智能台灯系统
- 格式:doc
- 大小:723.00 KB
- 文档页数:32
基于STM32的智能台灯系统设计作者:陈俊妍刘秒秒来源:《中国新通信》2022年第15期摘要:隨着智能化家居的不断发展,一些传统家电的问题也越来越突出。
本文所设计基于STM32的智能台灯系统,不仅解决了传统台灯亮度调节不便,还解决了不能根据外界环境及时调整亮度的问题。
本文设计采用了STM32为核心控制器,人体红外传感器、超声波传感器和数字光照强度模块作为检测元件,实现了两种模式的控制:自动模式和手动模式,用户可以在两种模式之间自由切换。
自动模式是根据环境亮度实施自我亮度调节,而手动模式下用户通过不同手势手动调节台灯亮灭。
两种模式控制下,智能台灯的使用更加方便,不仅有效地节省了电能,还能通过自动开关灯来为人们解决黑暗中摸灯的困扰和安全隐患。
关键词:STM32、人体红外传感器、超声波传感器和数字光照强度模块。
一、引言随着社会的发展,移动互联技术不断进步,智能化家居产品也逐步进入到消费者的视野中。
随着LED灯光科技、电源技术的蓬勃发展,城市照明将顺应技术的发展趋势逐步迈向现代化。
[1]通过人们对生活品质要求的不断提高,人们对于家居照明的需求也从单纯的照明等基础功能上升到更高的要求。
在日常忙碌过后,智能化台灯能给人们提供最贴心化的服务,让人们能够调整状态迎接新的一天。
目前,智能化灯具在拥有传统灯具强调的质量的同时,还要使人们使用得更加便利安全。
智能化台灯的优势在于节约电能,通过自动开关灯来为人们解决黑暗中摸灯的困扰和安全隐患。
[2-4]传统照明灯具与之相比毫无优势可言,所以智能化照明灯具具有非常可观的市场潜力,它的出现与普及是未来发展的必然趋势。
本设计使用了单片机STM32F407VET6作为核心控制器,以人体红外传感器HC-SR501和超声波传感器HC-SR04作为测量元器件,LED作为执行部件。
智能台灯分为自动模式和手动模式,使用者能够在二个模式间随意转换。
自动模式是根据环境亮度实施自我亮度调节,环境越暗台灯越亮,环境越亮台灯越暗。
基于单片机的智能LED台灯设计摘要LED 台灯具有节能、环保、寿命长的特点,越来越受到人们的青睐。
本文设计了一款基于单片机的智能 LED 台灯,通过单片机控制LED灯的亮度和色温,实现智能调光和调色功能,同时提供人体感应、定时开关等智能功能,以满足用户的不同需求。
关键词LED 台灯;单片机;智能控制;调光;调色二、设计原理2.1 单片机选择在本设计中,我们选择了常见的 STM32 单片机作为控制核心。
STM32 具有丰富的外设资源和强大的计算能力,可以很好地满足 LED 台灯的智能控制需求。
2.2 亮度调节LED 台灯的亮度是通过 PWM(脉冲宽度调制)来实现的。
通过控制 PWM 的占空比,可以精确地调节 LED 的亮度。
我们可以通过单片机的定时器来产生 PWM 信号,从而控制LED 的亮度。
2.3 色温调节LED 台灯的色温调节可以通过控制 RGB LED 或者使用特殊的 LED 芯片来实现。
在本设计中,我们选择了使用特殊的 LED 芯片,通过改变驱动电流的大小来调节 LED 的色温。
这样可以实现从冷白光到暖白光的平滑调节,满足用户对不同环境的需求。
2.4 智能功能为了提升 LED 台灯的智能化程度,我们还加入了人体感应和定时开关等功能。
通过红外传感器可以检测到人体的存在,并自动调节灯光的亮度和色温;定时开关可以让用户设定 LED 台灯的开关时间,方便用户根据生活习惯来控制台灯的开关。
三、硬件设计3.1 LED 选择LED 台灯的光源选择是非常重要的,我们选用了高亮度的 SMD LED,其发光效率高,寿命长,且色温范围广,可以满足用户对不同色温的需求。
3.2 单片机控制电路单片机控制电路主要包括电源模块、人体感应模块、PWM 生成模块和电流调节模块。
电源模块负责对 LED 台灯整体的供电,人体感应模块负责检测人体的存在,PWM 生成模块负责产生调节 LED 亮度的 PWM 信号,电流调节模块负责调节 LED 的色温。
基于STM32的LED智能学习型台灯系统的设计一、本文概述随着科技的不断进步和人们生活水平的提高,人们对于家居环境的智能化和舒适性的需求也日益增强。
LED智能学习型台灯系统作为一种结合照明与智能控制技术的创新产品,旨在为用户提供更加舒适、节能和个性化的照明体验。
本文旨在探讨基于STM32微控制器的LED 智能学习型台灯系统的设计与实现。
本文将首先介绍LED智能学习型台灯系统的整体架构和核心功能,包括LED照明模块、光感模块、人体红外传感器模块以及基于STM32微控制器的智能控制模块等。
随后,将详细阐述各模块的工作原理和设计要点,包括LED驱动电路的设计、光感传感器和人体红外传感器的选型与配置、以及STM32微控制器的编程与调试等。
在此基础上,本文将重点介绍LED智能学习型台灯系统的学习功能实现,包括环境光线自适应调节、人体活动感知与智能开关控制、以及用户习惯学习与记忆等。
通过深入分析和讨论相关算法和程序设计,展示如何实现台灯系统的智能化和自适应学习功能。
本文将总结LED智能学习型台灯系统的设计特点和创新之处,并展望其在智能家居和照明领域的应用前景。
通过本文的研究,旨在为相关领域的研发人员和爱好者提供有益的参考和启示,推动LED智能照明技术的进一步发展。
二、系统总体设计在STM32的LED智能学习型台灯系统的设计中,我们遵循了模块化、可扩展性和易于维护的原则。
整个系统由硬件和软件两部分组成,其中硬件部分主要包括LED灯组、STM32微控制器、环境光传感器、人体红外传感器、触摸屏幕以及电源模块等。
软件部分则主要包括系统初始化、传感器数据采集、LED亮度调节、环境光自适应、人体感应以及用户交互等功能模块。
硬件设计方面,我们选择STM32F103C8T6作为主控制器,该控制器拥有强大的处理能力和丰富的外设接口,能够满足系统的各种需求。
LED灯组采用高亮度的白光LED,通过PWM(脉冲宽度调制)方式实现亮度的精细调节。
智能台灯毕业设计智能台灯是一种集成了智能控制技术和灯具功能的新型产品,其主要功能是通过操作智能控制系统,实现灯具的开关、亮度调节、色温调节等功能,从而提供更舒适、智能化的照明体验。
智能台灯的设计理念是以用户体验为中心,通过调节灯光亮度和色温,为用户提供舒适的照明环境。
在设计上,我选择了简约现代的外观风格,以白色为主色调,搭配铝合金材质,既简洁美观,又具有高档感。
台灯的灯头采用可调节角度的设计,使得用户可以自由调节光线照射的位置和角度,以满足不同的照明需求。
智能台灯的核心部件是智能控制系统,基于嵌入式技术开发。
用户可以通过手机APP或者声控等方式来控制台灯的开关、亮度调节、色温调节等功能。
通过手机APP,用户可以预设不同的照明场景,比如阅读模式、工作模式、休息模式等,轻松切换不同的照明效果。
而声控功能则可以通过语音指令来控制灯具的开关和亮度调节,提供更便捷的操作方式。
除了基本的照明功能,智能台灯还具备其他一些实用的功能。
比如,自动调节亮度功能,通过光感传感器检测环境光线强度,自动调节灯光亮度,以保持室内的舒适照明环境。
同时,智能台灯还可以与其他智能家居设备联动,比如智能音箱、温湿度传感器等,从而实现更智能化的家居体验。
在智能台灯的实现过程中,我参考了相关的技术资料,进行了硬件和软件的设计与开发。
在硬件方面,我选用了高亮度LED灯源、触摸面板、光感传感器等组件,并利用Arduino开发板进行电路设计和硬件编程。
在软件方面,我使用了Python语言进行APP的开发,并利用开源智能控制系统进行整体的控制和管理。
通过不断调试和改进,最终实现了智能台灯的设计目标。
总的来说,智能台灯是一种集成了智能控制技术和灯具功能的新型产品,具有照明、调节、联动等多重功能。
通过智能控制系统的应用,用户可以轻松调节灯光亮度和色温,创造出更舒适、智能化的照明环境。
这种智能台灯的设计与开发,不仅可以提高用户的使用体验,也有助于推动智能家居技术的发展。
未来的台灯
未来的台灯一:智能台灯
未来的台灯将成为智能化的产品。
它将有一个内置的人工智能系统,能够根据用户的需求和喜好自动调节亮度和色温。
通过连接互联网,它还能获取天气信息,并根据天气情况调整灯光的色彩和亮度,为用户提供一个舒适的环境。
此外,智能台灯还可以与智能家居系统连接,通过语音控制来调节灯光。
未来的台灯二:可充电台灯
未来的台灯将有一个内置的可充电电池,用户不再需要依赖电源线。
这样的设计能够使台灯更加便携,用户可以随时随地使用。
而且,充电时间也会非常短,不会耗费太多时间。
另外,可充电台灯还可以保存用户的个性化设置,无需重新调节。
它也可以通过USB接口为其他设备充电,例如手机、平板电脑等。
未来的台灯三:环保节能台灯
未来的台灯将更加注重环保和节能。
它将采用LED灯源,LED灯具有寿命长、能效高、辐射低等特点,能够节省更多能源。
此外,未来的台灯将采用光控技术,能够根据周围环境的光线状况自动调节亮度,避免能源的浪费。
台灯还可以通过太阳能板供电,减少对传统能源的依赖。
这样的台灯不仅节约能源,还对环境友好。
家庭灯光智能控制系统设计1.引言随着科技的不断发展,智能家居已经成为人们生活中的热门话题。
智能家居不仅给人们的生活带来了便利,同时也提高了居住的舒适度和安全性。
其中,家庭灯光智能控制系统是智能家居中的一个重要组成部分。
本文将设计一套家庭灯光智能控制系统,以满足人们对于灯光的智能控制需求。
2.系统需求2.1用户需求用户希望能够灵活地控制家庭灯光,例如打开/关闭灯光、调节灯光亮度、更改灯光颜色等。
用户希望能通过手机、平板电脑等设备进行远程控制,方便快捷。
用户希望系统能自动进行灯光控制,例如根据时间设定自动开启/关闭灯光、根据环境亮度自动调节灯光亮度等。
2.2系统需求系统需要具备远程控制功能,可以通过手机APP、平板电脑等设备进行控制。
系统需要能够自动进行灯光控制,例如定时开启/关闭灯光、根据环境亮度自动调节灯光亮度等。
系统需要能够接收用户的手动控制指令,并迅速响应,确保控制的实时性。
系统需要能够连接和控制多个灯光设备。
系统需要提供用户友好的界面,方便用户进行操作。
3.系统设计3.1硬件设计系统需要具备以下硬件组成:灯光设备、智能网关、控制器、传感器。
灯光设备:用于提供照明功能,可以是普通的灯泡、台灯等。
智能网关:用于与控制器和传感器进行通信,接收控制指令并转发给相应的灯光设备。
控制器:用于处理用户的控制指令和自动控制逻辑,对灯光设备进行控制。
传感器:用于感知环境亮度等信息,并将信息传输给控制器进行自动控制。
3.2软件设计系统需要具备以下软件组成:远程控制APP、自动控制逻辑、用户界面。
自动控制逻辑:根据用户设定的条件和时间,对灯光设备进行自动控制。
用户界面:提供用户友好的界面,方便用户进行操作,如开关灯、调节亮度、更改颜色等。
4.系统实现4.1硬件实现选择合适的灯光设备和智能网关,确保设备之间的兼容性。
将智能网关与灯光设备进行连接,形成一个局域网内的灯光控制系统。
将传感器布置在合适的位置,确保能够准确感知环境亮度等信息。
声控台灯的原理声控台灯是一种通过声音信号来控制灯光开关和亮度调节的智能灯具,它能够提高生活的便利性和舒适度。
其原理主要包括声音感应和电子控制两个方面。
首先,声控台灯的原理之一是声音感应。
声音感应是通过声音传感器或麦克风模块来感知外界发出的声音信号。
当声音触发器感应到声音信号时,它会将声音信号转换为电信号,并将其传输到电子控制系统中进行处理。
声音感应模块一般采用高灵敏度的传感器技术,能够迅速、准确地感应到声音信号,从而实现及时的灯光开关和亮度调节。
其次,声控台灯的原理还包括电子控制。
电子控制系统是声控台灯的核心部件,它主要包括信号处理模块、控制电路和执行器等组成部分。
当声音感应模块感知到声音信号后,它会将信号传送给信号处理模块,信号处理模块对声音信号进行分析和处理,确定声音的类型和强度。
在确定了声音的类型和强度后,信号处理模块会将处理结果传输到控制电路中进行相应的逻辑判断,并控制台灯的开关和亮度。
同时,电子控制系统还可以根据用户的需求,通过执行器来实现灯光的开关和亮度调节。
总的来说,声控台灯的原理是基于声音感应和电子控制技术,利用声音传感器感知声音信号,通过信号处理和控制电路来控制台灯的开关和亮度。
声控台灯利用这些技术,能够实现灯光的智能控制,提高了使用的便捷性和舒适度。
值得一提的是,声控台灯在实际应用中还可以结合无线通信技术,实现对灯具的远程控制。
通过无线通信模块,声控台灯可以与智能手机或者智能家居中心相连接,实现对灯光的远程控制。
用户可以通过手机App发送指令,实现对灯光的开关和亮度调节,这进一步提高了声控台灯的智能化水平。
总的来说,声控台灯的原理是基于声音感应和电子控制技术,通过声音传感器感知外界声音信号,再通过信号处理和控制电路来实现对灯光的控制。
声控台灯的智能化技术不断发展,让我们的生活更加方便和舒适。
基于单片机的智能台灯设计一、引言二、智能台灯的功能需求分析(一)亮度调节用户能够根据不同的使用场景和个人需求,灵活调节台灯的亮度。
例如,在阅读时需要较高的亮度,而在睡前阅读时则需要较柔和的光线。
(二)色温调节提供不同的色温选择,如冷光、暖光和自然光,以适应不同的环境和视觉需求。
(三)自动感应具备人体感应功能,当人靠近时自动亮起,人离开一段时间后自动熄灭,节省能源。
(四)定时功能可以设置定时关闭,避免用户在使用过程中睡着而忘记关灯。
(五)光线自适应能够根据周围环境的光线强度自动调整台灯的亮度,保持舒适的照明效果。
(一)单片机选择选用合适的单片机作为控制核心,如 STM32 系列。
STM32 具有高性能、低功耗、丰富的外设接口等优点,能够满足智能台灯的控制需求。
(二)光照传感器采用光敏电阻或环境光传感器,实时检测周围环境的光线强度,并将信号传输给单片机进行处理。
(三)人体感应模块使用红外热释电传感器来检测人体的存在,当有人靠近时,传感器输出信号给单片机,控制台灯亮起。
(四)LED 驱动电路选择合适的 LED 驱动芯片,如恒流驱动芯片,以保证 LED 灯珠的稳定工作和亮度调节。
(五)按键模块设置若干按键,用于用户手动调节亮度、色温、定时等功能。
(六)显示模块可以采用液晶显示屏(LCD)或数码管,显示当前的亮度、色温、定时时间等信息。
(一)主程序流程系统初始化后,进入主循环。
不断检测光照传感器、人体感应模块和按键模块的输入信号,根据信号执行相应的操作,如调节亮度、色温、控制台灯的开启和关闭等。
(二)亮度调节算法通过 PWM(脉冲宽度调制)技术实现亮度调节。
根据用户设定的亮度值,调整 PWM 信号的占空比,从而改变 LED 的平均电流,实现亮度的变化。
(三)色温调节算法采用不同颜色的 LED 灯珠(如冷白、暖白),通过调节两种颜色LED 灯珠的电流比例,实现色温的变化。
(四)人体感应处理当人体感应模块检测到有人靠近时,立即开启台灯,并根据环境光强度自动调整亮度。
智能台灯实施方案一、引言。
智能台灯是一种结合了现代科技和照明功能的产品,它可以通过智能手机或者语音控制来实现灯光的调节和亮度的变化,给人们的生活带来了极大的便利。
本文将对智能台灯的实施方案进行详细介绍,包括硬件设备、软件系统和使用方法等方面。
二、硬件设备。
1. 灯具选择,智能台灯的灯具选择是至关重要的,一般来说,LED灯具是较为常见的选择,因为它具有节能、环保、寿命长等优点。
在选择LED灯具时,需要考虑灯具的亮度、色温和灯具的外观设计等因素。
2. 控制器,智能台灯的控制器是实现智能化的关键,一般采用Wi-Fi或蓝牙技术,可以连接到智能手机或者智能家居系统,实现远程控制和定时开关等功能。
3. 传感器,为了提高智能台灯的智能化程度,可以在灯具中添加光线传感器、人体感应器等传感器,实现自动调节亮度和智能感应等功能。
三、软件系统。
1. 应用程序,智能台灯的应用程序是用户与灯具进行交互的重要方式,通过应用程序可以实现灯光的调节、定时开关、场景模式设置等功能。
2. 语音控制,一些智能台灯还支持语音控制,用户可以通过语音指令来控制灯光的亮度、色温等参数,提高了用户的使用体验。
3. 联动控制,智能台灯可以与其他智能家居设备进行联动控制,比如与智能音箱、智能门锁等设备进行联动,实现更加智能化的家居体验。
四、使用方法。
1. 安装设置,用户在购买智能台灯后,需要按照说明书进行安装设置,包括连接电源、下载应用程序、连接Wi-Fi等步骤。
2. 控制方式,用户可以通过智能手机应用程序、语音控制、传感器自动感应等方式来控制智能台灯,实现灯光的调节和开关。
3. 定时设置,用户可以通过应用程序设置定时开关,比如在晚上睡觉时自动关闭灯光,在早上起床时自动开启灯光,提高了生活的便利性。
五、结语。
智能台灯作为一种结合了科技和照明功能的产品,给人们的生活带来了极大的便利。
本文对智能台灯的实施方案进行了详细介绍,包括硬件设备、软件系统和使用方法等方面,希望能够对智能台灯的使用和推广起到一定的指导作用。
石家庄铁道大学物联网原理及应用课程作业2016 年春季学期学院:电气与电子工程学院专业:电子信息工程作业名称:基于热释红外的智能台灯系统学生姓名:向鹏学号:20132581指导教师:王伟明完成日期:2016-5-20作业评分表课程设计任务书一、作业目的通过智能台灯设计,熟悉各个模块的运用方法。
掌握物联网开发的基本思路,明确物联网的核心是应用,应用的核心是云计算。
二、作业内容及要求能够按照要求独立完成课程设计部分。
学会查阅技术手册和文献资料。
进一步熟悉物联网具体化的设计方法。
填写设计任务书,撰写课程设计论文。
三、作业成果形式及提交要求当场演示实物,提交实物和论文。
实物必须说明能实现什么样的功能,说明和物联网的关系。
论文必须严谨,必须叙述清楚各种模块的组成和作用。
四、参考文献[1] 物联网技术与应用.机械工业出版社.2013[2] 传感器网络技术及应用开发.清华大学出版社.2011[3] 传感器与应用电路设计北京科学出版社,2002[4] 热释电红外传感器,/view/1788636.htm[5] 光敏电阻,目录目录 (1)摘要 (2)93346679课程设计摘要随着电子产品的快速发展,家用电器也越来越偏向智能化,物联网在我们生活中扮演着越来越重要的角色。
而所用的智能化家用电器都用一个共同的特点,都是利用物联网感知层作为最基本的感知单元。
智能家用电器和普通家用电器相比,功能上更强,使用更方便,安全可靠性也更高,最重要的是更节省电能,提高了家用电器的品质。
智能台灯以专门感应人体红外信号的热释电红外传感器为基础,以BISS0001信号处理电路,利用单片机进行处理,以达到便于控制的目的。
当房间亮度不够时,且有人在附近时,台灯便会自动点亮,省去了黑暗中摸开关麻烦;当使用40分钟时间后自动报时,提醒人们注意适当用眼;当无人在时,系统也会使台灯自动熄灭,以达到节省能源的目的。
关键词:物联网感知层智能台灯STC89C52热释红外1 绪论1.1 智能台灯系统概述随着科技的高速发展,各种各样的物联网产品开始走入人们的生活,这一切都大大地提高了人们的工作效率、改善了人们的生活,现在电器的发展趋势是智能化,这样会使人们使用起来更加方便。
随着物联网智能控制理论和人工智能研究的深入,各种更加逼真地模拟人类智能的家用电器会更多地出现,而单片机和物联网理论的结合,将来不但更多地改进现行家用电器,而且将会产生全新的家用电器。
家用电器因为单片机的加入而走向智能化,并且随着人们生活水平的提高日益走向平民化,我们的生活也随着家用电器的发展越来越方便、舒适。
随着家用电器的发展,作为家用电器当中的小台灯也要顺应科技的发展步伐走向智能化。
台灯是人们生活中用来照明的一种家用电器。
它一般分为两种,一种是立柱式的,一种是有夹子的。
它的工作原理主要是把灯光集中在一小块区域内,集中光线,便于工作和学习。
一般台灯用的灯泡是白炽灯或者节能灯泡,有的台灯还有应急功能,用于停电时无电照明。
目前,灯具市场上出售的灯具种类繁多,一般台灯均采用220V交流电源供电,日光灯管、白炽灯泡为光源,手动开关或触摸感应式开光来控制。
但这类台灯存在很多弊端,一是电压是不安全电压,给人们使用带来不安全因素;二是日光灯还具有频闪效应,经常使用会给人的眼睛带来一定的伤害;三是耗电量大、台灯通常都是以日光灯为主,在几瓦到几十瓦之间;四是人工化,人们由于手工操作,往往会忘记关灯,这也造成电能的浪费,到目前为止,在灯具市场上,很少见到采用+5V的直流电源供电的一种人体智能台灯,它具有既不会出现触电,使用寿命长、无辐射、又不污染等优点,有许多普通按键台灯所无法比及的优势。
智能化台灯一方面可以更节省电能,有利于环保,另一方面可以使用一段时间自动报时,提醒人们注意用眼休息。
同时,智能台灯在黑暗的时候自动开关灯的功能也让使用者使用起来更方便,省去黑暗摸灯的麻烦。
智能台灯可分为自动和手动两种模式。
在自动模式下,台灯能根据环境光的明暗与人是否被台灯所检测到来自动开启台灯。
在这里设计了以人体红外辐射(波长为9.5um)传感控制电路。
当人体在台灯的范围内且环境光强较弱时,自动感应开灯。
当人离开时则自动关灯,达到节约能源的目的。
手动模式是为了不习惯使用自动模式的人或是台灯中的微机出现故障等紧急情况时用的。
在手动模式下,智能台灯和普通台灯是一样使用的。
台灯是一般家庭的生活必需品,但由于经常忘记关灯而造成巨大的能源浪费。
全球这么多台灯,估算一下,消耗能源可观。
本系统在实验室进行了实物实验。
热释电红外探测器距离是1m左右(距离可调),主要是因为般来说是门离书桌的距离;以便黑暗中时人一到门口则启动,省去了开灯的麻烦,用户可以根据自己的实际情况进行距离调节。
1.2 课程设计内容1.2.1 设计内容和实现功能名称:基于热释红外的智能台灯系统内容及要求: 设计并制作一种智能台灯,主要是以BISS0001和单片机组成的热释红外传感控制电路。
其特点是在有人时且外界光强较弱时能自动开灯,无人时关灯,节约能源。
具体要求如下:1.以专门感应人体红外信号的热释电红外传感器为基础,以BISS0001信号处理电路,利用单片机进行处理,以达到便于控制的目的;2.当房间亮度不够时,且有人在附近时,台灯便会自动点亮,省去了黑暗中摸开关麻烦;3.当无人在时,系统也会使台灯自动熄灭,以达到节省能源的目的;4.当使用40分钟时间后自动报时,提醒人们注意用眼休息。
1.2.2 系统分析台灯已是千家万户的必需生活用品,经常由于忘记关灯而造成巨大的能源浪费。
当夜晚来临时,人们又摸黑去开灯,非常不方便。
在这里设计了以人体红外辐射(波长为9.5um)传感控制电路。
当人体在台灯的范围内且环境光强较弱时,自动感应开灯;当人离开时则自动关灯,达到节约能源的目的。
单片机在本次智能节能台灯设计中的主要控制单元,主要控制电路灯光,控制电路是在单片机的控制下工作。
硬件部分采用防干扰技术外,在软件中也采用了防干扰技术,当中断0产生时,并不立即执行,而是对其进行延时,防止由于不小心而进入到探测器的范围内,以免产生误判。
系统主要器件介绍2.1 STC89C52由于物联网是物物相连的意思,系统通过传感器感知外界的变化再通过传输层传送给中央处理器,而我们最常见的处理器就是89系列单片机。
STC89C52是一种带8K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C52是一种高效微控制器,AT89C2051是它的一种精简版本。
STC89C52单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
图2-1 AT89C52类别2.1.1管脚说明VCC:电源电压GND:地P0 口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。
作为输出口时,每一个管脚都能够驱动8个TTL电路。
当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。
P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活内部的上拉电阻。
在Flash 编程时,P0 口接受指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。
P1 口:P1口一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。
对端口写“1”,通过内部的电阻把端口拉到高电平,此时可作为输入口。
因为内部有电阻,某个引脚被外部信号拉低时输出一个电流。
闪烁编程时和程序校验时,P1口接收低8位地址。
P2 口:P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作为输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
在访问外部程序存储器或16 位四肢的外部数据存储器(例如执行MOVX @DPTR指令)时,P2 口送出高8 位地址数据,在访问8 位地址的外部数据存储器(例如执行MOVX @ RI 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中R2 寄存器的内容),在整个访问期间不改变。
Flash 编程和程序校验时,P2 也接收高位地址和其他控制信号。
P3口:P3口是一组带有内部电阻的8位双向I/O口,P3口输出缓冲故可驱动4个TTL电路。
对P3口写如“1”时,它们被内部电阻拉到高电平并可作为输入端时,被外部拉低的P3口将用电阻输出电流。
P3口同时为闪烁编程和编程校验接收一些控制信号,P3口也可作为AT89C52的一些特殊功能口,如表所示:RST:复位输入。
当振荡器工作时,RST 引脚出现两个机器周期以上高电平将使单片机复位。
表2-1 P3口特殊功能ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。
因此它可用作对外部输出的脉冲或用于定时目的。
然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。
如想禁止ALE的输出可在SFR8EH地址上置0。
此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。
另外,该引脚被略微拉高。
如果微处理器在外部执行状态ALE禁止,置位无效。
PSEN:程序储存允许输出是外部程序存储器的读选通信号,当AT89C52由外部程序存储器读取指令时,每个机器周期两次PSEN有效,即输出两个脉冲。
在此期间,当访问外部数据存储器时,这两次有效的PSEN信号不出现。
EA/VPP:外部访问允许。
欲使中央处理器仅访问外部程序存储器,EA端必须保持低电平。
需要注意的是:如果加密位LBI被编程,复位时内部会锁存EA端状态。
如EA端为高电平,CPU则执行内部程序存储器中的指令。
闪烁存储器编程时,该引脚加上+12V的编程允许电压VPP,当然这必须是该器件是使用12V编程电压VPP。
XTAL1:振荡器反相放大器及内部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
2.1.2振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出。
该反向放大器可以配置为片内振荡器。