磁共振成像的原理
- 格式:doc
- 大小:211.50 KB
- 文档页数:12
磁共振原理通俗讲解
磁共振原理是指物质在外加磁场作用下,其原子核或电子会受到激发,从低能级跃迁到高能级,然后再回到低能级释放出能量的过程。
简单来说,磁共振原理是利用磁场和射频脉冲激发物质中原子核或电子的运动,使其跃迁到高能态。
当外加磁场和射频脉冲的频率与物质的共振频率匹配时,会出现共振现象。
具体操作时,将被研究的物质置于磁场中,然后给它施加一个特定频率的射频脉冲。
当射频频率与物质的共振频率一致时,物质中的原子核或电子会吸收能量,并跃迁到高能态。
随后,射频脉冲停止,而物质会逐渐从高能态返回到低能态,反向释放出吸收的能量。
这些释放出的能量通过感应线圈收集并转化为可视化的图像。
磁共振原理在医学影像学中被广泛应用,例如核磁共振成像(MRI)。
通过调节磁场和射频脉冲的参数,可以获取不同组织的图像,从而达到检查和诊断的目的。
总而言之,磁共振原理是利用磁场和射频脉冲激发物质中原子核或电子的运动,从而实现能量的吸收和释放,进而产生图像或其他信号。
磁共振成像技术的原理解析
磁共振成像(MRI)技术是一种基于物体内部核磁共振现象进行成像的医学检查方法。
该技术利用强大的磁场和射频脉冲,通过检测被检测物体内部的核磁共振信号,以获得对象的解剖和功能信息。
MRI技术在医学诊断和科学研究中具有广泛的应用。
MRI技术的原理较为复杂,但可以简要概括为以下几个步骤:
1. 磁场对齐:在MRI设备中,通过产生强大的静态磁场,将待检测物体中的原子核磁矩定向,使其与磁场方向达成一致。
2. 射频激励:在产生静态磁场的同时,通过应用射频脉冲,使原子核从磁场方向发生翻转,产生共振。
3. 信号接收:翻转后的原子核开始发生预旋进动,在旋进过程中产生高频信号。
这些信号经过接收线圈捕获,然后通过放大和信号处理,得到原子核的空间位置和数量信息。
4. 图像重建:通过对接收到的信号进行数字处理,利用数学算法将信号转化为图像。
常见的图像重建算法有傅里叶变换和过滤回波。
MRI技术的优点包括非侵入性、无辐射、对软组织有很高的分辨率,可以显示组织器官的解剖结构和功能活动。
由于这些优点,MRI在神经科学、心脑血管病学、骨科等领域中广泛应用。
然而,MRI技术也存在一些限制和注意事项,比如对金属物质敏感,患者需排除身上的金属物品。
另外,MRI的成像时间较长,对于一些无法保持静止的患者来说可能会有困难。
总之,MRI技术是一种非常有用和广泛应用的医学成像技术,通过核磁共振信号的检测和图像重建,可以提供丰富的解剖和功能信息,为医学诊断和研究提供重要帮助。
磁成像原理
磁成像是一种利用磁场性质获取物体内部信息的技术。
它借助磁感应强度的差异,通过测量物体不同部位磁场的变化,从而得到物体内部的结构及特性。
磁成像的主要原理是基于磁共振现象。
当一个物体被置于磁场中时,它的原子核会被激发,同时放出能量。
这种能量放出时,可通过探测系统接收到。
在磁共振成像中,首先需要创建一个均匀且稳定的静态磁场。
这个磁场可以由特殊的磁体系统产生。
接下来,需要施加一个特定频率和幅度的射频脉冲激发物体内的原子核。
由于不同组织内部的原子核具有不同的共振频率,所以通过调节射频脉冲的频率可以选择性地影响特定组织。
当被激发的原子核开始释放能量时,它们产生的信号可以通过探测系统进行接收和分析。
接收到的信号经过处理后,可以得到物体内部的图像。
这些图像可以显示出不同组织的分布情况,从而用于诊断疾病或研究器官功能。
磁成像技术具有非侵入性、无辐射、分辨率高等优点,因此在医学诊断、生物医学研究等领域得到了广泛应用。
磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。
核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。
早在1946年Block与Purcell就报道了这种现象并应用于波谱学。
Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。
也应用于临床医学领域。
近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。
检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。
为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。
参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。
一、磁共振现象与MRI含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。
小磁体自旋轴的排列无一定规律。
但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。
在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。
当把它们放入一个强外磁场中,就会发生改变。
它们仅在平行或反平行于外磁场两个方向上排列用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。
停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。
这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。
有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。
mri磁共振成像原理
MRI成像是利用核磁共振现象的原理,通过对人体组织内的
水分子进行扫描和观察,得到高清晰度的图像。
具体原理如下:
1. 磁性原子核存在自旋,即核具有旋转的特性。
2. 在外加磁场的作用下,核会以不同的方式排列。
正常情况下,核自旋会沿着磁场方向对齐。
3. 在MRI中,通过在病人身上施加一个强大的磁场,使得人
体内的大部分水分子的核自旋方向与磁场方向一致。
4. 随后,施加一系列的辅助磁场,这些磁场的方向会短暂扰乱水分子自旋的排列。
5. 辅助磁场停止后,水分子的自旋会重新按照其能量状态重新排列。
6. 在此过程中,水分子释放出的能量会被探测器捕捉并转换为电信号。
7. 根据这些电信号的不同,MRI系统可以重建出人体内不同
组织的图像。
此外,MRI还可以通过改变辅助磁场的频率和强度,来获取
不同组织的信号。
这样就可以得到不同的对比度,进一步分辨不同组织的结构和功能。
简述磁共振成像原理
磁共振成像(MRI)是一种通过利用核磁共振现象来获取人体内部组织结构和
功能信息的影像学技术。
它是一种无创伤、无放射线的医学影像学检查方法,因其在临床诊断中的重要作用而备受关注。
磁共振成像的原理是基于核磁共振现象,即在外加静磁场的作用下,人体内的
氢原子核会产生共振现象,而不同组织中的氢原子核受到的影响不同,因此可以通过检测共振信号的差异来获取组织的影像信息。
首先,当人体置于强静磁场中时,静磁场会使得人体内的氢原子核产生磁偶极矩,使得氢原子核具有自旋。
其次,当人体受到无线电波的作用时,氢原子核的自旋会发生共振现象,产生共振信号。
不同组织中的氢原子核受到的共振信号强度和频率不同,这是因为不同组织中的氢原子核受到的局部磁场和化学环境的影响不同。
最后,通过检测和分析这些共振信号,可以得到人体内部组织的影像信息。
磁共振成像的原理可以简单总结为,利用静磁场使人体内的氢原子核产生磁偶
极矩,再通过无线电波的作用使氢原子核发生共振,最后检测和分析共振信号来获取影像信息。
磁共振成像的原理虽然简单,但是在实际应用中需要考虑许多因素,如静磁场
的均匀性、无线电波的频率和强度、共振信号的检测和处理等。
此外,不同的磁共振成像技术(如T1加权成像、T2加权成像、扩散加权成像等)也会对影像的获取
和解释产生影响。
总之,磁共振成像是一种基于核磁共振现象的医学影像学技术,其原理是通过
静磁场和无线电波的作用来获取人体内部组织的影像信息。
在临床诊断中,磁共振成像已经成为一种重要的影像学检查方法,为医生提供了丰富的诊断信息,有助于准确诊断和治疗疾病。
简述MRI成像原理
MRI全称为磁共振成像,是一种医学影像学的技术。
其原理基于核磁共振现象,利用强磁场和无线电波对人体进行扫描,产生高清晰度三维图像。
具体实现过程包括以下几个步骤:
1. 构建磁场:在MRI扫描过程中,需要产生非常强的磁场。
通常使用超导磁体,其内部绕有电流,可以产生非常强的磁场。
2. 激发磁共振:在强磁场中,人体内的原子核会对磁场进行反应。
使用无线电波来激发原子核的磁共振,使其发生共振吸收和发射。
3. 接收信号:激发原子核后,其会发出无线电信号。
使用接收线圈来捕获这些信号。
4. 信号处理:通过数学算法对接收到的信号进行处理,可以得到一幅高清晰度的三维图像。
MRI成像原理的优势在于它不会对人体造成辐射,适用于对柔软组织的成像,如脑部、胸部、骨骼等。
同时,MRI成像原理也被广泛应用于医学诊断、科学研究和生物医学工程领域。
- 1 -。
磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用于医学诊断的非侵入性扫描技术,它利用磁共振原理,通过对人体组织的磁性物质的成像进行分析,得出病灶位置和病理变化的信息。
下面将详细介绍MRI设备的工作原理。
MRI设备主要由主磁场系统、梯度线圈系统、射频系统和计算机系统组成。
1. 主磁场系统主磁场系统是MRI设备的核心组成部分,它由一个超导磁体构成。
这个超导磁体能产生一个稳定的高强度磁场,通常是1.5T或3T。
这个磁场可以将人体内的水和脂肪等有机分子的原子核(如氢核、氧核等)原子核自旋取向,从而为后续成像提供必要的条件。
2. 梯度线圈系统梯度线圈系统由三个互相垂直的线圈组成,即横向、纵向和轴向梯度线圈。
这些线圈的作用是产生稳定强度和变化频率的梯度磁场,用于在空间上定位图像中不同的区域。
梯度线圈系统的变化频率决定了成像的分辨率,变化强度决定了成像的对比度。
3. 射频系统射频系统由发射线圈和接收线圈组成,它的作用是产生高频电磁场和接收返回的信号。
在成像过程中,射频系统会向人体内部提供一个高频脉冲电磁场,导致人体内的原子核自旋发生能级跃迁。
原子核回到基态时,会发送出一个特定的信号,通过接收线圈接收并传回计算机系统进行处理。
4. 计算机系统计算机系统是MRI设备的控制中心,它负责控制整个设备的运行、数据采集、图像重建和存储。
在成像过程中,计算机会通过梯度线圈和射频线圈产生的信号,对人体内部的原子核进行测量和记录。
然后利用这些数据,通过复杂的数学计算和图像处理算法,生成最终的MRI图像。
具体工作流程如下:1. 开始扫描前,患者需要去除身上的金属物品,因为磁场会对金属产生吸引力和磁化。
2. 患者躺在MRI设备的扫描床上,床会进入主磁场系统中央,电脑通过脚踏开关控制床的位置。
3. 当主磁场系统通电后,会产生一个均匀的磁场。
此时,射频系统会向人体内部发送射频脉冲,使原子核自旋发生能级跃迁。
磁共振成像原理简介磁共振成像(Magnetic Resonance Imaging ,MRI )是利用原子核在磁场内共振所产生信号经重建成像的一种技术。
在诞生之初被称为核磁共振,但为了避免与核医学成像技术相混淆,并且为了突出这项技术不会产生电离辐射的优点,因此将“核磁共振成像”简称为磁共振成像。
核磁共振是自旋的原子核在磁场中与电磁波相互作用的一种物理现象。
我们知道,原子由原子核和绕核运动的电子组成,其中,原子核由质子和中子组成。
电子带负电,质子带正电,中子不带电。
根据泡里不相容原理,原子核内成对的质子或中子的自旋相互抵消,因此只有质子数和中子数不成对时,质子在旋转中产生角动量,磁共振就是利用这个角动量来实现激发、信号采集和成像的。
用于人体磁共振成像的原子核为氢原子核(1H ),主要原因如下:1、1H 是人体中最多的原子核,约占人体中总原子核数的2/3以上。
2、1H 的磁化率在人体磁性原子核中是最高的。
质子以一定频率绕轴高速旋转,称为自旋。
自旋是MRI 的基础。
自旋产生环路电流,形成一个小磁场叫做磁矩。
在无外磁场情况下,人体中的质子自旋产生的小磁场是杂乱无章的,每个质子产生的磁化矢量相互抵消,因此,人体在自然状态下并无磁性,即没有宏观磁化矢量的产生。
进入主磁场后,人体中的质子产生的小磁场不在杂乱无章,呈有规律排列。
一种是与主磁场平行且方向相同,另一种与主磁场平行但方向相反,处于平行同向的质子略多于平行反向的质子。
从量子物理学角度,平行同向的质子处于低能级,因此受主磁场的束缚,其磁化矢量的方向与主磁场的方向一致;而平行反向的质子处于高能级,因此能够对抗主磁场的作用,其磁化矢量方向与主磁场相反。
由于低能级质子略多于高能级质子,因此在进入主磁场后,人体产生了一个与主磁场方向一致的宏观纵向磁化矢量。
进入主磁场后,无论是处于高能级还是处于低能级的质子,其磁化矢量并非完全与主磁场方向平行,而总是与主磁场有一定的角度。
核磁共振是什么原理
核磁共振(Nuclear Magnetic Resonance,NMR)是一种基于原子核的物理现象的技术。
核磁共振原理依据的是自旋-磁矩相互作用。
在核磁共振中,由于原子核带有自旋,犹如一个微小的磁体。
当原子核放置在外磁场中时,它们的自旋将沿着外磁场的方向进行定向(即朝向上或朝向下)。
此时,原子核的自旋状态是一个处于定向状态的动态平衡。
当外加一个垂直于外磁场方向的射频脉冲时,这个平衡状态将被打破。
射频脉冲的频率与原子核的共振频率相匹配,使得原子核的自旋状态发生变化。
这个变化会引发一个强烈的“回弹”信号,称为自由感应衰减信号。
通过检测和分析这个自由感应衰减信号,可以获得关于原子核的信息。
原子核的不同特性(如质子、氢同位素等)产生不同的共振频率和信号强度,从而提供物质的结构、组成和动力学等信息。
核磁共振技术在医学、生物化学、有机化学等领域中具有广泛的应用。
例如,在医学中,核磁共振成像(MRI)可以用于检测人体组织的内部结构,并帮助医生进行诊断和治疗。
在化学领域,核磁共振谱可用于确定化合物的结构和组成,帮助化学家研究分子的性质和反应机制。
一、磁共振成像基本原理1.磁共振现象微观领域中的核子都有自旋的特性。
核子的自旋产生小磁矩,类似于小磁棒。
质子数或中子数至少有一个为奇教的大量原子核可在静磁场中体现出宏观磁化来,其磁化矢量与静磁场同向。
而每单个原子核在静磁场中做着不停的进动运动(一方面不断自旋,同时以静磁场为轴做圆周运动),进动频率(precession frequency)(即质子每秒进动的次数)为(00一/Bo,7为原子核的旋磁比(对于每一种原子核,7是一个常数且各不相同,如氢质子7值为42. 5MHz/T),Bo为静磁场的场强大小。
人体含有占比重70%以上的水,又由于氢质子磁矩不为零,这些水中的氢质子是磁共振信号的主要来源,其余信号来自脂肪、蛋白质和其他化合物中的氢质子。
对静磁场中的质子群沿着垂直于静磁场的方向施加某一特定频率的电磁波——其频率在声波范围内,故称为射频(radio frequency,RF)-原来的宏观磁化就会以射频场为轴发生偏转(章动),其偏转角度取决于射频场的施加时间、射频强度和射频波形。
当然,一个关键条件是:射频的频率必须与静磁场中的质子的进动频率一致。
宏观磁化发生章动的实质是质子群中一部分质子吸收了射频的能量,使自己从低能级跃迁到了高能级。
这种现象即称为原子核的磁共振现象。
如果将此时的宏观磁化进行二维分解,会发现射频激励的效果是使沿静磁场方向的磁化矢量(纵向磁化)减小,而垂直于静磁场方向的磁化(横向磁化)增大了。
RF脉冲有使进动的质子同步化的效应,质子同一时间指向同一方向,处于所谓“同相”,其磁化矢量在该方向上叠加起来,即横向磁化增大。
使质子进动角度增大至90。
的RF脉冲称为90。
脉冲,此时纵向磁化矢量消失,只有横向磁化矢量。
同样还有其他角度的RF脉冲。
质子的进动角度受RF脉冲强度和脉冲持续时间影响,强度越强、持续时间越长,质子的进动角度越大,且强RF脉冲比弱R F脉冲引起履子进动角度改变得要快。
2.弛豫及弛豫时间短暂的射频激励(一般为几十微秒)以后,宏观磁化要恢复到原始的静态。
从激励态恢复到静态要经历一个与激励过程相反的两个分过程,一个是横向磁化逐渐减小的过程(即为横向弛豫过程,T2过程)(图6-1);另一个是纵向磁化逐渐增大的过程(纵向弛豫过程,T1过程)(图6-2)。
纵向弛豫过程的本质是激励过程吸收了射频能量的那些质子释放能量返回到基态的过程。
能量释放的有效程度与质子所在分子大小有关,分子过大或很小,能量释放将越慢,弛豫需要的时间就越长。
如水中的质子,0. 5 T场强下弛豫时间>4000毫秒;分子结构处于中等大小,能量释放就很快,T1就短,如脂肪内的质子,0.5T场强下弛豫时间仅为260毫秒左右。
横向弛豫过程的本质是激励过程使质子进动相位的一致性逐渐散相(即逐渐失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关,分子结构越均匀,散相效果越差,横向磁化减小的越慢,需要的横向弛豫时间(T2)就越长;反之,分子结构越不均匀,散相效果越妤,横向磁化减小越快,T2就越短。
3.自由感应衰减磁共振成像设备中,接收信号用的线圈和发射用的线圈可以是同一线圈,也可以是方向相互正交的两个线圈,线圈平面与主磁场Bo平行,其工作频率都需要尽量接近Larmor频率。
线圈发射RF脉冲对组织进行激励,在停止发射RF脉冲后进行接收。
RF脉冲停止后组织出现弛豫过程,磁化矢量只受主磁场Bo的作用时,这部分质子的进动即自由进动,因与主磁场方向一致,所以无法测量,而横向磁化矢量垂直并围绕主磁场方向旋进,按电磁感应定律(即法拉第定律),横向磁化矢量的变化,能使位于被检体周围的接收线圈产生随时间变化的感应电流,其大小与横向磁化矢量成正比,这个感应电流经放大即为MR信号。
由于弛豫过程横向磁化矢量的幅度按指数方式不断衰减,决定了感应电流为随时间周期性不断衰减的振荡电流,因而它是自由进动感应产生的,被称为自由感应衰减(free induct ion decay,FID)。
90。
脉冲后,由于受纵向弛豫(T1)和横向弛豫(T2)的影响,磁共振信号以指数曲线形式衰减,如图6-3所示,其幅度随时间指数式衰减的速度就是横向弛豫速率(l/T2)。
图6-3 自由感应哀减信号及其产生4.空间定位磁共振信号的三维空间定位是利用施加三个相互垂直的可控的线性梯度磁场来实现的。
根据定位作用的不同,三个梯度场分别称为选层梯度场(Gs)、频率编码梯度场(Gf)和相位编码梯度场(G。
);三者在使用时是等效的,可以互换,而且可以使用两个梯度场的线性组合来实现某一定位功能,从而实现磁共振的任意截面断层成像。
(1)选层:沿静磁场方向叠加一线性梯度场Gs可以选择发生磁共振现象的人体断层层面,RF的频带宽度与梯度场强度共同决定层厚(图6-4)。
层厚与RF带宽呈正相关,与梯度强度呈负相关;图6-4射频带宽与选层梯度场共同决定层厚(2)频率编码:沿选定层面内的X方向叠加一线性梯度场Gf,可使沿X向质子所处磁场线性变化,从而共振频率线性变化,将采集信号经傅立叶变换后即可得到信号频率与X方向位置的线性一一对应关系,如图6-5所示。
(3)相位编码:沿选定层面内的Y方向施加一线性梯度场G。
(时间很短,在选层梯度之后,读出梯度之前),则沿Y方向的质子在进动相位上呈现线性关系,将采集信号经傅立叶变换后,可以得到Y向位置与相位的一一对应关系,如图6-6所示。
实际的序列中还有一些梯度场不起空间定位作用,主要有相位平衡梯度、快速散相梯度、重聚相梯度等。
5.成像方法磁共振成像方法指的是将人体组织所发出的微弱的磁共振信号如何重建成一幅二维断面图像的方法,主要有点成像法、线成像法、面威。
纭法,钵薇『成缭法等。
(1)点成像法:对每个组织体素信号逐一进行测量成像的方法,主要包括敏感点法和场聚焦法。
(2)线成像法:一次采集一条扫描线数据的方法,主要包括敏感线成像法、线扫描以及多线扫描成像法、化学位移成像法等。
(3)面成像法:同时采集整个断面数据的成像方法,主要包括投影重建法、备种平面成像法以及傅立叶变换成像法等。
(4)体积成像法:在面成像法的基础上发展起来的,不使用选层梯度进行面的选择,而是施加二维的相位编码梯度和一维的频率编码梯度同时对组织进行整个三维体积的数据采集和成像方法。
磁共振的成像方法很多,但选择RF脉冲的带宽和形状,使之能激发一个已知的频带,并控制梯度场来选取一个点、一条线、一个层面,甚至选取整个成像体积来获得信号,是各种成像方法的共同点。
任何一种成像法的实现,均与机器的软硬件设计紧密相关。
二、磁共振成像脉冲序列一幅灰度磁共振图像的实质有两个:①每个像素与人体组织体素之间的一一对应关系,即对获取到的MR信号进行空间定位;②是每个像素的灰度值的确定,即尽量使正常组织和病变组织在图像上体现出较大的明暗差别(对比度)来。
磁共振脉冲序列(pulse sequence)就是为了解决第二个问题的。
根据病变组织和正常组织之间的多个参数(密度、T1、T2、含氧量、扩散系数、弹性、温度、流动效应等)的不同,研发出不同的脉冲序列,通过不同的灰度更好地显示出病变组织和正常组织之间的对比。
所谓脉冲序列就是通过对射频脉冲的幅度、宽度、波形、软硬以及时间间隔、施加顺序、周期等和梯度磁场的方向、梯度大小、空间定位作用的协调控制与配合施加的总称,目的是获取符合诊断要求的图像来。
目前的脉冲序列名目繁多,各个公司推出的序列名称总计大概有100多种,出现了许多同质不同名的序列,如同为快速自旋回波序列,可称为TES( turb o SE)、FSE( fast SE)、 RISE( rapid imaging SE)。
按照MR信号的类型脉冲序列可划分为三大家族:自由感应衰减(free induction decay,FID)序列家族、自旋回波(spin e cho,SE)序列家族、梯度回波(gra-dient echo,GE)序列家族。
自由感应衰减序列家族利用FID信号来进行重建图像。
晟早期的磁共振序列就是这一家族的部分饱和( partial saturation,PS)脉冲序列,又称为饱和恢复(saturation r ecovery, SR)脉冲序列,其序列形式如图6-7所示。
实际上它是TR时间极长(3~5倍T1时间)而 TE极短(为0)的SE序列,因此图像反映的是完全的质子密度像,与CT图像反映的组织参数相同。
图6-7部分饱和恢复序列(FID)自旋回波序列家族中的SE序列是目前临床中最基础、最常用的序列,其序列形式如图6-8所示。
该序列可以通过采用相应的TR时间和TE 时间来获取不同的组织参数加权像,使得正常组织和病变组织(或两种组织)之间的不同参数的差别体现在图像对比度上,比如人脑内的脑白质和脑灰质,二者的密度参数很接近,因此反映密度参数的CT图像上二者灰度很接近,不能很好地分辨。
但二者的T1和T2参数差别较大,因此通过配合改变TR和TE时间,可以获得脑部的T1加权像或T2加权像,在这些图像上,灰质和白质将有着较大的对比。
一般,较长的TR和较长的TE,获得T2加权像(T2WI);较短的TR 和较短的TE,获得Tl加权像(TIWI);较长的TR和较短的TE,获得质子密度加权像(PdWI);这一序列中较常用的序列还有多层自旋回波序列( multi-slice SE)和多次回波序列(multi-echo SE)。
图6-8基本自旋回波(SE序列)梯度回波序列家族中最基本的序列就是梯度回波脉冲序列,其序列形式如图6-9所示。
它利用翻转的梯度获取信号,相比SE序列缩短了获取信号的时间,开创了快速磁共振成像的先河。
该家族序列通过对射频翻转角(a)、TR和TE三个参数的配合控制,可以在较短的时间内分别获取反映组织Pd、Tl、T2和T2”参数差别的图像来。
因此该序列家族得到了越来越广泛的使用。
图6—9梯度回波(GRE)系列快速磁共振成像序列是磁共振发展的一个热点,也是磁共振的生命所在。
不管其如俩快速,具体实现的时候可能是两种或三种的结合再结合减少傅立叶并行采集技术来达到缩短扫描时间的目的的。
快速磁共振成像序列是指可以用较短的时间获取或重建出磁共振图像的序列。
缩短磁共振的扫描时间对磁共振的飞速发展和广泛使用具有极其重要的意义:①功能磁共振的开展直接取决于快速磁共振成像序列;②对一些运动器官或组织的成像也依赖于快速序列;③对于流体比如血管、心脏的造影也是基于快速成像序列的基础上的;④提高磁共振的临床使用效率也得益于快速成像序列。
磁共振快速序列的发展基本上经历了三个阶段:第一阶段,使用快速自旋回波序列 (fast spin echo.FSE)使成像时间从原始的10分钟级缩短到了分钟级;第二阶段,梯度回波序列( gradient echo,(;E)使成像时间从分钟级缩短到了秒级;第三阶段,回波平面序列(echoplanner imaging,EPI)将成像时间从秒级缩短到了几十毫秒级;许多方法都利用了K空问的对称性而减少了用以重建图像所需要的数据量的技术,还有结合了不同的缩短成像时间的方法。