2019-2020年高考数学总复习 课时提升练61 离散型随机变量及其分布列 理 新人教版
- 格式:doc
- 大小:109.00 KB
- 文档页数:11
概率与统计(3)离散型随机变量及其分布列1、已知X 的分布列如下,且()733Y aX E Y =+=,,则的值为( )X 1-1P121316A.1B.2C.3D.42、设01p <<,随机变量ξ的分布列如下表:ξ0 1 2p12p- 12 2p 则当p 在(0,1)内增大时( ) A. ()D ξ减小B. ()D ξ增大C. ()D ξ先减小后增大D. ()D ξ先增大后减小3、随机变量X 的分布列如下表,且()2E x =,则()23D x -=( )X 02aP16p13A.2B.3C.4D.54、设X 是一个离散型随机变量,其分布列为:X1-0 1P1212q -2q则q 等于( ) A .1B .21±C .21-D .21+5、若离散型随机变量的分布列为12()(15,Z)(21)(21)+⋅==≤≤∈--kk k m P X k k k , 则1522⎛⎫<< ⎪⎝⎭P X 的值为 ( ) A. 2731B. 2131C. 1531D. 9316、若随机变量X 的分布列为:已知随机变量,(,R,0)Y aX b a b a =+∈>且()10,()4,E Y D Y ==则a 与b 的值为( ) A.10,3a b == B.3,10a b == C.5,6a b ==D.6,5a b ==7、一袋中装5只球,编号为1,2,3,4,5,在袋中同时取出3只,以ξ表示取出的三只球中的最小号码,则随机变量ξ的分布列为( ) A .B .C .D .8、已知η的分布列为:设32ξη=-则E ξ的值为( )A. 3-B. 43C. 23-D. 59、随机变量X 的分布列如下表,则()E X 等于 ( )A.2.4B.3C.2.2D.2.310、设随机变量ξ等可能取值123,,n L ,,,,若(4)0.3P ξ<=,则n 的值为( ) A.3 B.4 C.10 D.不确定 11、已知随机变量ξ的分布列如下表,则x =________.12、若离散型随机变量X 的概率分布列为则常数m =___________13、已知离散型随机变量η的分布列如下表:则()14Pη<≤=__________14、已知随机变量ξ的分布列为:15、2018年是中国改革开放40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:[)[)20,3,30,40,…,[)70,80,并绘制了如图所示的频率分布(1)现从年龄在[)[)[)20,3,30,40,40,50内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用X 表示年龄在[)30,40内的人数,求X 的分布列和数学期望; (2)若将样本的频率视为概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有k名市民的年龄在[)30,50内的概率为()01220()P Y k k ==⋯,,,,,当()P Y k =最大时,求k 的值答案以及解析1答案及解析: 答案:B解析:()11111012363X E =-⨯+⨯+⨯=-,()()()1733333E Y E aX aE X a =+=+=-+=,∴2a =. 故选B.2答案及解析: 答案:D解析:设01p <<,随机变量ξ的分布列是111()0122222p p E p ξ-=⨯+⨯+⨯=+; 方差是22211111()(0)(1)(2)222222p p D p p p ξ-=--⨯+--⨯+--⨯22111()422p p p =-++=--+,1(0,)2p ∈∴时,()D ξ单调递增;1(,1)2p ∈时,()D ξ单调递减;所以()D ξ先增大后减小. 故选:D .3答案及解析: 答案:C解析:由题意可得:11163p ++=,解得12p =, 因为()2E X =,所以: 111022623a ⨯+⨯+⨯=,解得3a =()()()()2221110222321623D X =-⨯+-⨯+-⨯=,()()2344D X D X -==.所以C 选项是正确的.4答案及解析:答案:C解析:由分布列的性质得2201210111212q q q q ⎧⎪≤-<⎪≤<⎨⎪⎪+-+=⎩1021q q ⎧<<⎪⎪∴⎨⎪=⎪⎩所以q等于1故选C5答案及解析: 答案:A 解析:6答案及解析: 答案:C解析:由随机变量的分布列可知,10.20.8m =-=, ()00.210.80.8E X ∴=⨯+⨯=,()10.20.80.16D X =⨯⨯=, ()()10E Y aE X b ∴=+=2()()4D Y a D X ==0.810a b ∴+=,20.164a =5,6a b ∴==7答案及解析: 答案:C 解析:8答案及解析: 答案:A 解析:9答案及解析: 答案:A解析:由表格可求得()00.320.240.5 2.4E X =⨯+⨯+⨯=.故选A.10答案及解析: 答案:C 解析:11答案及解析: 答案:12解析:由随机变量概率分布列的性质可知:2114x x ++=,且01x ≤≤, 解得12x = 故答案为1212答案及解析: 答案:13解析:13答案及解析: 答案:0.45解析:由分布列的性质,得0.20.250.10.150.21x +++++=,解得0.1x =,所以()()()()1423=4=0.1+0.25+0.1=0.45P P P P ηηηη<≤==+=+14答案及解析: 答案:0.49解析:由随机变量分布列性质可得13115102p =--=.又11301 1.15210E x ξ=⨯+⨯+⨯=,解得2x =.可得()()()2221130 1.11 1.12 1.10.495210D ξ=-⨯+-⨯+-⨯=.15答案及解析:答案:(1)按分层抽样的方法抽取的8人中,年龄在[)20,30内的人数为0.005810.0050.0100.025⨯=++,年龄在[)30,40内的人数为0.010810.0050.0100.025⨯=++,年龄在[)40,50内的人数为0.025850.0050.0100.025⨯=++. 所以X 的可能取值为0,1,2,所以()3062385014C C P X C ===;()21623815128C C P X C ===;()1262383228C C P X C ===.所以X 的分布列为则()515330121428284E X =⨯+⨯+⨯=. (2)由题知Y 服从二项分布,由频率分布直方图可知,年龄在[)30,50内的频率为()0.0100.025100.35+⨯=,所以()20,0.35B :Y ,所以()()()20200.3510.350122()0kkkP Y k C k -==-=⋯,,,,.设()()1P Y K t P Y k ===-()()()()20201211200.3510.350.3510.35k k kk k k C C -----=-()()7211,2,...,2016k k k-=. 若1t >,则7.35k <,()()1P Y k P Y k =-<=; 若1t <,则7.35k >,()()1k P Y k P Y =->=.所以当7k =时,()P Y k =最大,即当()P Y k =最大时,k 的值为7. 解析:。
课时规范练64离散型随机变量的分布列、均值与方差基础巩固组1.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数ξ的最大值为()A.5B.2C.3D.42.设随机变量X的分布列如下表,则P(|X-2|=1)=()A.712B.12C.512D.163.设随机变量X的分布列如下表,则方差D(X)=()A.0B.1C.2D.34.设离散型随机变量X可能的取值为1,2,3,4,P(X=k)=ak+b(k=1,2,3,4),又X的均值为E(X)=3,则a+b=()A.110B.0 C.-110D.155.已知随机变量X的分布列如下表,若E(X)=1,则D(X)=()A.0.1B.0.2C.0.4D.0.66.(多选)设随机变量ξ的分布列为P(ξ=k5)=ak(k=1,2,3,4,5),则()A.15a=1B.P(0.5<ξ<0.8)=0.2C.P(0.1<ξ<0.5)=0.2D.P (ξ=1)=0.37.已知随机变量ξ的分布列如下表,则x= .8.已知X 的分布列如下表,设Y=2X+1,则Y 的均值E (Y )的值是 .综合提升组9.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为p (0<p<1),发球次数为X ,若X 的均值E (X )>1.75,则p 的取值范围为( ) A.(0,12) B.(0,712) C.(12,1)D.(712,1)10.(多选)(2022山东第二次学业质量检测)已知m ,n 均为正数,随机变量X 的分布列如下表,则下列结论一定成立的是( ) A.P (X=1)<P (X ≠1) B.E (X )=1 C.mn ≤18D.D (X+1)<111.(多选)袋内有形状、大小完全相同的2个黑球和3个白球,从中不放回地每次任取1个小球,直至取到白球后停止取球,设取球次数为ξ,则下列说法正确的是( ) A.抽取2次后停止取球的概率为35B.停止取球时,取出的白球个数不少于黑球的概率为910 C.取球次数ξ的均值为2D.取球次数ξ的方差为92012.(多选)已知随机变量ξ的分布列是随机变量η的分布列是则当p在(0,1)内增大时,下列选项中正确的是()A.E(ξ)=E(η)B.D(ξ)=D(η)C.E(ξ)增大D.D(η)先增大后减小13.已知随机变量X的分布列为已知a>0,b>0,当D(X)最大时,E(X)=.14.对某种型号的仪器进行质量检测,每台仪器最多可检测3次,一旦发现问题,则停止检测,否则一直检测到3次为止,设该仪器一次检测出现问题的概率为0.2,则检测2次停止的概率为;设检测次数为X,则X的均值为.15.(2022浙江,15)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=,E(ξ)=.16.已知某盒子中共有6个小球,编号为1号至6号,其中有3个红球、2个黄球和1个绿球,这些球除颜色和编号外完全相同.(1)若从盒中一次随机取出3个球,求取出的3个球中恰有2个颜色相同的概率;(2)若从盒中逐一取球,每次取后立即放回,共取4次,求恰有3次取到黄球的概率;(3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为X,求随机变量X的分布列及均值E(X).创新应用组17.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从记录甲公司送餐员的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和均值E(X);②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日平均工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.课时规范练64 离散型随机变量的分布列、均值与方差1.D 解析:由于不能打开的钥匙会扔掉,故扔掉4把打不开的钥匙后,第5把钥匙就是能开锁的钥匙,ξ的最大值为4,故选D .2.C 解析:由16+14+m+13=1,得m=14,所以P (|X-2|=1)=P (X=1)+P (X=3)=16+14=512. 3.B 解析:由题得,a=1-0.1-0.3-0.4=0.2,则E (X )=1×0.2+2×0.3+3×0.4=2,E (X 2)=1×0.2+4×0.3+9×0.4=5,D (X )=E (X 2)-[E (X )]2=5-4=1,故选B . 4.A 解析:依题意可得X 的分布列为依题意得,{a +b +2a +b +3a +b +4a +b =1,(a +b )+2(2a +b )+3(3a +b )+4(4a +b )=3,解得a=110,b=0,故a+b=110.故选A .5.C 解析:由分布列的性质,可得0.2+a+b=1,解得a+b=0.8. ① ∵E (X )=1,∴0×0.2+1×a+2×b=1,即a+2b=1, ②联立①②,解得a=0.6,b=0.2.D (X )=(0-1)2×0.2+(1-1)2×0.6+(2-1)2×0.2=0.4. 故选C .6.ABC 解析:随机变量ξ的分布列为P (ξ=k5)=ak (k=1,2,3,4,5),P ξ=15+P ξ=25+P ξ=35+P ξ=45+P (ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A 正确;P (0.5<ξ<0.8)=P (ξ=35)=3×115=0.2,故B 正确;P (0.1<ξ<0.5)=P (ξ=15)+P (ξ=25)=115+2×115=0.2,故C 正确;P (ξ=1)=5×115=13≠0.3,故D 错误.故选ABC .7.12 解析:由题得,x 2+x+14=1,化简得x+32x-12=0,解得x=12或x=-32.因为0≤x ≤1,所以x=12.8.23解析:由题得12+16+a=1,解得a=13. E (X )=-12+13=-16.∵Y=2X+1,∴E (Y )=2E (X )+1,∴E (Y )=23.9.A 解析:由题可知P (X=1)=p ,P (X=2)=(1-p )p ,P (X=3)=(1-p )2p+(1-p )3=(1-p )2,则E (X )=P (X=1)+2P (X=2)+3P (X=3)=p+2(1-p )p+3(1-p )2>1.75,解得p>52或p<12,由p ∈(0,1),可得p ∈(0,12).故选A .10.BCD 解析:由分布列的性质,得m+n+m=2m+n=1,P (X=1)=n ,P (X ≠1)=2m.当m=14,n=12时,P (X=1)=P (X ≠1),故选项A 错误;因为E (X )=n+2m=1,故选项B 正确;因为m ,n 均为正数,所以1=n+2m ≥2√2mn ,即mn ≤18,当且仅当n=2m=12时,等号成立,故选项C 正确;由n=1-2m>0,得0<m<12.又E (X )=1,所以D (X+1)=D (X )=2m<1,故选项D 正确.故选BCD .11.BD 解析:由题意可知随机变量ξ的可能取值有1,2,3,则P (ξ=1)=35,P (ξ=2)=25×34=310,P (ξ=3)=25×14=110.对于A 选项,抽取2次后停止取球的概率为P (ξ=2)=310,A 选项错误;对于B选项,停止取球时,取出的白球个数不少于黑球的概率为P (ξ=1)+P (ξ=2)=35+310=910,B 选项正确;对于C 选项,取球次数ξ的均值为E (ξ)=1×35+2×310+3×110=32,C 选项错误;对于D 选项,取球次数ξ的方差为D (ξ)=(1-32)2×35+(2-32)2×310+(3-32)2×110=920,D 选项正确.故选BD .12.BC 解析:对于A,∵η=ξ+2,∴E (η)=E (ξ)+2,故A 错误;对于B,∵η=ξ+2,∴D (ξ)=D (η),故B 正确;对于C,∵E (ξ)=-12+12p ,∴当p 在(0,1)内增大时,E (ξ)增大,故C 正确;对于D,∵E (η)=12+2×1-p2+3×p2=32+p2,∴D (η)=-12−p22×12+12−p 22×1-p 2+32−p 22×p 2=-14(p-2)2+54,故当p在(0,1)内增大时,D (η)单调递增,故D 错误.故选BC .13.54 解析:由题知b=1-3a ,E (X )=2a+2(1-3a )=2-4a ,则D (X )=(4a-2)2·a+(4a-1)2·2a+(4a )2·(1-3a )=-16a 2+6a.故当a=316时,D (X )最大,此时E (X )=54.14.0.16 2.44 解析:检测2次停止的概率为(1-0.2)×0.2=0.16.检测次数X 可取1,2,3,P (X=1)=0.2,P (X=2)=0.8×0.2=0.16,P (X=3)=0.8×0.8×0.8+0.8×0.8×0.2=0.64,则E (X )=1×0.2+2×0.16+3×0.64=2.44.15.1635 127解析:P (ξ=2)=C 21C 42+C 41C 73=1635,ξ的所有可能取值为1,2,3,4. P (ξ=1)=C 62C 73=1535,P (ξ=2)=1635, P (ξ=3)=C 32C 73=335,P (ξ=4)=C 22C 73=135, 故E (ξ)=1×1535+2×1635+3×335+4×135=127. 16.解(1)从盒中一次随机取出3个球,记取出的3个球中恰有2个颜色相同为事件A ,则事件A 包含事件“3个球中有2个红球”和事件“3个球中有2个黄球”, 由古典概型的概率公式和互斥事件的概率加法公式得P (A )=C 32C 31+C 22C 41C 63=1320.故取出的2个球颜色相同的概率为1320.(2)盒中逐一取球,取后立即放回,每次取到黄球的概率为13,记“取4次恰有3次黄球”为事件B ,则P (B )=C 43×(13)3×(1-13)=881.故取4次恰有3次黄球的概率为881. (3)X 的可能取值为2,3,4,5,6, 则P (X=2)=A 22A 62=115,P (X=3)=C 21C 41A 22A 63=215, P (X=4)=C 21C 42A 33A 64=15,P (X=5)=C 21C 43A 44A 65=415,P (X=6)=C 21A 55A 66=13,所以随机变量X 的分布列为所以随机变量X 的均值为E (X )=2×115+3×215+4×15+5×415+6×13=143. 17.解(1)记抽取的3天送餐单数都不小于40为事件M ,则P (M )=C 253C 503=23196.(2)①设乙公司送餐员的送餐单数为a ,当a=38时,X=38×6=228,当a=39时,X=39×6=234,当a=40时,X=40×6=240,当a=41时,X=40×6+1×7=247,当a=42时,X=40×6+2×7=254.所以X 的可能取值为228,234,240,247,254. 故X 的分布列为所以E (X )=228×110+234×15+240×15+247×25+254×110=241.8.②依题意,甲公司送餐员的日平均送餐单数为38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7,所以甲公司送餐员的日平均工资为80+4×39.7=238.8元. 由①得乙公司送餐员的日平均工资为241.8元. 因为238.8<241.8,所以推荐小王去乙公司应聘.。
06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。
离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。
课时作业(六十一) [第61讲 离散型随机变量及其分布列][时间:45分钟 分值:100分] 基础热身1.10件产品中有3件次品,从中任取两件,可作为随机变量嘚是( ) A .取到产品嘚件数 B .取到正品嘚概率 C .取到次品嘚件数 D .取到次品嘚概率2.抛掷两枚骰子一次,记第一枚骰子掷出嘚点数与第二枚骰子掷出嘚点数之差为ξ,则“ξ≥5”表示嘚试验结果是( )A .第一枚6点,第二枚2点B .第一枚5点,第二枚1点C .第一枚1点,第二枚6点D .第一枚6点,第二枚1点 3.已知随机变量X 嘚分布列如下表:X 1 2 3 4 5 P115215 m415 13则m 嘚值为( ) A.115 B.215 C.15 D.415 4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便嘚村庄数,下列概率等于C 47C 68C 1015嘚是( )A .P(X =2)B .P(X≤2)C .P(X =4)D .P(X≤4) 能力提升5.从标有1~10嘚10支竹签中任取2支,设所得2支竹签上嘚数字之和为X ,那么随机变量X 可能取得嘚值有( )A .17个B .18个C .19个D .20个6.设随机变量X 嘚分布列为P(X =i)=a·⎝ ⎛⎭⎪⎫23i ,i =1,2,3,则a 嘚值为( )A.1738B.2738C.1719D.27197.设随机变量X 嘚分布列为P(X =i)=i2a ,(i =1,2,3),则P(X =2)等于( )A.19B.16C.13D.148.50个乒乓球中,合格品为45个,次品为5个,从这50个乒乓球中任取3个,出现次品嘚概率是( )A.C 35C 350 B.C 15+C 25+C 35C 350C .1-C 345C 350D.C 15C 245C 3509.随机变量X 嘚分布列为P(X =k)=ck k +1(k =1,2,3,4),其中c 为常数,则P ⎝ ⎛⎭⎪⎫12<X<52=( )A.23B.34 C.45 D.5610.甲、乙两个袋子中均装有红、白两种颜色嘚小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取2个球,则取出嘚红球个数X 嘚取值集合是________.11.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数嘚概率是________(结果用数值表示).12.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内E 发生嘚概率为p ,公司要求投保人交x 元,则公司收益X 嘚分布列是________.13.若随机变量X 嘚分布列如下表:X 0 1 P9c 2-c3-8c则常数c =________.14.(10分)一批产品共100件,其中20件为二等品,从中任意抽取2件,X 表示取出嘚2件产品中二等品嘚件数,求X 嘚分布列.15.(13分)袋中有4个红球,3个黑球,从袋中随机取球,设取到1个红球得2分,取到1个黑球得1分,从袋中任取4个球.(1)求得分X嘚分布列;(2)求得分大于6分嘚概率.难点突破16.(12分)从集合{1,2,3,4,5}嘚所有非空子集中,等可能地取出一个.(1)记性质r:集合中嘚所有元素之和为10,求所取出嘚非空子集满足性质r嘚概率;(2)记所取出嘚非空子集嘚元素个数为X,求X嘚分布列.课时作业(六十一) 【基础热身】1.C [解析] A 中件数是2,是定值;B 、D 中嘚概率也是定值;C 中件数为0,1,2,次品件数可作为随机变量.2.D [解析] 第一枚嘚点数减去第二枚嘚点数不小于5,即只能等于5,故选D. 3.C [解析] 利用概率之和等于1,得m =315=15.4.C [解析] 此题为超几何分布问题,15个村庄中有7个村庄交通不方便,8个村庄交通方便,C 47C 68表示选出嘚10个村庄中恰有4个交通不方便,6个交通方便,故P(X =4)=C 47C 68C 1015.【能力提升】5.A [解析] 1~10任取两个嘚和可以是3~19中嘚任意一个,共有17个. 6.B [解析] 根据题意及随机变量分布列嘚性质得:a·23+a·⎝ ⎛⎭⎪⎫232+a·⎝ ⎛⎭⎪⎫233=1,解得a =2738.7.C [解析] 由分布列嘚性质,得1+2+32a =1,解得a =3,所以P(X =2)=22×3=13.8.C [解析] 出现次品,可以是一个,两个或是三个,与其对立嘚是都是合格品,都是合格品嘚概率是C 345C 350,故有次品嘚概率是1-C 345C 350.9.D [解析] ∵c ⎝⎛⎭⎪⎫11×2+12×3+13×4+14×5=1,∴c ⎝ ⎛⎭⎪⎫1-15=1,解得c =54,将其代入P ⎝ ⎛⎭⎪⎫12<X<52=P(1)+P(2)=c ⎝ ⎛⎭⎪⎫1-13,得P ⎝ ⎛⎭⎪⎫12<X<52=56.10.{0,1,2,3} [解析] 甲袋中取出嘚红球个数可能是0,1,2,乙袋中取出嘚红球个数可能是0,1,故取出嘚红球个数X 嘚取值集合是{0,1,2,3}.11.0.3 [解析] 剩下两个数字都是奇数,取出嘚三个数为两偶一奇,所以剩下两个数字都是奇数嘚概率是P =C 22C 13C 35=310=0.3.12.X x -a x Pp1-p[解析] P(X =x -a)=p ,P(X =x)=1-p.所以X 嘚分布列为X x -a x Pp1-p13.13[解析] 由随机变量分布列嘚性质可知⎩⎪⎨⎪⎧9c 2-c +3-8c =1,0≤9c 2-c≤1,0≤3-8c≤1,解得c =13.14.[解答] X 嘚可能取值为0,1,2. P(X =0)=C 280C 2100=316495;P(X =1)=C 180C 120C 2100=160495;P(X =2)=C 220C 2100=19495. 所以X 嘚分布列为X 0 1 2 P31649516049519495 15.[解答] (1)从袋中随机取4个球嘚情况为:1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X 嘚可能取值为5,6,7,8.P(X =5)=C 14C 33C 47=435,P(X =6)=C 24C 23C 47=1835,P(X =7)=C 34C 13C 47=1235,P(X =8)=C 44C 03C 47=135.故所求得分X 嘚分布列为X 5 6 7 8 P43518351235135 (2)根据随机变量X 嘚分布列,可以得到得分大于6嘚概率为: P(X>6)=P(X =7)+P(X =8)=1235+135=1335.【难点突破】16.[解答] (1)记“所取出嘚非空子集满足性质r”为事件A.基本事件总数n =C 15+C 25+C 35+C 45+C 55=31,事件A 包含嘚基本事件是{1,4,5}、{2,3,5}、{1,2,3,4},事件A 包含嘚基本事件数m =3,所以P(A)=m n =331.(2)依题意,X 嘚所有可能取值为1,2,3,4,5, 又P(X =1)=C 1531=531,P(X =2)=C 2531=1031,P(X =3)=C 3531=1031,P(X =4)=C 4531=531,P(X =5)=C 5531=131,故X 嘚分布列为X 1 2 3 4 5 P531 10311031531 131。
高考数学专题复习:离散型随机变量及其分布列一、单选题1.已知离散型随机变量X 的概率分布列如下:则实数a 等于( ) A .0.6B .0.7C .0.1D .0.42.已知随机变量X 的分布列是则P(X>1)=( ) A .23B .32C .1D .343.随机变量X 的分布列为()15kP X k ==,1k =,2,3,4,5,则(3)P X <=( ) A .15B .13C .12D .234.随机变量X 的分布列如下表所示:则()2P X ≤=( ) A .0.1B .0.2C .0.3D .0.45.若随机变量η的分布列如表:则()1P η≤=( ) A .0.5B .0.2C .0.4D .0.36.从装有2个白球、3个黑球的袋中任取2个小球,下列可以作为随机变量的是( ) A .至多取到1个黑球 B .至少取到1个白球 C .取到白球的个数D .取到的球的个数7.已知离散型随机变量X 的分布列如表:则实数c 等于( ) A .0.2B .0.3C .0.6D .0.78.若随机变量X 的分布列如下表所示,则a 的值为( )A .0.1B .0.2C .0.3D .0.49.设随机变量x 的分布列为()(),2,3,4,51===-kP X m m m m ,其中k 为常数,则()2log 3log P X 3<<80的值为( )A .23B .34C .45D .5610.随机变量X 所有可能取值的集合是{}2,0,3,5-,且()()()1112,3,54212P X P X P X =-=====,则()14P X -<<的值为( )A .13B .12C .23D .3411.若随机变量X 的分布列如下表,则(3)P X ≥=( )A .14B .13C .34D .11212.口袋中有5个球,编号为1,2,3,4,5,从中任意取出3个球,用X 表示取出球的最小号码,则X 的取值为( ) A .1B .1,2C .1,2,3D .1,2,3,4二、填空题13.若随机变量ξ的分布列为则a =__________.14.设随机变量ξ的分布列为()(1)C P k k k ξ==+,1,2,3k =,其中C 为常数,则1522P ξ⎛⎫<<=⎪⎝⎭__________.15.设随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,C 为常数,则()3P X <=____.16.一串5把外形相似的钥匙,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为__________. 三、解答题17.在10件产品中,有8件合格品,2件次品,从这10件产品中任意抽取2件,试求: (1)取到的次品数的分布列; (2)至少取到1件次品的概率.18.某闯关游戏分为初赛和复赛两个阶段,甲、乙两人参加该闯关游戏.初赛分为三关,每关都必须参与,甲通过每关的概率均为23,乙通过每关的概率依次为311,,.423初赛三关至少通过两关才能够参加复赛,否则直接淘汰;在复赛中,甲、乙过关的概率分别为1,314.若初赛和复赛都通过,则闯关成功.甲、乙两人各关通过与否互不影响. (1)求乙在初赛阶段被淘汰的概率;(2)记甲本次闯关游戏通过的关数为X ,求X 的分布列; (3)试通过概率计算,判断甲、乙两人谁更有可能闯关成功.19.在一个不透明的盒中,装有大小,质地相同的两个小球,其中一个是黑色,一个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多2分或取满6次时游戏结束,并且只有当一人比另一人多2分时,得分高者才能获得游戏奖品.(1)求甲获得游戏奖品的概率;(2)设X表示游戏结束时所进行的取球次数,求X的分布列及数学期望.20.某校高二年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成,比赛中每人投篮1次、每个人之间投篮都是相互独立的.已知女生投篮命中的概率均为13,男生投篮命中的概率均为23.(1)求小组共投中2次的概率;(2)若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X表示小组总分,求随机变量X的分布列及数学期望.21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白球与黄球各3个,红球与绿球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:(1)只能一个人摸球;(2)摸出的球不放回;(3)摸球的人先从袋中摸出1球:①若摸出的是绿球,则再从袋子里摸出2个球;②若摸出的不是绿球,则再从袋子里摸出3个球.他的得分为两次摸出的球的记分之和;(4)剩下的球归对方,得分为剩下的球的记分之和.(Ⅰ)若甲第一次摸出了绿球,求甲的得分不低于乙的得分的概率;(Ⅱ)如果乙先摸出了红球,求乙得分X的分布列.22.袋中有4个红球,()14,n n n N ≤≤∈个黑球,若从袋中任取3个球,恰好取出3个红球的概率为435. (1)求n 的值.(2)若从袋中任取3个球,取出一个红球得1分,取出一个黑球得3分,记取出的3个球的总得分为随机变量X ,求随机变量X 的分布列.参考答案1.D 【分析】利用分布列的性质,求a 的值. 【详解】据题意得0.20.30.11a +++=,所以0.4a =. 故选:D 2.A 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案. 【详解】根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=,所以()()()21=233P X P X P X a b >=+==+=,故选:A. 3.A 【分析】根据互斥事件的概率公式计算. 【详解】()()1231(3)121515155P X P X P X <==+==+==, 故选:A . 4.C 【分析】利用分布列的性质求出m 的值,然后由概率的分布列求解概率即可. 【详解】解:由分布列的性质可得,0.10.321m m +++=,可得0.2m =,所以(2)(1)(2)0.10.20.3P X P X P X ==+==+=. 故选:C . 5.C 【分析】利用分布列可求得()1P η≤的值. 【详解】由分布列可得()()()()11010.10.10.20.4P P P P ηηηη≤==-+=+==++=. 故选:C. 6.C 【分析】根据随机变量的定义,判断选项. 【详解】根据随机变量的定义可知,随机变量的结果都可以数量化,不确定的,由实验结果决定,满足条件的只有C ,取到白球的个数,可以是0,1,2. 故选:C 7.B 【分析】根据概率之和等于1,得0.10.240.361c +++=,解方程即可求出结果. 【详解】据题意,得0.10.240.361c +++=,解得0.3c =. 故选:B. 8.B 【分析】由概率和为1可得a 值. 【详解】由题意0.231a a ++=,解得0.2a =. 故选:B . 9.D 【分析】首先利用分布列中概率之和等于1求得k 的值,再计算()()23P X P X =+=即可求解. 【详解】由分布列的性质可知:()()()()23451P X P X P X P X =+=+=+==, 即12324354k k k k+++=⨯⨯⨯,解得:54k =,所以()5228k P X ===,()53624k P X ===, ()541248k P X ===,()152016k P X ===, 所以()()()2555log 3log 238246P X P X P X 3<<80==+==+=, 故选:D. 10.C 【分析】 先求得1(0)6P X ==,再由(14)(0)(3)P X P X P X -<<==+=可得结果. 【详解】依题意可得1111(0)1(2)(3)(5)142126P X P X P X P X ==-=--=-==---=,所以112(14)(0)(3)623P X P X P X -<<==+==+=. 故选:C. 11.A 【分析】分布列中概率之和等于1可得x 的值,再计算(3)(3)(4)3P X P X P X x ≥==+==即可. 【详解】由分布列中概率的性质可知:3621x x x x +++=,可得:112x =, 所以1(3)(3)(4)34P X P X P X x ≥==+=== 故选:A. 12.C 【分析】根据题意写出随机变量的可能取值. 【详解】根据条件可知任意取出3个球,最小号码可能是1,2,3. 故选:C 13.0.25 【分析】根据概率之和等于1,即可求得答案. 【详解】解因为0.20.31,a a +++= 所以0.25a =. 故答案为:0.25. 14.89【分析】根据分布列的性质求出C ,即可解出. 【详解】因为111311223344C C ⎛⎫=⋅++= ⎪⨯⨯⨯⎝⎭.故43C =,所以15228(1)(2)22399P P P ξ⎛⎫<<=+=+= ⎪⎝⎭.故答案为:89.15.89【分析】首先根据概率和为1可得c 的值,再由()()()312P X P X P X <==+=即可得结果. 【详解】随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,∴ 16122c c c ++=,即62 112c c c ++=,解得43c =, ∴()()()41183123269P X P X P X ⎛⎫<==+==+= ⎪⎝⎭,故答案为:89.16.4 【分析】结合题意找出试验次数X 最大的情况即可. 【详解】由题意可知,前4次都打不开锁,最后一把钥匙一定能打开锁, 故试验次数X 的最大可能取值为4. 故答案为:4.17.(1)分布列见解析;(2)1745【分析】(1)记取到的次品数为X ,则X 的可能值为0,1,2,分别计算概率,可得X 的分布列; (2)由(1)根据互斥事件的概率公式可得(1)(2)P P X P X ==+=; 【详解】解:(1)从这10件产品中任意抽取2件,共21045C =种情况;记取到的次品数为X ,取到的次品数X 值可能为0,1,2,其中282102(0845)C P X C ===;121821016(1)45C C P X C ===;222101)5(24C P X C ===;∴取到的次品数X 的分布列为:(2)由(1)得:至少取到1件次品的概率17(1)(2)45P P X P X ==+==. 18.(1)1124;(2)答案见解析;(3)甲更有可能闯关成功. 【分析】(1)乙初赛被淘汰的事件是乙初赛三关都没过的事件与恰过一关的事件和,再利用概率加法公式计算而得;(2)写出X 的可能值,计算出对应的概率即可得解; (3)分别计算出甲、乙闯关成功的概率即可作答. 【详解】(1)若乙初赛三关一关都没有通过或只通过一个,则被淘汰,于是得乙在初赛阶段被淘汰的概率:1121113121121142342342342324P =⋅⋅+⋅⋅+⋅⋅+⋅⋅=; (2)X 的可能取值为0,1,2,3,4,()3110()327P X ===,()1232121()339P X C ==⋅⋅=,()22321282()33327P X C ==⋅⋅⋅=,()322322211283()()3333381P X C ==⋅+⋅⋅⋅=,()32184()3381P X ==⋅=则X 的分布列为:(3)甲闯关成功的概率32232121120()()33333811P C =⋅+⋅⋅⋅=, 乙闯关成功的事件是初赛不被淘汰和复赛过关的事件积,而这两个事件相互独立,其概率22411113(1)496P =-⋅=, 显然有12P P >,所以甲更有可能闯关成功. 19.(1)716;(2)分布列见解析;期望为72.【分析】(1)甲获得游戏奖品有3种情况:①共取球2次,即第1次和第2次甲都取到白球,从而甲获奖的概为1122⨯;②共取球4次,即第4次取到白球,第3次取到白球,第1次和第2次有一次取到白球,从而甲获奖的概为4122⎛⎫⨯ ⎪⎝⎭;③共取球6次,即第6次为白球,第5次取白球,若第4次取白球,则第3次取黑球,第1,2次中有1次取白球;若第4次取黑球,则第3次白球,第1,2次有一次取白球,从而甲获奖的概为6142⎛⎫⨯ ⎪⎝⎭,再由互斥事件的概率公式可得答案;(2)由(1)的求解中可知,X 可能取2,4,6,用(1)的方法先分别求出X 等于2,4的概率,从而可得X 为6的概率,然后列出分布列即可,然后根据期望的概念求出结果即可.【详解】解:(1)设甲获得游戏奖品为事件A ,()641111724212226P A ⎛⎫=⨯+⨯+⨯= ⎪⎛⎫⎪⎝⎭⎝⎭.所以甲获得游戏奖品的概率为716(2)X 的可能取值为2,4,6, ()11122222P X ==⨯⨯=()41142224P X ⎛⎫==⨯⨯= ⎪⎝⎭,()()()161244P X P X P X ==-=-==. X 的分布列为11172462442EX =⨯+⨯+⨯=20.(1)13;(2)分布列见解析;期望为409.【分析】(1)小组投中两次分为两种情况,两次都是女生投中,和一次男生一次女生投中,从而求得概率;(2)根据题意,X 的可能取值为-60,10,20,30,分别求得各取值对应的概率,列出分布列,求得期望. 【详解】解:(1)一个小组共投中2次的概率 2122211212911133333273P C C ⎛⎫⎛⎫⎛⎫=⋅-⋅+⋅-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)X 的可能取值为-60,10,20,30, 2214(60)113327P X ⎛⎫⎛⎫=-=--= ⎪⎪⎝⎭⎝⎭, ()212212111241011133333279P X C ⎛⎫⎛⎫⎛⎫==-+--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2122112191(20)1133333273P X C ⎛⎫⎛⎫⎛⎫==-+-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2212(30)3327P X ⎛⎫===⎪⎝⎭, X 的分布列为所以441212040()(60)102030279327279E X =-⨯+⨯+⨯+⨯==. 21.(Ⅰ)37,(Ⅱ)分布列见解析.【分析】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,由此可求得概率.(Ⅱ)如果乙先摸出了红球,得3分,则还可以从袋子中摸3个球,那么得分情况有:6分,7分,8分,9分,10分,11分.分别计算概率后可得分布列. 【详解】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,所以112163273()7C C C P A C +==; (Ⅱ)如果乙先摸出了红球,则还可以从袋子中摸3个球,得分情况有:6分,7分,8分,9分,10分,11分.33371(6)35C P C ξ===,2133379(7)35C C P C ξ===;1233379(8)35C C P C ξ===;213313374(9)35C C C P C ξ+===;111331379(10)35C C C P C ξ===; 2131373(11)35C C P C ξ===.ξ的分布列如下:22.(1)3;(2)详见解析. 【分析】(1)依题意得3434C 4C 35n +=,解方程可得结果;(2)X 的可能取值为3,5,7,9,求出相应的概率可得结果. 【详解】(1)依题意得3434C 4C 35n +=,又14n ≤≤,所以3n =;(2)X 的可能取值为3,5,7,9,3X =即取出的3个球都是红球,则()3437C 43C 35P X ===; 5X =即取出的3个球中2个红球1个黑球,则()214337C C 185C 35P X ===; 7X =即取出的3个球中1个红球2个黑球,则()124337C C 127C 35P X ===;9X =即取出的3个球都是黑球,则()3337C 19C 35P X ===. 所以,随机变量X 的分布列为。
课时提升作业七十离散型随机变量及其分布列(20分钟 40分)一、选择题(每小题5分,共25分)1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X,则表示“放回5个红球”事件的是 ( )A.X=4B.X=5C.X=6D.X≤5【解析】选C.事件“放回5个红球”表示前5次摸到黑球,且第6次摸到红球,所以X=6.2.(2019·聊城模拟)已知离散型随机变量X的分布列为则k的值为 ( )A. B.1 C.2 D.3【解析】选B.由++…+=1,解得k=1.3.某贫困县所辖15个小镇中有9个小镇交通比较方便,有6个不太方便.现从中任意选取10个小镇,其中有X个小镇交通不太方便.下列概率中等于的是( ) A.P(X=4) B.P(X≤4)C.P(X=6)D.P(X≤6)【解析】选A.X服从超几何分布,则=P(X=4).【加固训练】(2019·郑州模拟)设随机变量的概率分布如表所示:F(x)=P(X≤x),则当x的取值范围是[1,2)时,F(x)= ( )A. B. C. D.【解题提示】利用分布列的性质先求出a,再求F(x).【解析】选D.因为a++=1,所以a=,又x∈[1,2),所以F(x)=P(X≤x)=+=.4.带活动门的小盒子里有来自同一巢的20只工蜂和10只雄蜂,现随机地放出5只做试验,X表示放出的蜂中工蜂的只数,则X=2时的概率是 ( )A. B.C. D.【解析】选B.依题意可知:X服从超几何分布,P(X=2)=.5.(2019·青岛模拟)已知随机变量X的分布列为P(X=k)=(k=1,2,…),则P(2<X≤4)为 ( )A. B. C. D.【解析】选A.因为P(X=k)=,k=1,2,…,所以P(2<X≤4)=P(X=3)+P(X=4)=+=.【加固训练】已知随机变量X的概率分布列如下表:则P(X=10)= ( )A. B. C. D.【解题提示】利用离散型随机变量的分布列的性质表示m,再利用等比数列的前n项和求得m. 【解析】选C.由题易知:P(X=1)+P(X=2)+…+P(X=10)=1⇒++…++m=1⇒m=1-=1-2×=1-=.二、填空题(每小题5分,共15分)6.设随机变量ξ的分布列为P=ak(k=1,2,3,4,5),则常数a的值为 ,P= .【解析】随机变量ξ的分布列为由a+2a+3a+4a+5a=1,解得a=.P=P+P+P(ξ=1)=3a+4a+5a=12a=.答案:【一题多解】本题还可以用如下的方法解决:随机变量ξ的分布列为由a+2a+3a+4a+5a=1,得a=,P=1-P-P(ξ=)=.答案:7.(2019·太原模拟)一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积X的分布列为 .【解析】随机变量X的可能取值为0,1,2,4,P(X=0)=,P(X=1)=,P(X=2)=,P(X=4)=,所以分布列为答案:8.(2019·枣庄模拟)从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是 .【解题提示】女生人数服从超几何分布.【解析】设所选女生人数为X,则X服从超几何分布,其中N=6,M=2,n=3,则P(X≤1)=P(X=0)+P(X=1)=+=.答案:(20分钟 35分)1.(5分)(2019·衡水模拟)已知随机变量X的概率分别为p1,p2,p3,且依次成等差数列,则公差d的取值范围是 .【解析】由已知得p1=p2-d,p3=p2+d,由分布列性质知(p2-d)+p2+(p2+d)=1,得p2=,又得-≤d≤.答案:【加固训练】(2019·菏泽模拟)为检验某产品的质量,现抽取5件该产品,测量产品中微量元素x,y的含量(单位:毫克),测量数据如下:如果产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品.现从上述5件产品中,随机抽取2件,则抽取的2件产品中优等品数X的分布列是 . 【解题提示】X服从超几何分布.【解析】5件抽测品中有2件优等品,则X的可能取值为0,1,2,P(X=0)==0.3,P(X=1)==0.6,P(X=2)==0.1,所以优等品数X的分布列为答案:2.(5分)如图所示,A,B两点间有5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X,则P(X≥8)= .【解析】由已知得X的取值为7,8,9,10.因为P(X=7)==,P(X=8)==,P(X=9)==,P(X=10)==.所以X的概率分布列为所以P(X≥8)=P(X=8)+P(X=9)+P(X=10)=++=.答案:3.(12分)有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.(1)求n的值.(2)求随机变量ξ的概率分布列.【解析】(1)因为当ξ=2时,有种坐法,所以=6,即=6,n2-n-12=0,n=4或n=-3(舍去),所以n=4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,所以P(ξ=0)==,P(ξ=2)===,P(ξ=3)===,P(ξ=4)=1---=,所以ξ的概率分布列为【加固训练】一个袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回去,直到取到白球为止,求取球次数的分布列.【解析】设取球次数为X,则X的可能取值为1,2,3,4,5,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==,所以随机变量X的分布列为【方法技巧】与离散型随机变量有关的应用题的解题步骤第一步:理解以实际问题为背景的概率问题的题意,确定离散型随机变量的所有可能取值;第二步:利用排列、组合知识或互斥事件、独立事件的概率公式求出随机变量取每个可能值的概率;第三步:画出随机变量的分布列;第四步:明确规范表述结论.4.(13分)(2019·烟台模拟)2019年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:f1(x)=x2+1,f2(x)=x3, f3(x)=,f4(x)=xcosx,f5(x)=|sinx|,f6(x)=3-x.(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率.(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列.【解析】(1)由题意可知,f2(x),f3(x),f4(x)是奇函数,f1(x),f5(x)为偶函数,f6(x)为非奇非偶函数,所以P(A)==.(2)由题意可知,ξ的所有可能取值为1,2,3,4,P(ξ=1)==,P(ξ=2)= =,P(ξ=3)==,P(ξ=4)==,所以ξ的分布列为【加固训练】(2019·贵阳模拟)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0,当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0).(2)求ξ的分布列.【解析】(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8对相交棱,因此P(ξ=0)===.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(ξ=)==,于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=,所以随机变量ξ的分布列是。
2019年高考数学大一轮总复习 第10篇 第6节 离散型随机变量的分布列及均值与方差课时训练 理 新人教A 版一、选择题1.设X 是一个离散型随机变量,其分布列为:A .1 C .1-22D .1+22解析:由分布列的性质知 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22,故选C. 答案:C2.已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3,则a 值为( )A.5 C .7D .8解析:由分布列的性质可得0.5+0.1+b =1, 解得b =0.4.由E (ξ)=4×0.5+a ×0.1+9×0.4=6.3, 解得a =7. 故选C. 答案:C3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( )A .1220B .2755C .27220D .2155解析:P (X =4)=C 19C 23C 312=27220,故选C.答案:C4.设随机变量ξ的分布列为P ⎝ ⎛⎭⎪⎫ξ=k 5=ak (k =1,2,3,4,5),则P ⎝ ⎛⎭⎪⎫110<ξ<710等于( )A .35 B .45 C .25D .15解析:由已知,分布列为由分布列的性质可得解得a =115. ∴P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35 =115+215+315 =25. 故选C. 答案:C5.有10件产品,其中3件是次品,从这10件产品中任取2件,用ξ表示取到次品的件数,则E (ξ)等于( )A .35B .815C .1415D .1解析:ξ服从超几何分布P (X =ξ)=C x 3C 2-x7C 210(x =0,1,2),∴P (ξ=0)=C 27C 210=2145=715,P (ξ=1)=C 17C 13C 210=2145=715,P (ξ=2)=C 23C 210=345=115.∴E (ξ)=0×715+1×715+2×115=915 =35. 故选A. 答案:A6.随机变量X 的概率分布规律为P (X =n )=an n +1(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A .23B .34C .45D .56解析:由题意得,a 2+a 6+a 12+a20=1,解得a =54.于是P (12<X <52)=P (X =1)+P (X =2)=a 2+a 6=23a =56,故选D.答案:D 二、填空题7.设随机变量ξ等可能取1,2,3,…,n ,若P (ξ<4)=0.3,则n =________. 解析:因为1,2,3,…,n 每个值被取到的概率为1n,故P (ξ<4)=P (ξ=1)+P (ξ=2)+P (ξ=3) =1n +1n +1n=3n=0.3, 所以n =10. 答案:108.已知某篮球运动员比赛中罚球的命中率为0.8,每次罚球命中得1分,罚不中得0分,则他罚球一次得分ξ的期望为________.解析:由题意,他得分的分布列为,∴E (ξ)=1×0.8+0×0.2=0.8. 答案:0.89.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析:P =C 34+C 24C 12C 36=1620=45. 答案:4510.已知离散型随机变量X 的分布列如表所示.若E (X )=0,D (X )=1,则a =________,b =________.解析:由分布列的性质得a +b +c +12=1,由E (X )=0得-a +c +16=0,由D (X )=1得(-1-0)2×a +(0-0)2×b +(1-0)2×c +(2-0)2×112=1,即⎩⎪⎨⎪⎧ a +b +c =1112,a -c =16,a +c =23,解得⎩⎪⎨⎪⎧a =512,b =14,c =14.答案:512 14 三、解答题11.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=14;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为X 2 3P 1434X的数学期望为E(X)=2×4+3×4=4.12.(xx四川雅安中学检测)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y为质量超过505克的产品数量,求Y的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的质量超过505克的概率.解:(1)质量超过505克的产品数量是40×(0.05×5+0.01×5)=12(件);(2)Y的所有可能取值为0,1,2,P(Y=0)=C228C240=63130,P(Y=1)=C112C128C240=2865,P(Y=2)=C212C240=11130,Y的分布列为(3)从流水线上任取5克的概率为C212C328 C540=12×112×1×28×27×263×2×140×39×38×37×365×4×3×2×1=21×1137×19=231703.n24333 5F0D 弍€ 22655 587F 塿z28906 70EA 烪d20869 5185 内 [25419 634B 捋38814 979E 鞞。
高考数学精品复习资料2019.5课时跟踪检测(六十八)离散型随机变量及其分布列(分Ⅰ、Ⅱ卷,共2页)第Ⅰ卷:夯基保分卷1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A.B.C.D.2.袋中有大小相同的五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是()A.5 B.9C.10 D.253.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为()A.1220 B.2755C.27220 D.21254.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于()A.0B.1 2C.13 D.235.若P(ξ≤x2)=1-β,P(ξ≥x1)=1-α,其中x1<x2,则P(x1≤ξ≤x2)等于________.6.已知随机变量ξ只能取三个值:x1,x2,x3,其概率依次成等差数列,则公差d的取值范围是________.7.一位客人游览福州鼓山、福州永泰天门山、福州青云山这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设Y表示客人离开福州市时游览的景点数与没有游览的景点数之差的绝对值.求Y的分布列.8.(20xx·渭南模拟)设A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的只数多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为1 2.(1)求一个试验组为甲类组的概率;(2)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列.第Ⅱ卷:提能增分卷1.(20xx·济南模拟)某学生参加某高校的自主招生考试,须依次参加A,B,C,D,E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项考试都是相互独立的,该考生参加A,B,C,D四项考试不合格的概率均为1 2,参加第五项不合格的概率为2 3.(1)求该考生被录取的概率;(2)记该考生参加考试的项数为X,求X的分布列.2.(20xx·安徽江南十校联考)某校校庆,各届校友纷至沓来,某班共来了n 位校友(n>8且n∈N*),其中女校友6位,组委会对这n位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n的最大值;(2)当n=12时,设选出的2位校友代表中女校友人数为ξ,求ξ的分布列.3.为适应20xx年3月23日公安部交通管理局印发的《加强机动车驾驶人管理指导意见》,某驾校将小型汽车驾照考试科目二的培训测试调整为:从10个备选测试项目中随机抽取4个,只有选中的4个项目均测试合格,科目二的培训才算通过.已知甲对10个测试项目测试合格的概率均为0.8;乙对其中8个测试项目完全有合格把握,而对另2个测试项目根本不会.(1)求甲恰有2个测试项目合格的概率;(2)记乙的测试项目合格数为ξ,求ξ的分布列.答案第Ⅰ卷:夯基保分卷1.选C利用离散型随机变量分布列的性质检验即可.2.选B X的所有可能取值为2,3,4,5,6,7,8,9,10共9个.3.选C用完后装回盒中,此时盒中旧球个数X是一个随机变量.当X=4时,说明取出的3个球有2个旧球,1个新球,∴P(X=4)=C19C23C312=27220,故选C.4.选C设X的分布列为即“X=0”p,则成功率为2p.由p+2p=1,则p=13,故应选C.5.解析:由分布列性质可有:P(x1≤ξ≤x2)=P(ξ≤x2)+P(ξ≥x1)-1=(1-β)+(1-α)-1=1-(α+β).答案:1-(α+β)6.解析:设ξ取x1,x2,x3时的概率分别为a-d,a,a+d,则(a-d)+a +(a+d)=1,∴a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:-13,137.解:分别记“客人游览福州鼓山”,“客人游览福州永泰天门山”,“客人游览福州青云山”为事件A 1,A 2,A 3.因为事件A 1,A 2,A 3是相互独立的,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6.由于客人游览的景点数的可能取值为0,1,2,3,相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以Y 的所有可能取值为1,3.所以P (Y =3)=P (A 1·A 2·A 3)+P (A 1·A 2·A 3)=P (A 1)P (A 2)P (A 3)+P (A1)P (A 2)P (A 3)=2×0.4×0.5×0.6=0.24, P (Y =1)=1-0.24=0.76. 所以Y 的分布列为8.解:(1)设A i A 有效的小白鼠有i 只”,i =0,1,2;B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.依题意,有P (A 1)=2×13×23=49, P (A 2)=23×23=49, P (B 0)=12×12=14, P (B 1)=2×12×12=12.故所求的概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49. (2)由题意知X 的可能值为0,1,2,3,故有 P (X =0)=⎝ ⎛⎭⎪⎫593=125729,P (X =1)=C 13×49×⎝ ⎛⎭⎪⎫592=100243,P (X =2)=C 23×⎝ ⎛⎭⎪⎫492×59=80243,P (X =3)=⎝ ⎛⎭⎪⎫493=64729.从而,X 的分布列为第Ⅱ卷:提能增分卷1.解:(1)若该考生被录取,则前四项最多有一项不合格,并且第五项必须合格,记A ={前四项均合格且第五项合格},B ={前四项中仅有一项不合格且第五项合格},则P (A )=⎣⎢⎡⎦⎥⎤124×⎣⎢⎡⎦⎥⎤1-23=148,P (B )=C 14×12×⎣⎢⎡⎦⎥⎤1-123×1-23=112.又A 、B 互斥,故所求概率为 P =P (A )+P (B )=148+112=548.(2)该考生参加考试的项数X 可以是2,3,4,5. P (X =2)=12×12=14,P (X =3)=C 12⎝ ⎛⎭⎪⎫1-12×12×12=14, P (X =4)=C 13⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫122×12=316, P (X =5)=1-14-14-316=516. X 的分布列为2.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n=12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16,故n 的最大值为16. (2)由题意得,ξ的可能取值为0,1,2,则P (ξ=0)=C 26C 212=522,P (ξ=1)=C 16C 16C 212=611,P (ξ=2)=C 26C 212=522,ξ的分布列为3.解:(1),则甲恰有2个测试项目合格的概率为P (X =2)=C 24(0.8)2(1-0.8)2=96625.(2)ξ的可能取值为2,3,4,且服从超几何分布,故P (ξ=2)=C 28C 22C 410=215;P (ξ=3)=C 38C 12C 410=815;P (ξ=4)=C 48C 410=13.所以ξ的分布列为:。
高考数学复习考点知识与结论专题讲解 第61讲 随机变量分布列随机变量分布列、、期望与方差【知识通关】通关一、离散型随机变量分布离散型随机变量分布列列1. 离散型随机变量的分布列的表示一般地,若离散型随机变量X 可能取的不同值为12,,,n x x x ,X 取每一个值()12,,,i x n 的概率12,i i P X x p i n === (),,,则下表称为随机变量X 的概率分布列,简称为x 的分布列.X 1x 2x i x n x P1p2pi pn p为了简单起见,也可以用等式12,i i P X x p i n === (),,,表示X 的分布列. 2. 离散型随机变量的分布列的性质根据概率的性质,离散型随机变量的分布列具有如下性质: (1)012,,,i P i n ≥= ,; (2)121i n p p p p +++++= ;(3)1i j i i j Px x x P P P +≤≤=+++ ()(*,i j i j N <∈且). 通关二通关二、、离散型随机变量的均值与方差1. 期望与方差的表示一般地,若离散型随水变量X 的概率分布列为:则称1122i i n n E X x P x P x p x p =+++++ ()为随机变量X 的均值或数学期望,它反映了高散型随机变量取值的平均水平;称()21ni i i D x x E X p = =− ∑()为随机变量X 的方差,它刻画了随机变量X与其均值E (Xx 的标准差. 2. 均值的性质若y aX b =+,其中a b ,是常数,X 是随机变量,则均值的性质:(1)Ek k =()(k 为常效); (2)EaX b aB X b +=+()(); (3)1212E X X E X E X +=+()()(); (4)若12,X X 相互独立,则1212·E X X E X E X ⋅=()()(). 3. 方差的性质(1)0Dk =()(k 为常数); (2)2D aX b a D X +=()();(3)22[]D X E X E X =−()()().X 1x 2x i x n x P1p2pi pn p通关三通关三、、正态分布曲缆及特点我们把画数224()(),(,)k n nn x x ϕ−−−==−∞+∞(其中u 是样本均值,σ是样本标准差)的图像称为正态分布密度曲线,简称正态曲线.(1)曲线位手x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x µ=对称;(3)曲线在x µ=(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移;(6)当u 一定时,曲线的形状由σ确定;σ越小,曲线越“瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 【结论第讲】结论一结论一、、求解离散型随机变量X 的分布到的步的分布到的步骤骤1. 理解X 的意义,写出X 可能取的全部值;2. 求X 取每个值的概率;3. 写出X 的分布列;4. 根据分布列的性质对结果进行检验.【例1】甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束. 设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列.【解析】设,k k A B 分别表示“甲、乙在第k 次投篮投中”,则()()()1112233,,,,k k P A P B k ===.(1)记“甲获胜”为事件C ,由互斥事件与相互独立事件的概率计算公式知1112112231122111()()()()()()()()()()()P C P A P A B A P A B A B A P A P A P B P A P A P B P A =++=++32221211211111133323323392727()()()().P B P A +×+=++==××× (2)ξ的所有可能取值为1,2,3且111121213323()()()P P A P A B ξ×==+=+=;1222221112921121232332()()()(( =)P P A B A P A B A B ξ+==+=×××11223()()P P A B A B ξ==22211329()(×==, 综上ξ的分布列为:【变式】在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰. 已知某选手能正确回答第一、二、三、四轮问题的概率分别为2,4,2,且各轮问题能否正确回答互不影响.(1)求该选手进人第三轮才被淘汰的概率; (2)求该选手至多进人第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列.【解析】设事件i A (1234i =,,,)表示“该选手能正确回答第i 轮问题”,由已知234154316543(),(),(),()P A P A P A P A ==== (1)设事件B 表示“该选手进入第三轮被淘汰”,则123123543116546()()()()()()P B P A A A P A P A P A ===××−= (2)设事件C 表示“该选手至多进入第三轮考核”,则112123112123P ( C ) = P ( ++ )=P ( )+P ()+P ( )A A A A A A A A A A A A 1515431665654()××=++×−12=(3)x 的可能取值为1,2,3,4.1231211541541213665665()();()()();()(P X P A P X P A A P X A P A A =======×−===×12331553114466442(;()()P X P A A A −===×=××=所以,x 的分布列为:结论二结论二、、期望与方差的一般计算步骤1. 理解X 的意义,写出X 的所有可能取的值;2. 求X 取各个值的概率,写出分布列;3. 根据分布列,正确运用期望与方差的定义或公式进行计算.【例2】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关. 如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温 [10,15)[15,20)[20,25)[25,30)[30, 35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率,(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知X 的可能取值为200,300,500,P (X=200)=2160290.+=36257430004500049090().,().P X P X ++====== 所以X 的分布列为:X 200 300 500 P0. 20. 40. 4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,所以只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y=6n -4n =2n ;若最高气温位于区间[20,25),则Y=6×300+2(n -300)-4n =1200-2n ; 若最高气温低于20,则Y=6×200+2(n -200)-4n =800-2n ; 所以F(Y )=2n ×0. 4+(1200-2n )×0. 4+(800-2n )×0. 2=640-0. 4n . 当200≤n ≤300时,若最高气温不低于20,则Y=6n-4n=2n ; 若最高气温低于20,则Y=6×200+2(m -200)-4n =800-2n ;所以E(Y )=2n×(0. 4+0. 4)+(800-2m )×0. 2=160+1. 2n .综上,当n=300时,Y 的数学期望达到最大值,最大值为520元【变式】为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛,竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签的方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.【解析】(1)设事件A 为“甲乙排在前两位”,则232355110()()A A n A P A n Q A ⋅===(). (2)X 的可能取值为0,1,2,3,则232323235555432301510();(),A A A A P X P X A A ⋅⋅⋅⋅======23332323555211123510();()A A A B P X P X A A ⋅⋅⋅⋅======. 所以x 的分布列为:结论三结论三、、二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生次的概率为1k k n k n P X k C p p −==−()()",k=0,1,2…,n ,则称随机变量X 服从二项分布,记作x ~B (n ,p ).X1nP001nn C p p −() 1111n n C p p −−()1n n n C p p −()要点诠释:1E X np D X np p ==−(),()(). 【例】3为保护水资源,宣传节约用水,某校4. 名志愿者准备去附近的甲、乙、两三个公园进行宣传活动,每名志愿者都可以从三个公园中随机选择一个,且每人的选择相互独立.(1)求4人恰好选择了同一个公园的概率;(2)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望.【解析】(1)设“4人恰好选择了同一个公园”为事件A. 每名志愿者都有3种选择,4名志愿者的选择共有3’种等可能的情况,事件A 所包含的等可能事件的个数为3,所以431273P A ==(),故4人恰好选择了同一个公园的概率为127(2)设“一名志愿者选择甲公园”为事件C ,则13P C =(). 4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数. 因此,随机变量X 服从二项分布X 可取的值为0,1,2,3,4.4141233()()()i i P X i C −==,i=0,1,2,3,4.X 的分布列为:X 的期望为14433()E X np ==×=【变式】一家面包房根据以往某种将日销售量落入各组的频率视为概(1)求在未来连续3天里,有的概率;(2)用X 表示在未来3天里日方差D(X ).【解析】(1)设1A 表示事件“日销件“在未来连续3天里,有连续2天的1000600040002...P A =++()()2000350015..P A P =×==(),((2)X 的可能取值为0,1131061.P X C ==−()()(3333060216..P X C ===()(). 随机变量X 的分布列为:X P往某种面包的销售记录,绘制了日销售量的频率分布直视为概率,并假设每天的销售量相互独立.里,有连续2天的日销售量都不低于100个且另1天的日天里日销售量不低于100个的天数,求随机变量x 的分布日销售量不低于100个”,2A 表示事件“日销售量低于天的日销售量都不低于100个且另1天的日销售量低5006.×=,060601520108....B ×××=).1,2,3,相应的概率为:03010P X C ==−()(222130602882061060432.....P X C ===−=);()()()0 1 2 30064. 0288. 0432. 0216.分布直方图,如图所示. 天的日销售量低于50个的分布列、期望E(X )及量低于50个”,B 表示事售量低于50个”,因此360064..=); ;因为X~B (3,0. 6),所以期望30618..E X np ==×=(),方1306106072...D X p p =−=××−=()()().结论四结论四、、超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品,则012,,,,,,k n kN NMM nC P X k k m C C −−==== ()其中min{,},m M n =且*,,,,n N M N n M N N ≤≤∈. 要点诠释:21()()(),()()nM nM N M N n E X D X N N N −−==− 【例】4某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4. 现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(1)由已知得11234321013C C C P C ⋅+==,所以事件A 发生的概率为13. (2)随机变量X 的所有可能取值为0,1,2.222111111334333434222101010474012151515 ();();()C C C C C C C C C P X P X P X C C C +++========= 所以,随机变量x 的分布列为:随机变量X 的数学期望4740121151515()E X =×+×+×=.【变式】为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动. 这10名教师中,语文教师3人,数学教师4人,英语教师3人.(1)求选出的语文教师人数多于数学教师人数的概率; (2)求选出的3人中,语文教师人数X 的分布列和数学期望.【解析】设事件i A 为“3人中有i 名语文教师”,j B 为“3人中有j 名数学教师”,事件A 为“语文教师人数多于数学教师人数”,所以3213412213333310021333331010101099121120C C C C C C C P A P A B P A B P A B P A C C C C ++++++==+++=()()(₂)()()31120=. (2)语文教师人数X 可取的值为0,1,2,3,依题意可得x~H (10,3,3),所以2217713331301310031211356301212020120,(),(),C C C P C C C C X P X P X C =========()3331031201()C P X C ===. 所以X 的分布列为:所以356321*********12012012010()E X =×+×+×+×=.结论五结论五、、利用期望与方差进行决策若我们希望实际的平均水平较理想时,一般先求随机变量12,ξξ的期望,若12()()E E ξξ=时,则用12(),()D D ξξ来比较这两个随机变量的偏离程度. 若1()E ξ与2()E ξ比较接近,且期望较大者的方差校小,显然该变量更好;若1()E ξ与2()E ξ比较接近且方差相差不大时,应根据不同选择给出不同的结论,是选择较理想的平均水平还是选择较稳定.【例5】改革开放以来,人们的支付方式发生了巨大转变. 近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下;支付方式支付金额(元)(0,1000](1000,2000]大于2000 仅使用A |18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化. 现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元. 根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(1)由题意得:从全校所有学生中随机抽取的100人中,A ,B 两种支付方式都不使用的有5人,仅使用A 的有30人,仅使用B 的有25人,所以A ,B 两种支付方式都使用的人数有:100-5-30-25=40. 从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率4004100.p ==.(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,则X 的可能取值为0,1,2. 样本仅使用A 的学生有30人,其中支付金额在(0,1000]的有l8人,超过1000元的有12人,样本仅使用B 的学生有25人,其中支付金额在(0. 1000]的有10人,超过1000元的有15人.所以1810180618151239013013025750253025307525;();P X P X ××+========()121518023025750256()P X ====×. 所以x 的分布列为:数学期望61360121252525()E X =×+×+×=.(3)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化,理由如下:样本中仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060,故不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.。
课时规范练61离散型随机变量及其分布列课时规范练第93页一、选择题1.设随机变量X的概率分布列如下表所示:X012P aF(x)=P(X≤x),则当x的取值范围是[1,2)时,F(x)=( )A. B. C. D.答案:D解析:∵a+=1,∴a=.∵x∈[1,2),∴F(x)=P(X≤x)=.2.设X是一个离散型随机变量,其分布列为X -101P 1-2qq2则q等于( )A.1B.1±C.1-D.1+答案:C解析:由+1-2q+q2=1,得q2-2q+=0,q=,∴q=1+>1(舍去)或q=1-.3.羊村村长慢羊羊决定从喜羊羊、美羊羊、懒羊羊、暖羊羊、沸羊羊中选派两只羊去割草,则喜羊羊和美羊羊恰好只有一只被选中的概率为( )A. B. C. D.答案:C解析:从5只羊中选两只羊,有=10种选法,喜羊羊和美羊羊恰好只有一只被选中的结果有·=6种选法,喜羊羊和美羊羊恰好只有一只被选中的概率为.4.设随机变量ξ的分布列由P(ξ=i)=C·确定,i=1,2,3,则C的值为( )A. B. C. D.答案:B解析:∵P(ξ=i)=C·,∴P(ξ=1)+P(ξ=2)+P(ξ=3)=C·=C·=1,∴C=.5.若P(ξ≤n)=1-a,P(ξ≥m)=1-b,其中m<n,则P(m≤ξ≤n)等于( )A.(1-a)(1-b)B.1-a(1-b)C.1-(a+b)D.1-b(1-a)答案:C解析:由分布列的性质得P(m≤ξ≤n)=P(ξ≥m)+P(ξ≤n)-1=(1-a)+(1-b)-1=1-(a+b),故选C.6.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于的是( )A.P(X=2)B.P(X≤2)C.P(X=4)D.P(X≤4)答案:C解析:X服从超几何分布P(X=k)=,故k=4.二、填空题7.设随机变量X的概率分布列为X1234P m则P(|X-3|=1)=.答案:解析:由+m+=1,得m=.∴P(|X-3|=1)=P(X=4)+P(X=2)=.8.对于下列分布列有P(|ξ|=2)=.ξ-202P a c答案:解析:P(|ξ|=2)=P(ξ=2)+P(ξ=-2)=a+c=1-.9.某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为;若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为.相关人员数抽取人数公务员32x教师48y自由职业者644答案:9解析:由自由职业者64人抽取4人可得,每一个个体被抽入样的概率为,则公务员应当抽取32×=2人,教师应当抽取48×=3人,由此可得调查小组共有2+3+4=9人.从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为P=.三、解答题10.若随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,求P的值.解:P=P(X=1)+P(X=2)=.而P(X=1)+P(X=2)+P(X=3)+P(X=4)=a=1,∴a=.∴P=a.11.某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列.解:根据统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率P0=.(3)随机变量ξ的取值为0,1,2,ξ的分布列为12.为迎接6月6日的“全国爱眼日”,某高中学生会从全体学生中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图,若视力测试结果不低于5.0,则称为“好视力”.(1)写出这组数据的众数和中位数;(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.解:(1)由题意知众数为4.6和4.7,中位数为4.75.(2)设A i(i=0,1,2,3)表示所选3人中有i个人是“好视力”,至少有2人是“好视力”记为事件A,则P(A)=P(A2)+P(A3)=.(3)X的可能取值为0,1,2,3.由于该校人数很多,故X近似服从二项分布B.P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,X的分布列为X0123P故X的数学期望E(X)=3×.希望对大家有所帮助,多谢您的浏览!。
2.1.2离散型随机变量的分布列(二)[学习目标]1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.[知识链接]1.利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?答这些问题的共同点是随机试验只有两个可能的结果.2.只取两个不同值的随机变量一定服从两点分布吗?举例说明.答只取两个不同值的随机变量并不一定服从两点分布.例如:随机变量X的分布列如下:则X不服从两点分布,因为X的取值不是0或1.[预习导引]1.两点分布若随机变量X的分布列为则称该分布列为两点分布列.若随机变量X的分布列为两点分布列,则称X服从两点分布,称p =P(X=1)为成功概率.2.超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k)=Ck M Cn-kN-MCn N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,则称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布.要点一 两点分布 例1袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.解 从含有10个红球,5个白球的袋中摸出2个球,其结果是随机的,可能是一红一白、两红、两白三种情况,为此我们定义随机变量如下:X =⎩⎨⎧0,两球非全红,1,两球全红,则X 显然服从两点分布,且P (X =1)=C210C215=37, ∴P (X =0)=1-37=47, ∴X 的分布列为规律方法 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决. 跟踪演练1在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下.如果针尖向上的概率为p ,试写出随机变量X的分布列.解 由题意知P (X =1)=p ,根据分布列的性质可知P (X =0)=1-p ,即针尖向下的概率为1-p .于是随机变量X 的分布列为要点二 超几何分布 例2在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖品. (1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列;(2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的分布列.解 (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况. P (X =1)=C14C110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C14C16+C24C06C210=3045=23.②Y 的所有可能取值为0,10,20,50,60,且 P (Y =0)=C04C26C210=1545=13,P (Y =10)=C13C16C210=1845=25, P (Y =20)=C23C06C210=345=115,P (Y =50)=C11C16C210=645=215, P (Y =60)=C11C13C210=345=115. 因此随机变量Y 的分布列为规律方法 解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n 就可以利用公式求出X 取不同k 的概率 P (X =k ),从而求出X 的分布列.跟踪演练2 从某小组的5名女生和4名男生中任选3人去参加一项公益活动. (1)求所选3人中恰有一名男生的概率; (2)求所选3人中男生人数ξ的分布列.解 (1)所选3人中恰有一名男生的概率P =C25C14C39=1021. (2)ξ的可能取值为0,1,2,3.P(ξ=0)=C35C39=542,P(ξ=1)=C25C14C39=1021,P(ξ=2)=C15C24C39=514,P(ξ=3)=C34C39=121.∴ξ的分布列为要点三分布列的综合应用例 3 袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.(1)求得分X的分布列;(2)求得分大于6分的概率.解(1)从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X的可能取值为5,6,7,8.P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135.故所求的分布列为(2)根据随机变量X的分布列,可以得到得分大于6分的概率为P(X>6)=P(X=7)+P(X=8)=12 35+135=1335.规律方法在求离散型随机变量的分布列时,明确随机变量所取的每个值表示的意义是关键.跟踪演练3某人有5把钥匙,其中只有一把能打开办公室的门,一次他醉酒后拿钥匙去开门.由于看不清是哪把钥匙,他只好逐一去试.若不能开门,则把钥匙扔到一边,记打开门时试开门的次数为ξ,试求ξ的分布列,并求他至多试开3次的概率.解ξ的所有可能取值为1,2,3,4,5,且P(ξ=1)=C11C15=15,P(ξ=2)=C14C11C15C14=15,P(ξ=3)=C14C13C11C15C14C13=15,P(ξ=4)=C14C13C12C11C15C14C13C12=15,P (ξ=5)=C14C13C12C11C11C15C14C13C12C12=15. 因此ξ的分布列为由分布列知P (ξ≤3)=P (ξ=1)+P (ξ=2)+P (ξ=3)=15+15+15=35.1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A.C35C350B.C15+C25+C35C350C .1-C345C350 D.C15C25+C25C145C350答案 C解析 出现二级品的情况较多,可以考虑不出现二级品概率为C345C350,故答案为1-C345C350. 2.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是( ) A.13 B.12 C.16 D.56 答案 D解析 号数至少有一个奇数有两种情况,而其对立事件则全为偶数,其概率为C24C29=16,故答案为1-16=56.3.某人投篮的命中率是不命中概率的3倍,以随机变量X 表示1次投篮的命中次数,则P (X =1)=________. 答案 34解析 设不命中的概率为p ,则命中的概率为3p ,p +3p =1,p =14. P (X =1)是1次投篮中命中的概率,即投篮命中率P (X =1)=34.4.交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分解设抽奖人所得钱数为随机变量ξ,则ξ=2,6,10.P(ξ=2)=C28C210=2845,P(ξ=6)=C18C12C210=1645,P(ξ=10)=C22C210=145.故ξ的分布列为1.两点分布:两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布:超几何分布在实际生产中常用来检验产品的次品数,只要知道N,M和n就可以根据公式:P(X=k)=Ck M Cn-kN-MCn N求出X取不同值k时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M,N,n,k的含义.一、基础达标1.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A的概率为( )A.C34C248C552 B.C348C24C552C.1-C148C44C552 D.C34C248+C44C148C552答案 D解析设X为抽出的5张扑克牌中含A的张数,则P(X≥3)=P(X=3)+P(X=4)=C34C248 C552+C44C148C552.2.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是( )A.150 B.125 C.1825 D.14 950解析记X为2张中的中奖数,则P(X=2)=C24C096C2100=1825.3.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于C122C14+C222C226的是( )A.P(0<X≤2) B.P(X≤1)C.P(X=1) D.P(X=2)答案 B解析本题相当于至多取出1个白球的概率,即取到1个白球或没有取到白球的概率.4.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P(ξ=0)等于( )A.0 B.13 C.12 D.23答案 B解析设P(ξ=1)=p,则P(ξ=0)=1-p.依题意知,p=2(1-p),解得p=23.故p(ξ=0)=1-p=13.5.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y=-2)=_ _______.答案0.8解析由Y=-2,且Y=3X-2,得X=0,∴P(Y=-2)=0.8.6.某一随机变量ξ的概率分布列如表,且m+2n=1.2,则m-n2的值为________.答案0.2解析由离散型随机变量分布列的性质可得m+n+0.2=1,又m+2n=1.2,可得m-n2=0.2.7.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.解(1)设抽到他能背诵的课文的数量为X,则P(X=k)=Ck6C3-k4C310(k=0,1,2,3).P(X=0)=C06C34C310=130,P(X=1)=C16C24C310=310,P(X=2)=C26C14C310=12,P(X=3)=C36C04C310=16.所以X的分布列为(2)他能及格的概率为P(X≥2)=P(X=2)+P(X=3)=1 2+16=23.二、能力提升8.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( ) A.都不是一等品B.恰有一件一等品C.至少有一件一等品D.至多有一件一等品答案 D解析P(都不是一等品)=C22C25=110,P(恰有一件一等品)=C13·C12C25=610,P(至少有一件一等品)=1-110=910,P(至多有一件一等品)=1-C23C25=710.9.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X表示直至抽到中奖彩票时的次数,则P(X=3)等于( )A.310 B.710 C.2140 D.740答案 D解析“X=3”表示前2次未抽到中奖彩票,第3次抽到中奖彩票,故P(X=3)=A27C13A310=7×6×310×9×8=740,选D.10.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为____________(用式子表示).答案C13C397+C497C4100解析二级品不多于1台,即一级品有3台或者4台.11.一个袋中有形状大小完全相同的3个白球和4个红球.(1)从中任意摸出一球,用0表示摸出白球,用1表示摸出红球,求X的分布列;(2)从中任意摸出两个球,用0表示两个球全是白球,用1表示两个球不全是白球,求X的分布列.解(1)X的分布列为(2)∵P(X=0)=C23C27=17,∴X的分布列为12.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.解由题意得X取3,4,5,6,且P(X=3)=C35C04C39=542,P(X=4)=C25C14C39=1021,P(X=5)=C15C24C39=514,P(X=6)=C34C39=121,所以X的分布列为三、探究与创新13.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.解(1)“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A)=C35C12C12C12C310=23.(2)由题意,X所有可能的取值为2,3,4,5.P(X=2)=C22C12+C12C22C310=130;P(X=3)=C24C12+C14C22C310=215;P(X=4)=C26C12+C16C22C310=310;P(X=5)=C28C12+C18C22C310=815.所以随机变量X的概率分布列为(3)“一次取球得分介于20分到40分之间”记为事件C,则P(C)=P(X=3)+P(X=4)=215+310=1330.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.02.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x<﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B 到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x<﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B 到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m 的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。
2019-2020年高考数学总复习 课时提升练61 离散型随机变量及其分布列 理 新人教版一、选择题1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5【解析】 “放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 【答案】 C2.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316 B.14 C.116D.516【解析】 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.【答案】 A3.已知随机变量X 的概率分布列如下表:A.39B.310C.39D.310 【解析】 由分布列的性质可知m =1-⎝⎛⎭⎪⎫23+232+…+239=1-23⎝ ⎛⎭⎪⎫1-1391-13=139 ∴P (X =10)=139.【答案】 C4.(xx·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为( )A.1220 B.2755 C.27220D.2125【解析】 事件“X =4”表示任取的3个球中有2个旧球1个新球,故 P (X =4)=C 19C 23C 312=27220.【答案】 C5.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2) B.P (X ≤2) C .P (X =4)D.P (X ≤4)【解析】 X 服从超几何分布,故P (X =k )=C k 7C 10-k8C 1015,k =4.【答案】 C6.若随机变量η的分布列为则当P (η<x )A .x ≤2 B.1≤x ≤2 C .1<x ≤2D.1<x <2【解析】 由随机变量η的分布列知:P (η<-1)=0.1,P (η<0)=0.3,P (η<1)=0.5,P (η<2)=0.8,则当P (η<x )=0.8时,实数x 的取值范围是1<x ≤2.【答案】 C 二、填空题7.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________. 【解析】 ∵X 等可能取值1,2,3,…,n . ∴P (X =n )=1n,∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n,由P (X <4)=0.3得3n=0.3,∴n =10.【答案】 108.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.【解析】 甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得-1分.故X 的所有可能取值为-1,0,1,2,3. 【答案】 -1,0,1,2,39.(xx·西安模拟)已知随机变量X 只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.【解析】 设x 取x 1,x 2,x 3时的概率分别为a -d ,d ,a +d . 则a -d +d +a +d =1,∴a =13.由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.【答案】 ⎣⎢⎡⎦⎥⎤-13,13三、解答题10.已知一个口袋中分别装了3个白色玻璃球、2个红色玻璃球和n 个黑色玻璃球,现从中任取2个玻璃球进行观察,每取到一个白色玻璃球得1分,每取到一个红色玻璃球得2分,每取到一个黑色玻璃球得0分,用X 表示所得的分数,已知得0分的概率为16.(1)求袋中黑色玻璃球的个数n ; (2)求X 的分布列;(3)求得分不低于3分的概率. 【解】 (1)因为P (X =0)=C 2n C 2n +5=16,所以n 2-3n -4=0, 解得n =-1(舍去)或n =4, 即袋中有4个黑色玻璃球.(2)由题意知,X 的可能取值为0,1,2,3,4. 则P (X =0)=16,P (X =1)=C 14C 13C 29=13,P (X =2)=C 23+C 14·C 12C 29=1136, P (X =3)=C 13·C 12C 29=16,P (X =4)=C 22C 29=136,所以X 的分布列为(3)得分不低于3X ≥3)=P (X =3)+P (X =4)=16+136=736,即得分不低于3分的概率为736.11.(xx·天津高考)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.【解】 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=C 12C 35+C 22C 25C 47=67. 所以取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是故随机变量X 的数学期望E (X )=1×35+2×35+3×7+4×47=175.12.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列;(3)求甲取到白球的概率.【解】 (1)设袋中白球共有x 个,根据已知条件C 2x C 27=17.即x 2-x -6=0,解得x =3,或x =-2(舍去). 即袋中原有白球的个数为3.(2)X 表示取球终止时所需要的次数,则X 的取值分别为1,2,3,4,5. 因此,P (X =1)=A 13A 17=37,P (X =2)=A 14A 13A 27=27,P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 13A 47=335,P (X =5)=A 44A 13A 57=135.则随机变量X 的分布列为(3)P =P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.2019-2020年高考数学总复习 课时提升练62 二项分布及其应用 理新人教版一、选择题1.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16【解析】 记两个零件中恰有一个一等品的事件为A ,则P (A )=23×14+13×34=512.【答案】 B2.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为( )A .0.45B.0.6 C .0.65D.0.75【解析】 设目标被击中为事件B ,目标被甲击中为事件A ,则由P (B )=0.6×0.5+0.4×0.5+0.6×0.5=0.8,得P (A |B )=P AB P B =P A P B =0.60.8=0.75.【答案】 D3.(xx·天津模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238C .C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582【解析】 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.【答案】 D4.如果ξ~B ⎝ ⎛⎭⎪⎫15,14,则使P (ξ=k )取最大值的k 值为( )A .3 B.4 C .5D.3或4【解析】 采取特殊值法.∵P (ξ=3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (ξ=4)=C 415⎝ ⎛⎭⎪⎫144·⎝ ⎛⎭⎪⎫3411,P (ξ=5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410,∴P (ξ=3)=P (ξ=4)>P (ξ=5).【答案】 D5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125B.C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D.C 25C 35⎝ ⎛⎭⎪⎫125【解析】 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,故选B. 【答案】 B6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.34【解析】 若甲队获得冠军,有两种情况,可以直接胜一局,获得冠军,其概率为12;也可以乙队先胜一局,甲队再胜一局,其概率为12×12=14.故所求事件的概率P =14+12=34.【答案】 D 二、填空题7.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为________.【解析】 因为射手每次射击击中目标的概率是23,则每次射击不中的概率为13,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. 【答案】8818.(xx·淄博模拟)某学校一年级共有学生100名,其中男生60人,女生40人.来自北京的有20人,其中男生12人,若任选一人是女生,则该女生来自北京的概率是________.【解析】 设事件A =“任选一人是女生”,B =“任选一人来自北京”,依题意知,来自北京的女生有8人,这是一个条件概率问题,即计算P (B |A ).由于P (A )=40100,P (AB )=8100,则P (B |A )=P ABP A =810040100=15.【答案】 159.如图1082所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.图1082【解析】 理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件AC B ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12. 所以P (A B C )=P (A )P (B )P (C )=18.【答案】 18三、解答题10.如图1083,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.图1083假设他每次投掷必定会中靶,且投中靶内各点是随机的. (1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【解】 (1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意知,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为(3)设B i i i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.11.(xx·湖南高考)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.【解】 记E ={甲组研发新产品成功},F ={乙组研发新产品成功).由题设知P (E )=23,P (E -)=13,P (F )=35,P (F -)=25,且事件E 与F ,E 与F -,E -与F ,E -与F -都相互独立.(1)记H ={至少有一种新产品研发成功},则H -=E -F -,于是P (H -)=P (E -)P (F -)=13×25=215, 故所求的概率为P (H )=1-P (H -)=1-215=1315.(2)设企业可获利润为X 万元,则X 的可能取值为0,100,120,220.因为P (X =0)=P (E -F -)=13×25=215, P (X =100)=P (E -F )=13×35=315, P (X =120)=P (E F -)=23×25=415, P (X =220)=P (EF )=23×35=615,故所求的分布列为数学期望为E (X )=0×15+100×15+120×15+220×15=+480+1 32015=2 10015=140.12.(xx·豫北十所名校联考)为了解当前国内青少年网瘾的状况,探索青少年网瘾的成因,中国青少年网络协会调查了26个省会城市的青少年上网情况,并在已调查的青少年中随机挑选了100名青少年上网时间作参考,得到如下的统计表格.平均每天上网时间超过2个小时可视为“网瘾”患者,(1)以该100名青少年来估计中国青少年的上网情况,则在中国随机挑选3名青少年,求至少有一人是“网瘾”患者的概率;(2)以该100名青少年来估计中国青少年的上网情况,则在中国随机挑选4名青少年,记X 为“网瘾”患者的人数,求X 的分布列和数学期望.【解】 由题意得,该100名青少年中有25个是“网瘾”患者.(1)设A i (0≤i ≤3)表示“所挑选的3名青少年有i 个青少年是网瘾患者”,“至少有一人是网瘾患者”记为事件A ,则P (A )=P (A 1)+P (A 2)+P (A 3)=1-P (A 0)=1-⎝ ⎛⎭⎪⎫751003=3764.(2)法一:X 的可能取值为0,1,2,3,4,P (X =0)=⎝ ⎛⎭⎪⎫344=81256,P (X =1)=C 14⎝ ⎛⎭⎪⎫343⎝ ⎛⎭⎪⎫14=2764,P (X =2)=C 24⎝ ⎛⎭⎪⎫342⎝ ⎛⎭⎪⎫142=27128,P (X =3)=C 34⎝ ⎛⎭⎪⎫34⎝ ⎛⎭⎪⎫143=364,P (X =4)=C 44⎝ ⎛⎭⎪⎫144=1256. X 的分布列为则E (X )=0×81256+1×64+2×128+3×64+4×256=1.法二:由题意知:随机变量X ~B ⎝ ⎛⎭⎪⎫4,14,所以分布列P i =C i 4⎝ ⎛⎭⎪⎫14i ⎝ ⎛⎭⎪⎫344-i (i =0,1,2,3,4), E (X )=4×14=1.。