高三数学数列极限1
- 格式:ppt
- 大小:210.00 KB
- 文档页数:12
数列的极限1.数列的极限【知识点的知识】1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0),那么就说数列{a n}以a 为极限,记作푙푖푚a n=a.(注:a 不一定是{a n}中的项)푛→∞2、几个重要极限:3、数列极限的运算法则:4、无穷等比数列的各项和:(1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =푙푖푚S n.푛→∞(2)1/ 3【典型例题分析】典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4푆푛=(푎푛+1)2,其中S n 表示数列{a n}的前n 项푛和.则푙푖푚푎푛=()푛→∞1A.0 B.1 C.2D.2解:∵4S1=4a1=(a1+1)2,∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2,∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数,∴a n﹣a n﹣1=2.数列{a n}是等差数列,∴a n=2n﹣1.푛푛1∴푙푖푚2푛―1=푙푖푚2―1푎푛=푙푖푚푛→∞푛→∞푛→∞푛=12.故选:C.典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式;(2)设 c n =1푛|푃1푃푛|(푛≥2),求푙푖푚(푐2+푐3+⋯+푐푛)的值;푛→∞(3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,∴b n=2a n+1,a1=0,∵等差数列{a n}的公差为 1(n∈N*),∴a n=0+(n﹣1)=n﹣1.b n=2(n﹣1)+1=2n﹣1.(2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,∴|P1P n| =(푎푛―푎1)2+(푏푛―푏1)2=(푛―1)2+4(푛―1)2=5(푛―1)(n≥2).2/ 3∴c n =1푛|푃1푃푛|=15푛⋅(푛―1)=115(푛―1―1푛),∴c2+c3+…+c n =15[(1―112)+(2―113)+⋯+(푛―1―1푛)]=15(1―1푛),∴푙푖푚(푐2+푐3+⋯+푐푛)=푙푖푚푛→∞푛→∞15(1―1푛)=5;5(3)证明:n≥2,d n=2d n﹣1+a n﹣1,=2d n﹣1+n﹣2,∴d n+n=2(d n﹣1+n﹣1),∴数列{d n+n}为等比数列,首项为d1+1=2,公比为 2,∴푑푛+푛=2푛,∴푑푛=2푛―푛.【解题方法点拨】(1)只有无穷数列才可能有极限,有限数列无极限.(2)运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形)1(3)求数列极限最后往往转化为푛푚(m∈N)或qn(|q|<1)型的极限.(4)求极限的常用方法:①分子、分母同时除以n m 或a n.②求和(或积)的极限一般先求和(或积)再求极限.③利用已知数列极限(如等).④含参数问题应对参数进行分类讨论求极限.∞⑤∞﹣∞,∞,0﹣0,等形式,必须先化简成可求极限的类型再用四则运算求极限.3/ 3。
2.2数列的极限(1)教学目标:从数列的变化趋势了解数列的极限,并学会判断一些简单数列的极限. 教学重点:数列极限的概念及其求法;教学难点:数列的极限意义的理解.教学过程:一、导入战国时代哲学家庄周著的《庄子·天下篇》引用过一句话:“一尺之棰 日取其半 万世不竭”.引言中刘徽“割圆术”说起,提出问题:当n 无限增大时,圆内接正n 边形的 是否无限趋近于圆周长2πR 呢?二、数列的极限的定义考察数列231111,,,,,.10101010n ① 123,,,,,.2341n n +②11(1)1,,,,,.23n n ---③当n 无限增大时,项a n 的变化趋势:(1)随着n 的增大,从数值变化趋势上看,a n 有三种变化方式:数列①是递减的,②是递增的,③是正负交替地无限趋近于a .①随着n 的增大,从数轴上观察项a n 表示的点的变化趋势,也有三种变化方式:①是从点a 右侧,②是点左侧,③是从点a 两侧交替地无限趋近于a .(3)随着 n 的增大,从差式|a n -a | 的变化趋势上看,它们都是无限地接近千 0,即a n 无限趋近于a .这三个数列的共同特性是:不论这些变化趋势如何,“随着项数n 的无限增大,数列的项a n 无限地趋近于常数a (即|a n -a | 无限地接近于0)”.数列极限的直观描述性定义:如果当项数n 的无限增大,无穷数列{ a n }的项a n 无限地趋近于常数a (即|a n -a | 无限地接近于0)那么就说数列{ a n }以a 为极限,或者说数列{ a n }的极限是a .记为lim .n x a a →∞= 三、例题例1 考察下面的数列,写出它们的极限: 3111(1)1,,,,,;827n 5(2) 6.5,6.95,6.995,,7,;10n - 1111(3),,,,,.248(2)n ---例2 下列数列是否有极限?为什么? (1) 1,1,1,1,,(1),n --- (2)1000001111,,,,.1010010010 (3)100000,10000,1000,……,(1)10000010,.n --⋅例3 求1lim 310n x →∞⎛⎫-+ ⎪⎝⎭ 问题:① 等于 吗?②比较-3与 的大小.例4 已知数列1.9,1.99,1.999,…,,….(1)写出它的通项a n ;(2)计算|a n -2| ; (3)第几项以后所有的项与2的差的绝对值小于0.01?(4)第几项以后所有的项与2的差的绝对值小于0.001?(5)指出这个数列的极限.四、作业:同步练习 X02021。
高中数学中的数列极限求解知识点总结数列极限是高中数学中的重要内容,它是数学分析的基础,也是数学发展的重要方向之一。
掌握数列极限的求解方法和相关知识点,对于高中生提高数学学习水平具有重要的意义。
下面将对高中数学中的数列极限求解知识点进行总结与归纳。
一、数列极限的概念及性质数列极限指的是当数列中的项数趋于无穷大时,数列中的项的极限值。
数列极限的概念基于数列的收敛性,即当数列趋于某个确定的值时,其极限存在。
1.1 数列极限的定义数列{an}的极限为a,记作lim(n→∞) an = a,当且仅当对于任意给定的正数ε,总存在一个正整数N,使得当n>N时,对应的数列项an 与极限a之间的差值小于ε,即|an - a| < ε。
1.2 数列极限的性质(1)唯一性:如果数列的极限存在,则极限值唯一。
(2)有界性:如果数列的极限存在,则数列必定有界。
(3)保序性:如果数列{an}的极限为a,且数列{bn}的极限为b,则当n足够大时,对于数列中的任意项an与bn,都有an ≤ bn。
二、常见数列极限求解方法2.1 基本数列的极限(1)常数数列的极限:对于常数数列{an} = a,其中a为常数,则该常数数列的极限为a,即lim(n→∞)a = a。
(2)等差数列的极限:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,则当公差d≠0时,该等差数列的极限为±∞(取决于公差d的正负性),若公差d=0,则该等差数列的极限为a1。
2.2 数列极限的四则运算法则(1)加减法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an ± bn}的极限为a ± b。
(2)乘法法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an × bn}的极限为a × b。
(3)除法法则:如果数列{an}的极限为a,数列{bn}的极限为b且b≠0,则数列{an ÷ bn}的极限为a ÷ b。
高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。
在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。
本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。
一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。
数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。
数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。
2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。
3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。
二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。
解析:对于这道题目,我们可以通过直接代入数值的方法来求解。
当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。
当n趋于无穷大时,我们可以发现an的值趋近于0。
因此,根据数列极限的定义,lim(an)=0。
2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。
解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。
当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。
因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。
3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。
高等数学教材数列极限数列极限是高等数学中重要的概念和内容之一。
在数学的发展历程中,数列极限的研究起到了重要的推动作用。
本文将从数列的定义、数列极限的概念及性质、数列的收敛与发散等方面进行详细阐述,以帮助读者更好地理解和掌握高等数学中的数列极限知识。
一、数列的定义数列是由一个自然数集合,经过某种规则排列得到的无穷序列。
数列可表示为:{a₁, a₂, a₃, ... , aₙ, ...},其中a₁, a₂, a₃, ... , aₙ, ... 表示数列的项。
每一项都有相应的下标,用n表示。
二、数列极限的概念及性质数列极限是数列中最为重要的概念之一。
当数列的每一项都趋近于一个确定的实数L时,我们称该数列的极限为L。
数列极限的概念可表示为:lim┬(n→∞) (aₙ) = L。
对于数列极限,有以下性质值得注意:1. 数列极限的唯一性:一个数列的极限是唯一的,如果存在极限,则极限是确定的。
2. 数列极限的有界性:如果一个数列有极限,那么该数列必定是有界的。
3. 数列收敛的判定准则:柯西收敛准则和单调有界准则是判定数列是否收敛的两个重要准则。
4. 数列极限的四则运算:数列之间可以进行加法、减法、乘法和除法的四则运算。
三、数列的收敛与发散1. 收敛数列:当数列的项逐渐趋近于一个确定的实数L时,该数列称为收敛数列。
记作lim┬(n→∞) (aₙ) = L。
2. 发散数列:当数列的项不趋近于任何实数时(即不存在极限),该数列称为发散数列。
对于收敛数列,有以下性质:1. 收敛数列一定有界;2. 收敛数列的极限唯一;3. 收敛数列的子数列也是收敛数列,并且极限相同。
对于发散数列,有以下情况:1. 数列发散到正无穷:当数列的项无论取多大值,总存在某一项使得后续项的值都更大。
记作lim┬(n→∞) (aₙ) = +∞。
2. 数列发散到负无穷:当数列的项无论取多小值,总存在某一项使得后续项的值都更小。
记作lim┬(n→∞) (aₙ) = -∞。