计量经济学实验7虚拟变量模型
- 格式:doc
- 大小:177.50 KB
- 文档页数:7
【精品】计量经济学实验报告(虚拟变量)一、研究背景本次计量经济学实验旨在探讨虚拟变量的运用,针对具体的数据集进行剖析,发掘出数据中存在的变量之间的相关性,进一步了解虚拟变量的性质和应用。
二、研究数据与模型本次实验所使用的数据主要来自于美国地区居民的生活经历与工作情况。
我们采用了线性回归模型来建立数据之间的相关性。
其中,自变量包括:年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市;因变量为每周工作时间。
首先,我们运用SPSS对数据进行了初步的分析。
结果显示,数据存在了年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市等多个变量。
其中,包括了虚拟变量。
我们选取了其中一个虚拟变量进行研究,即“是否有孩子”。
在该变量中,响应值为“是”、“否”,我们将其转换为虚拟变量,即0表示没有孩子,1表示有孩子。
然后,我们建立了回归模型:每周工作时间= β0 + β1年龄+β2性别+ β3收入+ β4婚姻状态+ β5教育程度+ β6是否居住在城市+ β7是否有孩子。
最后,我们选取了样本数据中的500个数据进行模型拟合,其中250条数据表示没有孩子,250条数据表示有孩子。
三、实验结果通过数据分析软件的运算,我们得出了模型拟合的结果。
模型拟合结果如下:从结果中我们可以看出,虚拟变量“是否有孩子”对于每周工作时间的影响显著,其系数为2.01,t值为4.8,显著性水平为0.01,说明儿童数量对于家长的工作时间有显著的影响。
同时,我们还得出了其他变量对于工作时间的影响:年龄、收入、婚姻状态的系数为负数,说明这些因素会减少每周工作时间;性别、教育程度、是否居住在城市的系数为正数,说明这些因素会增加每周工作时间。
四、结论通过本次实验,我们可以得出以下结论:1.虚拟变量是计量经济学中常见的方法之一,在处理定量变量与定性变量时能够有效的将其转换为数值变量。
2.在本次实验中,儿童数量对于家长的工作时间有显著的影响,虚拟变量“是否有孩子”对每周工作时间的影响为正,表明有孩子的家长比没有孩子的家长更倾向于减少每周工作时间。
第七章虚拟变量实验报告一、研究目的改革开放以来,我国经济保持了长期较快发展,与此同时,我国对外贸易规模也日益增长。
尤其是2002年中国加入世界贸易组织之后,我国对外贸易迅速扩张。
2012年,我国进出口总值38667.6亿美元,与上年同期相比增长6.2%。
至此,我国贸易总额首次超过美国,成为世界贸易规模最大的国家。
为了考察我国对外贸贸易与国内生产总值的关系是否发生巨大的变化,以国内生产总值代表我国经济整体发展水平,以对外贸易总额代表我国对外贸易发展水平,分析我国对外贸易发展受国内生产总值的影响程度。
二、模型设定为研究我国对外贸易发展规模受我国经济发展程度影响,引入国内生产总值为自变量。
设定模型为:+β1X t+ U t (1)Y t=β参数说明:Y t——对外贸易总额(单位:亿元)X t——国内生产总值(单位:亿元)U t——随机误差项收集到数据如下(见表2-1)表2-1 1985-2011年我国对外贸易总额和国内生产总值注:资料来源于《中国统计年鉴》1986-2012。
为了研究1985-2011年期间我国对外贸易总额随国内生产总值的变化规律是否有显著不同,考证对外贸易与国内生产总值随时间变化情况,如下图所示。
图2.1 对外贸易总额(Y)与国内生产总值(X)随时间变化趋势图从图2.1中,可以看出对外贸易总额明显表现出了阶段特征:在2002年、2007年和2009年有明显的转折点。
为了分析对外贸易总额在2002年前后、2007年前后及2009年前后几个阶段的数量关系,引入虚拟变量D1、D2、D3。
这三个年度对应的GDP分别为120332.69亿元、265810.31亿元和340902.81亿元。
据此,设定以下以加法和乘法两种方式同时引入虚拟变量的模型:Y t=β0+β1Xt+β2(Xt-120332.69)D1+β3(Xt-265810.31)D2+β4(Xt-340902.81)D3+ Ut(2)其中,⎩⎨⎧===年及以前年以后2002200211ttDt,⎩⎨⎧===年及以前年以后7200720012ttDt,⎩⎨⎧===年及以前年以后9200920013ttDt。
实验七虚拟变量【实验目的】掌握虚拟变量的设置方法。
【实验内容】一、试根据表7-1的1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数;资料来源:据《中国统计年鉴1999》整理计算得到二、试建立我国税收预测模型(数据见实验一);三、试根据表7-2的资料用混合样本数据建立我国城镇居民消费函数。
最低收入户 2397.6 2476.75 0 2523.1 2617.8 1 低收入户 2979.27 3303.17 0 3137.34 3492.27 1 中等偏下户 3503.24 4107.26 0 3694.46 4363.78 1 中等收入户 4179.64 5118.99 0 4432.48 5512.12 1 中等偏上户 4980.88 6370.59 0 5347.09 6904.96 1 高收入户 6003.21 7877.69 0 6443.33 8631.94 1 最高收入户7593.9510962.168262.4212083.791资料来源:据《中国统计年鉴》1999-2000整理计算得到【实验步骤】一、我国城镇居民彩电需求函数 ⒈相关图分析;键入命令:SCAT X Y ,则人均收入与彩电拥有量的相关图如7-1所示。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:⎩⎨⎧=低收入家庭中、高收入家庭1D图7-1 我国城镇居民人均收入与彩电拥有量相关图⒉构造虚拟变量;方式1:使用DATA 命令直接输入;方式2:使用SMPL 和GENR 命令直接定义。
DATA D1 GENR XD=X*D1 ⒊估计虚拟变量模型: LS Y C X D1 XD再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
按照以上步骤,虚拟变量模型的估计结果如图7-2所示。
计量虚拟被解释变量模型引言在计量经济学中,虚拟被解释变量模型是一种统计技术,用于解决因果关系研究中的端点问题。
在这种模型中,被解释变量是通过处理虚拟(或二元)自变量所产生的。
虚拟被解释变量模型常用于实证研究,尤其是在经济学领域。
模型设定虚拟被解释变量模型的基本设定如下:$$ Y_i = \\alpha + \\beta D_i + \\gamma X_i + \\epsilon_i $$其中,Y i是被解释变量,$\\alpha$是常数项,D i是虚拟自变量,$\\beta$是虚拟自变量对被解释变量的系数,X i是其他自变量,$\\gamma$是其他自变量对被解释变量的系数,$\\epsilon_i$是误差项。
虚拟自变量D i通常是二元的,它代表了某一特定性质或条件。
例如,在教育研究中,D i可以表示某人是否接受过高等教育。
虚拟自变量模型的基本思想是比较接受和不接受某一特定条件的个体之间的差异。
性质和假设虚拟被解释变量模型基于以下性质和假设:1.线性性假设:模型假设自变量和被解释变量之间的关系是线性的,即线性回归模型。
2.独立性假设:模型假设误差项$\\epsilon_i$与自变量D i和X i之间不相关。
3.恰当性假设:模型假设虚拟自变量D i是恰当的,并且与被解释变量Y i之间存在着因果关系。
4.无多重共线性假设:模型假设自变量之间不存在高度相关性。
估计和推断对于虚拟被解释变量模型,可以使用最小二乘法进行参数估计,以获取对$\\alpha$、$\\beta$和$\\gamma$的估计值。
通常还可以利用t统计量和F统计量对参数进行假设检验,评估虚拟自变量对被解释变量的影响。
此外,还可以计算模型的拟合优度度量,如决定系数R2和调整决定2,来评估模型的拟合程度和解释能力。
系数R adj实证研究虚拟被解释变量模型在实证研究中有广泛的应用。
以下是一些实证研究领域的例子:在经济学中,虚拟被解释变量模型常用于研究各种政策对经济变量的影响。
计量经济学习题第7章单方程回归模型的几个专题第7章单方程回归模型的几个专题一、名词解释1、虚拟变量2、模型设定误差3、工具变量4、工具变量法5、变参数模型6、分段线性回归模型7、虚拟变量模型二、简答题1、模型中引入虚拟变量的作用是什么?2、虚拟变量引入的原则是什么?3、虚拟变量引入的方式及每种方式的作用是什么?4、判断计量经济模型优劣的基本原则是什么?5、模型设定误差的类型有那些?6、工具变量选择必须满足的条件是什么?7、滞后变量模型包括哪几种类型?写出各自的模型形式。
8、设定误差产生的主要原因是什么?9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?三、单项选择题1、设某地区消费函数i i i x c c y μ++=10中,消费支出不仅与收入x 有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。
假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个2、当质的因素引进经济计量模型时,需要使用()A. 外生变量B. 前定变量C. 内生变量D. 虚拟变量3、.由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A. 系统变参数模型B.系统模型C. 变参数模型D. 分段线性回归模型4、.假设回归模型为i i i x y μβα++=,其中Xi 为随机变量,Xi 与Ui 相关则β的普通最小二乘估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致5、假定正确回归模型为i i i i x x y μββα+++=2211,若遗漏了解释变量X2,且X1、X2线性相关则1β的普通最小二乘法估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致6、对于误差变量模型,模型参数的普通最小二乘法估计量是( )A.无偏且一致的B.无偏但不一致C.有偏但一致D.有偏且不一致7、系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型8、虚拟变量( )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素9、. 分段线性回归模型的几何图形是( )A.平行线B.垂直线C.光滑曲线D.折线10、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量数目为( )A.mB.m-1C.m-2D.m+111、设某商品需求模型为Yt=β0+β1Xt+Ut ,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性四、多项选择题1、系统变参数模型中,参数变化是( )A.随机的B.离散的C.非随机的D.连续的E.系统的2、在包含有随机解释变量的回归模型中,可用作随机解释变量的工具变量必须具备的条件有,此工具变量( )A.与该解释变量高度相关B.与其它解释变量高度相关C.与随机误差项高度相关D.与该解释变量不相关E.与随机误差项不相关3、关于虚拟变量,下列表述正确的有()A .是质的因素的数量化B .取值为l 和0C .代表质的因素D .在有些情况下可代表数量因素E .代表数量因素4、虚拟变量的取值为0和1,分别代表某种属性的存在与否,其中()A 、0表示存在某种属性B 、0表示不存在某种属性C 、1表示存在某种属性D 、1表示不存在某种属性E 、0和1代表的内容可以随意设定5、在截距变动模型i i i x D y μβαα+++=10中,模型系数()A 、0α是基础类型截距项B 、1α是基础类型截距项C 、0α称为公共截距系数D 、1α称为公共截距系数E 、01αα-为差别截距系数6、对于线性回归模型i i i i Dx x D y μββαα++++=)(2110,其中D 为虚拟变量,有()A 、其图形是两条平行线B 、基础类型的截距项是0αC 、基础类型的截距为1βD 、差别截距系数为1αE 、差别斜率系数为12ββ-7、对于分段线性回归模型t t t t D x x x y μβββ+-++=)(*210,其中()A 、虚拟变量D 代表品质因素B 、虚拟变量D 代表数量因素C 、以*x x t =为界,前后两段回归直线的斜率不同D 、以*x x t =为界,前后两段回归直线的截距不同E 、该模型是系统变参数模型的一种特殊形式五、计算题1、家庭消费C ,除依赖于收入Y 之外,还同下列因素有关:(1)民族:汉、蒙、满、回、藏(2)家庭小孩数:没有孩子、1-2个孩子、3个及以上孩子(3)户主的文化程度:高中以下、高中、大专以上试设定该家庭消费函数的回归模型。
一、实验背景与目的随着计量经济学的发展,虚拟变量(也称为指示变量)在数据分析中扮演着重要角色。
虚拟变量主要用于处理定性变量,将定性因素量化,以便于进行统计分析。
本实验旨在通过Eviews软件,掌握虚拟变量的基本原理,并运用虚拟变量构建模型,分析定性因素对定量变量的影响。
二、实验数据与模型设定实验数据来源于我国某地区某年度的居民消费数据,包括居民人均收入、消费支出、教育程度、是否为城市居民等变量。
根据研究目的,我们选取人均收入、消费支出和教育程度作为因变量,是否为城市居民作为虚拟变量。
实验模型设定如下:消费支出= β0 + β1 人均收入+ β2 教育程度+ β3 是否为城市居民 +ε其中,β0为截距项,β1、β2、β3分别为人均收入、教育程度和是否为城市居民的系数,ε为误差项。
三、实验步骤与结果分析1. 数据处理首先,将原始数据进行整理,删除缺失值和异常值。
然后,根据研究目的,将教育程度分为小学、初中、高中、大学及以上四个等级,并分别对应虚拟变量D1、D2、D3、D4。
是否为城市居民变量直接作为虚拟变量D5。
2. 模型估计利用Eviews软件,对上述模型进行最小二乘法(OLS)估计。
结果如下:消费支出 = 620.5 + 0.5 人均收入 + 0.4 教育程度 + 0.3 是否为城市居民3. 结果分析(1)截距项β0为620.5,表示当人均收入为0、教育程度为0、是否为城市居民为0时,消费支出的大致水平。
(2)人均收入的系数β1为0.5,表示在其他条件不变的情况下,人均收入每增加1元,消费支出将增加0.5元。
(3)教育程度的系数β2为0.4,表示在其他条件不变的情况下,教育程度每提高一个等级,消费支出将增加0.4元。
(4)是否为城市居民的系数β3为0.3,表示在其他条件不变的情况下,城市居民的消费支出比非城市居民高0.3元。
四、结论与展望通过本实验,我们掌握了虚拟变量的基本原理和建模方法,并成功分析了定性因素对消费支出的影响。
实验七虚拟变量
【实验目的】
掌握虚拟变量的设置方法。
【实验内容】
一、试根据表7-1的1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数;
资料来源:据《中国统计年鉴1999》整理计算得到
二、试建立我国税收预测模型(数据见实验一);
三、试根据表7-2的资料用混合样本数据建立我国城镇居民消费函数。
最低收入户 2397.6 2476.75 0 2523.1 2617.8 1 低收入户 2979.27 3303.17 0 3137.34 3492.27 1 中等偏下户 3503.24 4107.26 0 3694.46 4363.78 1 中等收入户 4179.64 5118.99 0 4432.48 5512.12 1 中等偏上户 4980.88 6370.59 0 5347.09 6904.96 1 高收入户 6003.21 7877.69 0 6443.33 8631.94 1 最高收入户
7593.95
10962.16
8262.42
12083.79
1
资料来源:据《中国统计年鉴》1999-2000整理计算得到
【实验步骤】
一、我国城镇居民彩电需求函数 ⒈相关图分析;
键入命令:SCAT X Y ,则人均收入与彩电拥有量的相关图如7-1所示。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:
⎩⎨
⎧=低收入家庭
中、高收入家庭
1D
图7-1 我国城镇居民人均收入与彩电拥有量相关图
⒉构造虚拟变量;
方式1:使用DATA 命令直接输入;
方式2:使用SMPL 和GENR 命令直接定义。
DATA D1 GENR XD=X*D1 ⒊估计虚拟变量模型: LS Y C X D1 XD
再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
按照以上步骤,虚拟变量模型的估计结果如图7-2所示。
图7-2 我国城镇居民彩电需求的估计
我国城镇居民彩电需求函数的估计结果为:
i i i i XD D x y
0088.08731.310119.061.57ˆ-++= =t (16.249)(9.028) (8.320) (-6.593)
2R =0.9964 2R =0.9937 F =366.374 S.E =1.066
虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。
低收入家庭与中高收入家庭各自的需求函数为:
低收入家庭:
i i x y
0119.061.57ˆ+= 中高收入家庭:
()()i i x y
0088.00119.08731.3161.57 ˆ-++=i x 003.048.89+= 由此可见我国城镇居民家庭现阶段彩电消费需求的特点:对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。
事实上,现阶段我国城镇
居民中国收入家庭的彩电普及率已达到百分之百,所以对彩电的消费需求处于更新换代阶段。
二、我国税收预测模型
要求:设置虚拟变量反映1996年税收政策的影响。
方法:取虚拟变量D1=1(1996年以后),D1=0(1996年以前)。
键入命令:GENR XD=X*D1
LS Y C X D1 XD
则模型估计的相关信息如图7-3所示。
图7-3 引入虚拟变量后的我国税收预测模型
我国税收预测函数的估计结果为:
i i i i XD D x y
12139.0198.819508286.0268.1234ˆ+-+= =t (24.748) (47.949) (-10.329) (11.208)
2R =0.9990 2R =0.9987 F =3332.429 S.E =87.317 可见,虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明1996年的税收政策对税收收入在截距和斜率上都产生了明显影响。
1996年前的税收函数为:
i i x y
08286.0268.1234ˆ+= 1996年后的税收函数为:
i i x y
20425.093.6960ˆ+-= 由此可见,在实施1996年的税收政策前,国内生产总值每增加10000元,税收收入增加828.6元;而1996年后,国内生产总值每增加10000元,税收收入则增加2042.5元,因此,1996年的税收政策大大提高了税收收入水平。
三、我国城镇居民消费函数 要求:
⒈利用虚拟变量分析两年的消费函数是否有显著差异;
⒉利用混合样本建立我国城镇居民消费函数。
设1998年、1999年我国城镇居民消费函数分别为: 1998年:i i i x b a y ε++=11 1999年:i i i x b a y ε++=22 为比较两年的数据,估计以下模型: i i i i i XD D x b a y εβα++++=11
其中,12a a -=α,12b b -=β。
具体估计过程如下:
CREATE U 16 建立工作文件 DATA Y X
(输入1998,1999年消费支出和收入的数据,1-8期为1998年资料,9-16期为1999年资料)
SMPL 1 8 样本期调成1998年 GENR D1=0 输入虚拟变量的值 SMPL 9 16 样本期调成1999年 GENR D1=1 输入虚拟变量的值 SMPL 1 16 样本期调成1998~1999年 GENR XD=X*D1 生成XD 的值 LS Y C X D1 X D 利用混合样本估计模型 则估计结果如图7-4:
图7-4 引入虚拟变量后的我国城镇居民消费模型
i i i i XD D x y
0080.01917.616237.070588.924ˆ-++= =t (10.776) (43.591) (0.510) (-0.417)
2R =0.9972 2R =0.9965 F =1411.331 S.E =113.459 根据t 检验,D 和XD 的回归系数均不显著,即可以认为12a a -=α=0,
12b b -=β=0;这表明1998年、1999年我国城镇居民消费函数并没有显著差异。
因此,可以将两年的样本数据合并成一个样本,估计城镇居民的消费函数。
独立样本回归与混合样本回归结果如图7-5~图7-7所示。
图7-5 1998年样本回归的我国城镇居民消费模型
图7-6 1999年样本回归的我国城镇居民消费模型
图7-7 混合样本回归的我国城镇居民消费模型
将不同样本估计的消费函数结果列在表7-3中,可以看出,使用混合回归明显地降低了系数的估计误差。
表7-3 利用不同样本估计的消费模型。