反比例函数K值的求法与几何图形
- 格式:docx
- 大小:157.69 KB
- 文档页数:4
反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。
反比例函数常见几何模型汇总近年来,反比例函数作为中考压轴小题,出现的次数一直居高不下,仔细研读中考真题,不难发现一些常见几何模型,基于此,本文重点介绍常用的几种与反比例结合的几何模型,帮助读者梳理解题思路,部分模型结论可以记忆,在考试小题中直接套用即可!【模型一】定值矩形与定值三角形k【例1】如图,点 P 是反比例函数图象上的一点,过 P 向 x 轴作垂线,若阴影面积为 2,则这个反比例函数的关系式是______________。
【答案】xy 4-= 【模块二】平行线之间的定值三角形条件:A 是x k y 1=上一点,B 是xk y 2=上一点,AB∥x 轴, 结论:)(2121k k S S ABP ABO +==∆∆【例2】如图,A 是反比例函数xk y =图象上的一点,过点 A 作 AB ⊥y 轴于点 B,点 P 在 x 轴上,△ABP 的面积为 2,则 k 的值为_______。
【答案】4【模块三】“重叠型”定值矩形、定值三角形条件:A 是x k y 1=上一点,D 是xk y 2=上一点,AB ⊥x 轴,AM ⊥y 轴, 结论:21k k S ABCD -=矩形。
【例3】如图,A 是x y 1=上一点,B 是xy 3=上一点,且AB ∥x 轴,C 、D 两点在x 轴上,则矩形ABCD 的面积为________。
【答案】2【模块四】“喇叭三角形”条件:A 、B 两点分别为xk y =上不同两点,且AC ⊥x 轴,BD ⊥x 轴。
②EBDC AOE S S 四边形=∆;【例4】如图,反比例函数xk y =经过A(2,2)和B(4,m),则△AOB 的面积为______。
【答案】3.【模块五】中点模型②C 、D 为线段OF 的三等分点,即DF CD OC ==;④1:3:2::=∆∆BDF ACDB OAC S S S 四边形。
【例5】如图,平行四边形AOBC 中,对角线AB 和OC 交于点E ,反比例函数xk y =经过A 、E 两点,若18=AOBC S ,则。
反比例函数k几何意义模型大全摘要:一、反比例函数的概念与基本性质二、反比例函数的几何意义1.反比例函数与坐标轴的交点2.反比例函数图象上的点与k的关系3.反比例函数图象的缩放与翻转三、反比例函数的应用1.实际问题中的反比例关系2.数学模型中的反比例函数应用四、反比例函数的计算与分析1.反比例函数的求解2.反比例函数的图像分析五、总结与拓展正文:一、反比例函数的概念与基本性质反比例函数是数学中一种重要的函数类型,其一般形式为y = k/x,其中k 为常数且k≠0。
反比例函数具有以下基本性质:1.当x>0时,y>0;当x<0时,y<0。
2.当x增大时,y减小;当x减小时,y增大。
3.反比例函数的图象为双曲线,且两条分支分别位于第一、第三象限。
二、反比例函数的几何意义1.反比例函数与坐标轴的交点:反比例函数y = k/x与x轴、y轴的交点分别为(0,k)和(k,0)。
2.反比例函数图象上的点与k的关系:反比例函数图象上的点(x,y)满足xy = k。
3.反比例函数图象的缩放与翻转:反比例函数图象随着k的变化而缩放,k增大时图象变得更瘦,k减小时图象变得更胖。
同时,反比例函数图象可以沿x轴或y轴翻转。
三、反比例函数的应用1.实际问题中的反比例关系:许多实际问题中存在反比例关系,如速度与时间、面积与边长等。
通过建立反比例函数模型,可以更好地描述这些关系。
2.数学模型中的反比例函数应用:反比例函数在数学模型中有广泛应用,如电阻与电流、电压的关系、物流配送中的距离与时间关系等。
四、反比例函数的计算与分析1.反比例函数的求解:当给出反比例函数的形式,可以通过代入法、图像法等方法求解k值。
2.反比例函数的图像分析:通过对反比例函数图象的分析,可以了解其性质、变化趋势等。
五、总结与拓展反比例函数是数学中的重要概念,掌握其基本性质、几何意义及应用有助于解决实际问题和数学模型。
同时,反比例函数也是进一步学习其他数学知识的基础,如微积分、三角函数等。
反比例函数求k值解题技巧
反比例函数是一种重要的函数类型,通常在数学中用于解决各种实际问题。
反比例函数的k值求解是反比例函数问题中的一个重要部分,下面介绍一些求解反比例函数k值的技巧和方法。
技巧一:利用函数图像
反比例函数的图像通常呈现为垂直于x轴的正比例函数图像的上下平移得到的。
因此,我们可以通过观察反比例函数图像的上下平移,来推断出反比例函数的k值。
具体来说,我们可以通过观察反比例函数图像的斜率k值,来确定反比例函数的k值。
技巧二:利用函数解析式
反比例函数的解析式通常写成y=k/x的形式,其中k为反比例函数的k值。
我们可以通过解方程y=k/x,来求出k的值。
具体来说,我们可以通过将方程中的k替换为已知的k值,从而解出x的值,进而得到y的值。
技巧三:利用函数的性质
反比例函数还有一些特殊的性质,可以帮助我们求出反比例函数的k值。
例如,反比例函数的斜率k与函数的斜率k1之间的夹角为90度,且k1*k=-1。
利用这些性质,我们可以计算出反比例函数的k值。
反比例函数的k值求解是一个需要耐心和技巧的过程。
通过利用函数图像、函数解析式和函数性质等技巧,我们可以求出反比例函数的k值,从而解决反比例函数问题。
模型介绍考点1一点一垂线模型【模型讲解】反比例函数图象上一点关于坐标轴的垂线、另一坐标轴上一点(含原点)围成的三角形面积等于12|k|.【示例】拓展:【例1】.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数y=(x >0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小解:如图,过点B作BC⊥PA于点C,则BC=OA,设点P(x,),=PA•BC=••x=3,则S△P AB当点A的横坐标逐渐增大时,△PAB的面积将会不变,始终等于3,故选:C.变式训练【变1-1】.如图,点A、B在反比例函数的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是4,则k的值为﹣.解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,=S△AOM+S四边形AMNB+S△BNC,∵S△AOC∴﹣×3a×=﹣k+4﹣×a×,解得k=﹣,故答案为:﹣.【变1-2】.如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A.B.C.2D.解:把P(2,3),M(a,2)代入y=得k=2×3=2a,解得k=6,a=3,设直线OM的解析式为y=mx,把M(3,2)代入得3m=2,解得m=,所以直线OM的解析式为y=x,当x=2时,y=×2=,所以C点坐标为(2,),所以△OAC的面积=×2×=.故选:B.考点2一点两垂线模型【模型讲解】反比例函数图象上一点与坐标轴的两条垂线所围成的矩形面积等于|k |.【示例】ABCD S k【例2】.双曲线与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为()A .1B .2C .3D .4解:设直线AB 与x 轴交于点C .∵AB ∥y 轴,∴AC ⊥x 轴,BC ⊥x 轴.∵点A 在双曲线y =的图象上,∴△AOC 的面积=×10=5.∵点B 在双曲线y =的图象上,∴△COB的面积=×6=3.∴△AOB的面积=△AOC的面积﹣△COB的面积=5﹣3=2.故选:B.变式训练【变2-1】.如图,函数y=(x>0)和(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴交l1于点A,PB∥x轴交l1于点B,△PAB的面积为.解:设点P(x,),则点B(,),A(x,),∴BP=x﹣=,AP=﹣=,==,∴S△ABP故答案为:.【变2-2】.如图,直线AB∥x轴,分别交反比例函数y=图象于A、B两点,若S△AOB=2,则k2﹣k1的值为4.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,=2,∵S△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【变2-3】.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=3,则k的值为﹣2.解:∵直线l∥x轴,∴AM⊥y轴,BM⊥y轴,=|k|,S△BOM=×4=2,∴S△AOM=3,∵S△AOB=1,∴S△AOM∴|k|=2,∵k<0,∴k=﹣2,故答案为:﹣2.考点3两曲一平行模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例3】.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为()A.﹣8B.﹣12C.﹣24D.﹣36解:设A(x,0).∵正方形ADEF的面积为16,∴ADEF的边长为4,∴E(x﹣4,4),∵BF=2AF,∴BF=2×4=8,∴B(x,12).∵点B、E在反比例函数y=(k为常数,k≠0)的图象上,∴4(x﹣4)=12x,解得x=﹣2,∴B(﹣2,12),∴k=﹣2×12=﹣24,故选:C.变式训练【变3-1】.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:(+,﹣).【变3-2】.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S=1.7,则S1+S2等于 4.6.阴影解:如图,∵A、B两点在双曲线y=上,=4,S四边形BDOC=4,∴S四边形AEOF∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故答案为:4.6.【变3-3】.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为1,2,3,4,….分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,则S1+S2+S3+…+S n=.(用n的代数式表示,n为正整数)解:当x=1时,P1的纵坐标为2,当x=2时,P2的纵坐标1,当x=3时,P3的纵坐标,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(2﹣1)=2﹣1;S2=1×(1﹣)=1﹣;S3=1×(﹣)=﹣;S4=1×(﹣)=﹣;…S n=﹣;S1+S2+S3+…+S n=2﹣1+1﹣+﹣+﹣+…+﹣=2﹣=.故答案为:.考点4两点一垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作垂线围成的三角形面积等于|k|,反比例函数与一次函数图象的交点及坐标轴上任一点构成三角形的面积,等于坐标轴所分的两个三角形面积之和.【示例】【例4】.如图,正比例函数y=kx与反比例函数y=﹣相交于A,C两点,点A的横坐标为﹣4,过点A作x轴的垂线交x轴于B点,连接BC,下列结论:①k=﹣;②不等式kx<﹣的解集为﹣4<x<0或x>4;③△ABC的面积等于16.其中正确的结论个数为()A.0B.1C.2D.3解:将x=﹣4代入y=﹣得y=﹣=2,∴点A坐标为(﹣4,2),将(﹣4,2)代入y=kx得2=﹣4k,解得k=﹣,∴①正确.由反比例函数及正比例函数的对称性可得点C坐标为(4,﹣2),∴当﹣4<x<0或x>4时,kx<﹣,∴②正确.=S△AOB+S△BOC=OB•y A+OB•(﹣y C)=BO(y A﹣y C)=×(2+2)∵S△AOC=8,∴③错误.故选:C.变式训练【变4-1】.如图所示,一次函数y=kx(k<0)的图象与反比例函数y=﹣的图象交于A,B两点,过点B作BC⊥y轴于点C,连接AC,则△ABC的面积为4.解:∵BC⊥y轴于点C,=|﹣4|=2,∴S△COB∵正比例函数y=kx(k>0)与反比例函数y=﹣的图象均关于原点对称,∴OA=OB,=S△COB=2,∴S△AOC=S△AOB+S△BOC=2+2=4,∴S△ABC故答案为:4.【变4-2】.如图,过点O的直线与反比例函数y=的图象交于A、B两点,过点A作AC⊥x轴于点C,连接BC,则△ABC的面积为.解:∵点A反比例函数y=的图象上,过点A作AC⊥x轴于点C,=|k|=,∴S△AOC∵过点O的直线与反比例函数y=的图象交于A、B两点,∴OA=OB,=S△AOC=∴S△BOC=2S△ACO=,∴S△ABC故答案为:.【变4-3】.如图,函数y=x与y=的图象交于A、B两点,过点A作AC垂直于y轴,垂=3,则k=3.足为C,连接BC,若S△ABC解:设A(a,a)(a>0),∵函数y=x与y=的图象的中心对称性,∴B(﹣a,﹣a),=•a•2a=a2=3,∴S△ABC∴a=,∴A(,),把A(,)代入y=得k==3.故答案为:3.考点5两点两垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂线围成的图形面积等于2|k|.【示例】【例5】.如图,正比例函数y=kx与反比例函数y=﹣的图象交于A,C两点,过点A作AB⊥x轴于点B,过点C作CD⊥x轴于点D,则△ABD的面积为4.解:∵点A在反比例函数y=﹣上,且AB⊥x轴,∴=2,∵A,C是反比例函数与正比例函数的交点,且CD⊥x轴,∴O是BD的中点,=2S△ABO=4.∴S△ABD故答案为:4.变式训练【变5-1】.如图,一次函数y=kx与反比例函数上的图象交于A,C两点,AB∥y轴,BC∥x轴,若△ABC的面积为4,则k=﹣2.解:设AB交x轴于点D,的面积为,由反比例函数系数的几何意义可得S△ADO由函数的对称性可得点O为AC中点,即DO为△ABC中位线,∴=,=4S△ADO=2|k|=4,∴S△ABC∵k<0,∴k=﹣2.故答案为:﹣2.【变5-2】.如图,正比例函数y=kx(k>0)与反比例函数y=的图象交于A,C两点,过点A作x轴的垂线,交x轴于点B,过点C作x轴的垂线,交x轴于点D,连接AD,BC,则四边形ABCD的面积为2.解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,=S△BOC=S△DOC=S△AOD,∴S△AOB又∵A点在反比例函数y=的图象上,=S△BOC=S△DOC=S△AOD×1=,∴S△AOB=4S△AOB=4×=2,∴S四边形ABCD故答案为:2.【变5-3】.如图,直线分别与反比例函数y=﹣和y=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是5.解:过点A作AF⊥y轴,垂足于点F;过点B作BE⊥y轴,垂足为点E.∵点P是AB中点.∴PA=PB.又∵∠APF=∠BPE,∠AFP=∠BEP=90°,∴△APF≌△BPE.=S△BPE.∴S△APF=S四边形ACOF+S四边形EODB=|﹣2|+|3|=5.∴S四边形ABCD故答案为:5.考点6反比例函数上两点和外一点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点在同一分支上,用减法.【示例】方法一:S △AOB =S △COD -S △AOC -S △BOD .方法二:作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,则S △OAM =S 四边形MEFB (划归到模型一),则S △AOB =S 直角梯形AEFB .【拓展】方法一:当BE CE 或BFFA=m 时,则S 四边形OFBE =m |k |.方法二:作EM ⊥x 轴于M ,则S △OEF =S 直角梯形EMAF (划归到上一个模型示例).【例6】.如图,一次函数y =ax +b 的图象与反比例函数y =的图象交于A ,B 两点,则S△AOB=()A.B.C.D.6解:把A(﹣4,1)代入y=的得:k=﹣4,∴反比例函数的解析式是y=﹣,∵B(1,m)代入反比例函数y=﹣得:m=﹣4,∴B的坐标是(1,﹣4),把A、B的坐标代入一次函数y=ax+b得:,解得:a=﹣1,b=﹣3,∴一次函数的解析式是y=﹣x﹣3;把x=0代入一次函数的解析式是y=﹣x﹣3得:y=﹣3,∴D(0,﹣3),=S AOD+S△BOD=×3×(1+4)=.∴S△AOB故选:A.变式训练【变6-1】.如图,直线AB经过原点O,且交反比例函数的图象于点B,A,点C在x=12,则k的值为()轴上,且.若S△BCAA.12B.﹣12C.﹣6D.6解:作AD⊥x轴于D,BE⊥x轴于E,∵点A、B在反比例函数的图象上,直线AB经过原点,∴OA=OB=AB,=12,∵,S△BCA=S△BCA=6,∴OB=BC,S△BCO∵BE⊥OC,∴OE=CE,=S△BCO=3,∴S△OBE∵BE⊥x轴于E,=|k|,∴S△OBE∴|k|=6,∵k<0,∴k=﹣6.故选:C.【变6-2】.如图,在平面直角坐标系中,反比例函数y=与直线y=交于A,B,x轴的正半轴上有一点C 使得∠ACB =90°,若△OCD 的面积为25,则k 的值为48.解:设点A 坐标为(3a ,4a ),由反比例函数图象与正比例函数图象的对称性可得点B 坐标为(﹣3a ,﹣4a ),∴OA =OB ==5a ,∵∠ACB =90°,O 为AB 中点,∴OC =OA =OB =5a ,设直线BC 解析式为y =kx +b ,将(﹣3a ,﹣4a ),(5a ,0)代入y =kx +b 得,解得,∴y =x ﹣a ,∴点D 坐标为(0,﹣a ),∴S △OCD =OC •OD =5a ×a =25,解得a =2或a =﹣2(舍),∴点A 坐标为(6,8),∴k =6×8=48.故答案为:48.【变6-3】.如图,正比例函数y =﹣x 与反比例函数y =的图象交于A ,B 两点,点C 在x 轴上,连接AC ,BC .若∠ACB =90°,△ABC 的面积为10,则该反比例函数的解析式是y =﹣.解:设点A 为(a ,﹣a ),则OA ==﹣a ,∵点C 为x 轴上一点,∠ACB =90°,且△ACB 的面积为20,∴OA =OB =OC =﹣a ,∴S △ACB =×OC ×(y A +|y B |)=×(﹣a )×(﹣a )=10,解得,a =±(舍弃正值),∴点A 为(﹣,2),∴k =﹣×2=﹣6,∴反比例函数的解析式是y =﹣,故答案为:y =﹣.考点7反比例函数上两点和原点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点分别在两个分支上,用加法.【示例】方法一:S △AOB =12OD ·|x B -x A |=12OC ·|y A -y B |.方法二:S △AOB =S △AOC +S △OCD +S △OBD .方法三:作AE ⊥y 轴于点E ,BF ⊥x 轴于点F ,延长AE 与BF 相交于点N ,则S △AOB =S △ABN -S △AOE -S △OBF -S 矩形OENF .【例7】.如图,直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,过=12.则k的值为8.点B作BM⊥x轴于M,连接OA.若OM=2MC,S△OAC解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),=12.∵S△OAC∴•3a•b=12,∴ab=8,∴k=ab=8,故答案为:8.变式训练【变7-1】.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且四边形ODBE的面积为21,则k=7.解:设D点的横坐标为x,则其纵坐标为,∵BD=3AD,∴点B点的坐标为(4x,),点C的坐标为(4x,0)=21,∵S四边形ODBE﹣S△OCE﹣S△OAD=21,∴S矩形ABCD即:4x•﹣﹣=21解得:k=7.故答案为:7.【变7-2】.如图,点是直线AB与反比例函数图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求反比例函数和直线AB的解析式;(2)△ABC和△ABD的面积分别为S1,S2,求S2﹣S1.解:(1)由点A(,4)在反比例函数y=(x>0)图象上,∴n=×4=6,∴反比例函数的解析式为y=(x>0),将点B(3,m)代入y=(x>0)并解得m=2,∴B(3,2),设直线AB的表达式为y=kx+b,∴,解得,∴直线AB的表达式为y=﹣x+6;(2)由点A坐标得AC=4,则点B到AC的距离为3﹣=,∴S1==3,设AB与y轴的交点为E,则点E(0,6),如图:∴DE=6﹣1=5,由点A(,4),B(3,2)知,点A,B到DE的距离分别为,3,∴S2=S△BDE﹣S△AED=﹣=,∴S2﹣S1=﹣3=.考点8两双曲线k值符号不同模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例8】.如图,在平面直角坐标系中,函数y=kx与的图象交于A、B两点,过A作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.2B.3C.5D.6解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.∴S△ABC故选:D.变式训练【变8-1】.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=(x>0)和y=﹣(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A.3B.6C.9D.解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=﹣中得:y=﹣,故A(a,﹣);将x=a代入反比例函数y=中得:y=,故B(a,),∴AB=AP+BP=+=,=AB•x P的横坐标=××a=,则S△ABC故选:D.【变8-2】.如图,点A和点B分别是反比例函数y=(x>0)和y=(x>0)的图象上=2,则m﹣n的值为4.的点,AB⊥x轴,点C为y轴上一点,若S△ABC解:连接AO.CO,∵AB⊥x轴,点C为y轴上一点,∴AB∥y轴,=S△ABO=2,∴S△ABC∴=2.∴=2,即m﹣n=4.故答案为:4.1.如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4B.﹣4C.2D.﹣2解:∵∠ACB=30°,∠AOB=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OA=2,∴AB=OB=2,∴A点坐标为(﹣2,2),把A(﹣2,2)代入y=得k=﹣2×2=﹣4.故选:B.2.如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于()A.8sin2αB.8cos2αC.4tanαD.2tanα解:方法一:过点C作CE⊥OA于点E,过点D作DF⊥OA交OA的延长线于点F,设C点横坐标为:a,则:CE=a•tanα,∴C点坐标为:(a,a•tanα),∵平行四边形OABC中,点D为边AB的中点,∴D点纵坐标为:a•tanα,设D点横坐标为x,∵C,D都在反比例函数图象上,∴a×a•tanα=x×a•tanα,解得:x=2a,则FO=2a,∴FE=a,∵∠COE=∠DAF,∠CEO=∠DFA,∴△COE∽△DAF,∴==2,∴AF=,∴AO=OF﹣AF=a,∵点A的坐标为(3,0),∴AO=3,∴a=3,解得:a=2,∴k=a×a•tanα=2×2tanα=4tanα.方法二:∵C(a,a tanα),A(3,0),∴B(a+3,a tanα),∵D是线段AB中点,∴D(,a tanα),即D(,a tanα).∵反比例函数过C,D两点,∴k=a•a tanα=(a+6)•a tanα,解得a=2,∴k=4tanα.故选:C.3.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2B.3C.5D.7解:设OA=3a,则OB=4a,∴A(3a,0),B(0,4a).设直线AB的解析式是y=kx+b,则根据题意得:,解得:,则直线AB的解析式是y=﹣x+4a,直线CD是∠AOB的平分线,则OD的解析式是y=x.根据题意得:,解得:则D的坐标是(,),OA的中垂线的解析式是x=,则C的坐标是(,),将C点坐标代入反比例函数y=,则k=.设OA的垂直平分线交x轴于点F,过点D作DE⊥x轴于点E,如图,则OF=CF=,OE=DE=a,∵∠DOA=45°,∴△COF和△DOE为等腰直角三角形,∴OC=OF=a,OD=OE=a,∴CD=OD﹣OC=()=(﹣)=a.∵以CD为边的正方形的面积为,∴=,则a2=,∴k=×=7.故选:D.4.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,:S△OEA=2:1,∴S△BFO∵A在反比例函数y=上,=1,∴S△OEA=2,∴S△BFO则k=﹣4.故选:B.5.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.6.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.6解:∵A与C关于OB对称,∴A的坐标是(3,2).把(3,2)代入y=得:2=,解得:k=6.故选:D.7.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.8.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以k=﹣12.9.如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示)解:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,∵△OEP的面积为1,∴|k|=1,而k>0,∴k=2,∴反比例函数解析式为y=,∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴==,即HF=mPE,设E点坐标为(t,),则F点的坐标为(tm,),+S△OFD=S△OEC+S梯形ECDF,∵S△OEF=S△OEC=1,而S△OFD=S梯形ECDF=(+)(tm﹣t)∴S△OEF=(+1)(m﹣1)=.故答案为:2,.10.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.则有PD⊥OA,PE⊥AB.设⊙P的半径为r,∵AB=5,AC=1,=AB•PE=r,S△APC=AC•PD=r.∴S△APB∵∠AOB=90°,OA=4,AB=5,∴OB=3.=AC•OB=×1×3=.∴S△ABC=S△APB+S△APC,∵S△ABC∴=r+r.∴r=.∴PD=.∵PD⊥OA,∠AOB=90°,∴∠PDC=∠BOC=90°.∴PD∥BO.∴△PDC∽△BOC.∴=.∴PD•OC=CD•BO.∴×(4﹣1)=3CD.∴CD=.∴OD=OC﹣CD=3﹣=.∴点P的坐标为(,).∵反比例函数y=(k≠0)的图象经过圆心P,∴k=×=.故答案为:.11.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,故①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.故答案为:①④.12.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2013=﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0、﹣1.解:当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.故答案为:﹣;﹣;0、﹣1.13.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),﹣y B=y P′﹣y A得,由y Q′0﹣1=y P′﹣3,=2,∴y P′当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).14.在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).=•(x C﹣x K)•PP′∴S△PKC=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.15.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),=S△AOC+S△BOC=×1×2+×1×1=1.5;∴S△AOB(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).16.已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.解:(1)作PC⊥x轴于C,PD⊥y轴于D,则四边形OCPD是矩形,∵以点P为圆心的圆与两条坐标轴都相切,∴PC=PD,∴矩形OCPD是正方形,设PD=PC=x,∵A(3,0)、B(0,4),∴OA=3,OB=4,∴BD=4﹣x,∵PD∥OA,∴△PDB∽△AOB,∴,∴,解得x=,∴P(,),设过点P的函数表达式为y=,∴k=xy==,∴y=;(2)方法一:∵将△AON沿AN翻折,使得点O与线段AB上的点M重合,∴ON=NM,MN⊥AB,由勾股定理得,AB=5,=S△AON+S△ABN,∴S△AOB∴=+,解得,ON=,∴N(0,),设直线AN的函数解析式为y=mx+,则3m+=0,∴m=﹣,∴直线AN的函数解析式为y=﹣x+.方法二:利用△BMN∽△BOA,求出BN的长度,从而得出ON的长度,。
反比例函数中求K值或面积的方法探讨作者:孙中淼来源:《教育周报·教育论坛》2018年第03期反比例函数中的难题一般为反比例函数与几何图形相结合求K值或面积的问题,学生遇到后往往束手无策。
常见解法是作辅助线,利用K值的几何意义与面积的关系进行推导,此法优点是计算简便,但考试时经常想不出.这里利用反比例函数与其他知识的关联运用,介绍一种更为实用的做法,帮助同学们突破难关!例1:如图1,在平面直角坐标系中,反比例函数的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC,若四边形ODBE的面积为6,则K=;;;;;;;;;;;.解:如图1,设点C的坐标为(a,0),由四边形OABC为矩形可知OC⊥BC,则,∵点E在反比例函数图象上,∴代入得,则点E.∵BE=2EC,∴点B.∵AB⊥OA,∴.∵点D在反比例函数图象上,∴代入得,则点D.,∵四边形ODBE的面积为6,∴代入得,解得:.小结:(1)解题过程分三步:①设点(从点C或点E开始为宜);②标其他各点(顺序是E→B→D→A);③利用面积相等关系列方程,求K值.(2)在垂直于轴的直线上,点的横坐标相同;在垂直于轴的直线上,点的纵坐标相同;(3)辅助未知数在解题过程中必然会抵消.此题用K的几何意义与面积的关系求解,推导过程如下:【解】连接OB,如图2所示,∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,,∵点D、E在反比例函数的图象上,∴,∴,∵BE=2EC,∴;,∴.例2:如图3,若反比例函数与边长为5的等边三角形AOB的边OA,AB分别相交于C,D两点,且OC=3BD,求K的值.解析:过点C作CE⊥轴于点E,过点D作DF⊥轴于点F,∵△AOB是等边三角形,可得△OEC∽△BFD,∵OC=3BD,∴,设BF=a,则OE=3a,OF=5-a,在Rt△OCE和Rt△BDF 中,∠COE=∠DBF=60°,可得,則点C的坐标为,点D的坐标为,∵点C、D在反比例函数的图象上,∴,解得,故的值为.例3:如图4,A为函数的图象上一点,连接OA,交函数的图象于点B,C是轴上一点,且AO=AC,则△ABC的面积为;;;;;;;;;;;;;;;;;.解析:设点B的坐标为,则可得直线OB的解析式为.联立方程组,得;,消去,整理得:,∵点A,B均在第一象限,∴,即,将代入,解得,则点A,∵AO=AC,∴根据对称性可得点C的坐标为。
浅谈反比例函数中的“K ”值法解题摘 要:随着新课程标准的推进,近几年,在中考试题中关于反比例函数方面的试题出现了不少新题型。
而反比例函数的“K ”值是一个最关键的因素,可以说是反比例函数的精髓所在。
接下来,让我们一起探讨一下反比例函数中利用“K ”值法解题的问题。
关键词:反比例函数 “K ”值 象限 图像所谓“K ”值法解题,就是通过反比例函数特有的“K ”值的一些性质进行分析解题。
结合近几年中考题,“K ”值主导的反比例函数习题越来越多。
这里就反比例函数的“K ”值的意义来解决问题进行例析。
以下是利用“K ”值求解关于面积、反比例函数性质、反比例函数图像及反比例函数和正比例函数相结合等方面的解法淡析。
一、“K ”值的几何意义及利用其求相关图形面积研究函数问题要透视函数的本质特征。
所以,我们先从“K ”值的本质出发对其进行精确剖析。
下面就是反比例函数的几何意义。
反比例函数y=x k (k ≠0)中,比例系数k 有一个很重要的几何意义。
那就是:过反比例函数y=xk (k ≠0)的图像上任意一点P 作x 轴,y 轴的垂线PM 、PN ,垂足为M 、N (如图1-1所示),则矩形PMON 的面积S=PM ·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所围成的矩形面积为常数k 。
从而有PNO S ∆=PMO S ∆=k 21。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k 的几何意义,会给解题带来很多方便。
现举例说明。
例1.已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 。
解析:因为四边形AOBC 的面积S=CA ·CB=xy x y =∙,又因为6y x=-,所以xy k =, 即S=6-=6,故四边形AOBC 的面积为6。
例2.(03年全国初中数学联赛试题)若函数kx y =(k >0)与函数1y x=的图象相交于A 、C 两点,AB 垂直x 轴于B ,则△ABC 的面积为( )。
反比例函数k的几何意义
过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x 轴、y轴所围成的矩形面积为常数,从而有k的绝对值。
1反比例函数的含义
一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。
k>0时,图像在一、三象限。
k<0时,图像在二、四象限.k的绝对值表示的是x与y的坐标形成的矩形的面积。
2反比例函数图象的画法步骤
①列表:自变量的取值应以原点为中心,在原点的两侧取三对(或三对以上)互为相反数的值,填写 y值时,只需计算一侧的函数值,另一侧的函数值是与之对应的相反数;
②描点:描出一侧的点后,另一侧可根据中心对称去描点;
③连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线,注意双曲钱的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。
3反比例函数的图像及性质。
反比例函数图像与性质知识点总结一、反比例函数公式口诀反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。
二、反比例函数图象当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交。
图象画法1)在平面直角坐标系中标出点(一般标5个点,称为5点作图法)。
2)用平滑的曲线连接点。
当K>0时,在图象所在的每一象限内,Y随X的增大而减小。
当K<0时,在图象所在的每一象限内,Y随X的增大而增大。
当两个数相等时那么曲线呈弯月型。
k的意义及应用过反比例函数y=k/x(k≠0)图象上任意一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积为|k|。
过反比例函数图象一点,作任一坐标轴的垂线,并连接原点,围成的三角形的面积为|k|/2。
研究函数问题要透视函数的.本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积为|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
这个常数是k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
三、反比例函数性质单调性当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
相交性因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
反比例函数K值与几何图形面积关系
1.反比例函数
x
y
17
=图象上有三个点)
(1
1
y
x,,)
(2
2
y
x,,)
(3
3
y
x,,其中
3
2
1
0x
x
x<
<
<,则
1
y,
2
y,
3
y的大小关系是( )
A.
3
2
1
y
y
y<
< B.
3
1
2
y
y
y<
< C.
2
1
3
y
y
y<
< D.
1
2
3
y
y
y<
<
2.直线)0
(<
=k
kx
y与双曲线
x
y
2
-
=交于)
,
(
),
,
(
2
2
1
1
y
x
B
y
x
A两点,则
1
2
2
1
8
3y
x
y
x-的值为( )
A.-5
B.-10
C.5
D.10
3、如图,点A是反比例函数2
y=
x
(x>0)的图象上任意一点,AB∥x轴交反比例函数3
y=
x
-的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为( )
A. 2 B. 3 C. 4 D. 5
4.如图,矩形ABCD中,C是AB的中点,反比例函数k
y
x
= (k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为( )
A、2
B、4
C、8
D、16
二、填空题
1.如图,点A(1,3)在函数)0
(>
=x
x
k
y的图像上,正方形ABCD的边BC在x轴上,点E是对角线BD的中点,函数)0
(>
=x
x
k
y的图像又经过A、E两点,则点E的坐标为2.如图,A、B是双曲线)0
(>
=k
x
k
y上的点,A、B两点的横坐标分别是a、2a,线段AB 的延长线交x轴于点C,若S△AOC=6.则k=.
y
x
O
B
C
A
(第2题)
(第1题)
O x
y
A
B
C
(第3题)(第4题)
3.如图,直线与双曲线()交于点.将直线向下平移个6单位后,与双曲线()交于点,与轴交于点C ,则C 点的坐标为
___________;若,则 .
4.如图,已知双曲线)0k (x
k
y >=
经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.
5.双曲线11y x =、2
3y x
=在第一象限的图像如图,过y 2上的任意一点A ,作x 轴的平行线交y 1于B ,交y 轴于C ,过A 作x 轴的垂线交y 1于D ,交x 轴于E ,连结BD 、CE ,则
BD CE
= .
6.如下左图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的 面积是3,则反比例函数的解析式为____________.
7.如图,已知反比例函数()11k y=k 0x
>和()22k y=k 0x
<。
点A 在y 轴的正半轴上,过点A 作直线
BC∥x 轴,且分别与两个反比例函数的图象交于点B 和C ,连接OC 、OB 。
若△BOC 的面积为52
,AC :AB=2:3,则1k = ,2k = 。
43y x =
k y x =0x >A 4
3
y x =k
y x
=0x >B x 2AO BC
=k =
B
A
O C y x
三.解答题
1.已知反比例函数y =8
m x
-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;
(2)如图,过点A 作直线AC 与函数y =8
m x
-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.
2.如图,在平面直角坐标系x O y 中,梯形AOBC 的边OB 在x 轴的正半轴上,
AC//OB,BC⊥OB,过点A 的双曲线k y x
=的一支在第一象限交梯形对角线OC 于点D,交边BC 于点E.
(1)填空:双曲线的另一支在第 象限,k 的取值范围是 ;
(2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小? (3)若OD 1OC
2
=,S △OAC =2 ,求双曲线的解析式.
3.如图,已知双曲线y=经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA⊥x 轴,过D 作DB⊥y 轴,垂足分别为A ,B 连接AB ,BC
(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;
(3)判断AB 与
CD 的位置关系,并说明理由 .
y x
P
B
D
O C
4.如图,一次函数2y kx =+的图象与反比例函数m
y x
=
的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且
S △PBD =4,12
OC OA
=.
(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式; (3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的
x 的取值范围.
5.如图,一次函数y =ax +b 的图象与反比例函数y =
x
k
的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,tan ∠AOC =3
1
,点B 的坐标为(m ,-2).
(1)求反比例函数的解析式; (2)求一次函数的解析式;
(3)在y 轴上存在一点P ,使得△PDC 与△ODC 相似,请你求出P 点的坐标.
6.如图3-3-38,P 为x 轴正半轴上一点,过点P 作x 轴的垂线,交函数()1
0y x x
=>的图象于点A ,交函数()40y x x =>的图象于点B ,过点B 作x 轴的平行线,交()1
0y x x
=>于
点C ,连结AC .
(1)当点P 的坐标为(2,0)时,求△ABC 的面积.
(2)当点P 的坐标为(t ,0)时,△ABC 的面积是否随t 值的变化而变化?。