失值和准备数据用于建模。
这些步骤可以包括数据清洗、插值等。
3.定义模型网格创建一个用于建模的三维网格,通常由正交的网格单元组成。
网格的尺寸和边界应根据实际问题的要求进行选择。
4.模式提取在做MPGS建模之前,需要从数据中提取出具有空间一致性和相关性的模式。
这可以通过模式提取算法实现,如基于模拟退火算法的直方图匹配。
5.模式匹配在模型建模过程中,需要通过模式匹配找到与已知数据最相似的地质模式。
这可以通过计算模式之间的相似性指标,如多点统计函数(MPS)实现。
6.模式合成一旦找到与已知数据相似的地质模式,可以根据模式之间的空间关系来生成新的地质模式。
这可以通过使用概率或变异性模型来实现。
7.模型重建利用已生成的地质模式,可以在模型网格单元上对地质属性进行插值,以重建地质体的结构和属性分布。
这可以使用插值方法,如克里金插值、逼近法等。
8.模型评估和修正完成模型重建后,需要评估模型的性能并根据需求对模型进行修正。
可以利用模型与实际数据之间的比较以及其他准则来评估模型的准确性和合理性。
9.模型应用完成最终的地质建模后,可以将模型应用于相关的地质问题,如矿产资源评估、地质风险评估等。
以上是MPGS建模方法的详细教程。
这种方法在地质建模中广泛应用,可以提供更准确和全面的地质属性分布信息,对于地质资源开发和管理具有重要意义。
地质统计学在随机模拟中的应用'地质学在随机模拟中的引言地质统计学广泛应用于地质矿产普查、油藏模拟、储量计算等方面。
目前使用的油藏建模软件大部分是以地质统计学理论为基础,以变差函数理论为核心,表征区域化变量的结构性和随机性,同时通过其结构性来预测区域化变量的空间分布,其随机性来研究区域化变量的不确定性,取得较好的应用效果。
1、地质统计学在随机模拟中的应用模拟分为确定性模拟和随机模拟,随机模拟是一个抽样过程,该过程抽取各种可能的、等概率的来自于随机变量模型的各个部分的联合实现。
随机模拟最初是为了修正克里金的光滑效应。
传统的统计模拟要求随机数服从一定的概率分布,具有给定的数学期望和方差;而地质统计学的模拟还要求保持一定的空间相关性,也就是要求模拟结果与原数据的协方差函数或变差函数一致,这种模拟称为非条件模拟。
如再增加一个条件,若用观测点的数据对模拟过程进行条件限制,使得观测点的模拟值忠实于实测值(井数据、地震数据、试井数据等),则称为条件模拟。
1.1克里金方法在模拟中的应用克里金插值方法目前本文由联盟收集整理主要应用于油藏属性建模中,但其只强调局部最佳,对远点数据的考虑不足,所以单纯采用克里金进行插值建模精度不够,而采用序贯模拟方法能有效的消除这种影响。
序贯模拟的基本思想是某一位置邻域内的所有已知数据(原始数据和先前已模拟的数据)都可作为条件数据,在这一前提下进行模拟。
其具体的做法是首先将原始数据赋在网格中间,这样能将原始数据显示在最终的模型当中,同时使对前面已经模拟的数据的搜索和对原始数据的搜索一步完成。
接着随机产生一个网格的访问次序,在该随机访问次序中必须访问每个单元网格一次,且只有一次。
然后要赋值的网格通过搜索半径寻找最近的有值的网格,这些网格包括含油原始数据的网格和前面随机访问中求得值的网格,用克里金法构建局部条件概率分布,做成累积条件概率分布函数,然后随机从中提取一个分位数作为该网格的模拟值。