高三数学单元练习题概率与统计(Ⅲ)
- 格式:doc
- 大小:333.00 KB
- 文档页数:5
高三数学概率练习题1. 某班级有50名学生,其中30名是男生,20名是女生。
如果从班级中随机选择一名学生,求以下概率:a) 选择的学生是男生;b) 选择的学生是女生;c) 选择的学生是男生或女生;d) 选择的学生不是男生。
解答:a) 概率 = 男生人数 / 总人数 = 30 / 50 = 0.6b) 概率 = 女生人数 / 总人数 = 20 / 50 = 0.4c) 概率 = 选择男生的概率 + 选择女生的概率 = 0.6 + 0.4 = 1d) 概率 = 选择女生的概率 = 0.42. 一副52张的扑克牌中,红桃卡牌有13张。
如果从扑克牌中随机选择一张卡牌,求以下概率:a) 选择的卡牌是红桃;b) 选择的卡牌不是红桃;c) 选择的卡牌是红桃或黑桃;d) 选择的卡牌不是红桃或黑桃。
解答:a) 概率 = 红桃卡牌数 / 总卡牌数 = 13 / 52 = 0.25b) 概率 = 选择不是红桃的卡牌数 / 总卡牌数 = (52 - 13) / 52 = 39 / 52 = 0.75c) 概率 = 选择红桃的概率 + 选择黑桃的概率 = (13 / 52) + (13 / 52) =26 / 52 = 0.5d) 概率 = 选择不是红桃的概率 + 选择不是黑桃的概率 = (39 / 52) +(39 / 52) = 78 / 52 = 1.53. 一家超市每天销售的苹果数量服从正态分布,均值为500个,标准差为50个。
如果选择一天,求以下概率:a) 销售的苹果数量少于450个;b) 销售的苹果数量在450个和550个之间;c) 销售的苹果数量超过550个。
解答:a) 将450个苹果数量转换为标准差单位:(450 - 500) / 50 = -1使用标准正态分布表,查找对应标准差单位为-1的概率:0.1587概率 = 1 - 0.1587 = 0.8413b) 将450个苹果数量转换为标准差单位:(450 - 500) / 50 = -1将550个苹果数量转换为标准差单位:(550 - 500) / 50 = 1使用标准正态分布表,查找标准差单位在-1和1之间的概率:0.6826概率 = 0.6826c) 将550个苹果数量转换为标准差单位:(550 - 500) / 50 = 1使用标准正态分布表,查找对应标准差单位为1的概率:0.8413概率 = 1 - 0.8413 = 0.1587通过以上练习题,我们可以看到在不同概率问题中,根据题目给出的条件和要求,使用相应的公式或方法可以准确求解概率值。
y 2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40B.80C.160D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体3.(2015?抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15B.18C.21D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15B.16C.17D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.56.某公司在2014年上半年的收入x(单位:万元)与月支出(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.711.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。
数学2021年高考一轮复习概率与统计单元专项练习题(含答案)题型归纳经常做题可以帮助考生查缺补漏。
下面是概率与统计单元专项练习题,希望考生好好利用。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.(理)设,则的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。
如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为_,y,10,11,9.已知这组数据的平均数为10,方差为2,则|_-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。
阶段验收评价(三)统计与概率一、单项选择题(本大题共8小题,每小题5分,共40分)1.某学校共有36个班级,每班50人,现要求每班派3名代表参加会议,在这个问题中,样本容量是( )A .30B .50C .108D .150解析:选C 由样本的定义知,样本容量n =36×3=108.2.小波一星期的总开支分布如图①所示,一星期的食品开支如图②所示,则小波一星期的鸡蛋开支占总开支的百分比为( )A .1%B .2%C .3%D .5%解析:选C 由题图②知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%.3.某校高三级部分为甲、乙两个级部,现用分层抽样的方法从高三级部中抽取30名老师去参加教研会.已知乙级部中每名老师被抽到的可能性都为13,则高三级部的全体老师的人数为( )A .10B .30C .60D .90解析:选D 因为乙级部中每名老师被抽到的可能性都为13,所以高三年级中每名老师被抽到的可能性都为13,由30÷13=90(人),可得全体老师人数.4.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是 ( )A .至少有一个红球;都是红球B .至少有一个红球;都是白球C .至少有一个红球;至少有一个白球D .恰有一个红球;恰有两个红球解析:选D 根据互斥事件、对立事件的定义可得.5.已知一组数据8,9,10,x ,y 的平均数为9,方差为2,则x 2+y 2= ( )A .162B .164C .168D .170解析:选D 由题意可知15(8+9+10+x +y )=9,15[(8-9)2+(9-9)2+(10-9)2+(x -9)2+(y -9)2]=2,解得x 2+y 2=170.6.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为( ) A .11 B .11.5 C .12D .12.5解析:选C 由频率分布直方图得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,从而中位数为10+0.20.5×5=12,故选C. 7.种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .p +q -2pqB .p +q -pqC .p +qD .pq解析:选A 恰有一株成活的概率为p (1-q )+q (1-p )=p +q -2pq .8.(2020·新高考山东卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%解析:选C 不妨设该校学生总人数为100,既喜欢足球又喜欢游泳的学生人数为x ,则100×96%=100×60%-x +100×82%,解得x =46,所以既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选C. 二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列说法正确的是( )A .一组数据不可能有两个众数B.一组数据的方差必须是正数C.将一组数据中的每一个数据都加上或减去同一常数后,方差不变D.在频率分布直方图中,每个小长方形的面积等于相应小组的频率解析:选CD A错,众数可以有多个;B错,方差可以为0.10.不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色解析:选ABD从6张卡片中一次取出2张卡片的所有情况有“2张都为红色”“2张都为绿色”“2张都为蓝色”“1张红色1张绿色”“1张红色1张蓝色”“1张绿色1张蓝色”,在选项给出的四个事件中,与“2张卡片都为红色”互斥而非对立的事件有“2张卡片都不是红色”“2张卡片恰有一张红色”“2张卡片都为绿色”,而“2张卡片至少有一张红色”包含事件“2张卡片都为红色”,二者并非互斥事件.故选A、B、D.11.在一个古典概型中,若两个不同的随机事件A,B发生的概率相等,则称A和B是“等概率事件”,如:随机抛掷一个骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是()A.在同一个古典概型中,所有的样本点之间都是“等概率事件”B.若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C.因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D.同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”解析:选AD对于A,由古典概型的定义知,所有样本点的概率都相等,故所有的样本点之间都是“等概率事件”,故A正确;对于B,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B错误;对于C,由题可知“等概率事件”是针对同一个古典概型的,故C错误;对于D,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D正确.故选A、D.12.下列对各事件发生的概率判断正确的是 ( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是13D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A不发生的概率相同,则事件A 发生的概率是29解析:选AC 对于A ,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为 1-132×13=427,故A 正确; 对于B ,用A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35B 错误;对于C ,该试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记A 为“取出的2个数之差的绝对值为2”,则A ={(1,3),(2,4)},故所求概率为13,故C 正确;对于D ,易得P (A ∩B )=P (B ∩A ), 即P (A )P (B )=P (B )P (A ), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ),又P (A ∩B )=19,所以P (A )=P (B )=13所以P (A )=23,故D 错误.故选A 、C.三、填空题(本大题共4小题,每小题5分,共20分)13.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):篮球组 书画组 乐器组 高一 45 30 a 高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析:由题意知,1245+15=30120+a,解得a =30.答案:3014.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率为________.解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为1224=12. 答案:1215.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________. 解析:∵x =10×0.97+20×0.98+10×0.9910+20+10=0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98. 答案:0.9816.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出白球的概率为______;摸出红球的概率为________.解析:由题意知A =“摸出红球或白球”与B =“摸出黑球”是对立事件,又P (A )=0.58,∴P (B )=1-P (A )=0.42,又C =“摸出红球或黑球”与D =“摸出白球”也是对立事件,∵P (C )=0.62,∴P (D )=0.38.设事件E =“摸出红球”,则P (E )=1-P (B ∪D )=1-P (B )-P (D )=1-0.42-0.38=0.2. 答案:0.38 0.2四、解答题(本大题共6小题,共70分)17.(10分)某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:天数111221 2用水量/吨22384041445095(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量更合适?解:(1)x=110(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为41+442=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.18.(12分)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率.解:用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A-)=0.2,P(B-)=0.3,P(C-)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A-BC)+P(A B-C)+P(AB C-)=P(A-)P(B)P(C)+P(A)P(B-)P(C)+P(A)P(B)P(C-)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P2=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=1-0.2×0.3×0.1=0.994.19.(12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定?解:(1)x甲=(1+0+2+0+2+3+0+4+1+2)×110 1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙机床次品数的平均数较小.(2)s2甲=110×[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙机床的生产状况比较稳定.20.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.(1)若以A表示和为6的事件,求P(A).(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.解:(1)样本空间与点集S={(x,y)|x∈N*,y∈N*,1≤x≤5,1≤y≤5}中的元素一一对应.因为S中点的总数为5×5=25(个),所以样本点总数为n=25.事件A包含的样本点共5个,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(A)=525=15.(2)B与C不是互斥事件,因为事件B与C可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.结合(1)知和为偶数的样本点个数为13个,即甲赢的概率为13 25,乙赢的概率为12 25,所以这种游戏规则不公平.21.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.22.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式支付金额不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数.(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率.(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000 元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。
高三数学练习题手抄本(高三数学练习题手抄本)一、函数与方程1. 已知函数$f(x)=2x+3$,求$f(4)$的值。
解:将$x=4$带入函数$f(x)=2x+3$中,得$f(4)=2(4)+3=11$。
2. 解方程$\frac{3(x-2)}{5}=7$。
解:将方程化简得$3(x-2)=35$,再进行解方程,得$x=15$。
二、数列与级数1. 求等差数列$1,4,7,\dots$的第$n$项。
解:设等差数列的首项为$a_1$,公差为$d$。
根据题意,$a_1=1$,$d=4-1=3$。
所以,第$n$项可以表示为$a_n=a_1+(n-1)d=1+(n-1)3$。
2. 求等差数列$3,6,9,\dots$的前$n$项和。
解:设等差数列的首项为$a_1$,公差为$d$。
根据题意,$a_1=3$,$d=6-3=3$。
所以,前$n$项和可以表示为$S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}(3+3n)$。
三、概率与统计1. 从52张扑克牌中,随机抽取2张牌,求抽到两张都是黑桃的概率。
解:抽取第一张牌是黑桃的概率为$\frac{13}{52}$,抽取第二张牌是黑桃的概率为$\frac{12}{51}$。
根据乘法原理,两张牌都是黑桃的概率为$\frac{13}{52}\times\frac{12}{51}$。
2. 某校全体学生身高的平均值是160cm,标准差为5cm。
求身高在平均值附近一倍标准差范围内的学生所占的百分比。
解:身高在平均值附近一倍标准差范围内的学生所占的百分比为68%。
四、几何与向量1. 已知平行四边形$ABCD$的对角线交点为$O$,求向量$\overrightarrow{OA}$与向量$\overrightarrow{BC}$的夹角。
解:根据平行四边形的性质,向量$\overrightarrow{OA}$与向量$\overrightarrow{BC}$平行。
所以,它们的夹角为0度。
专题18 概率、统计★★★高考在考什么【考题回放】1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么甲是乙的( B ) A .甲是乙的充分但不必要条件 B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 2.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( C ) A .17 B .27 C .37 D .473.某班有50名学生,其中 15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的慨率是73.(结果用分数表示) 4.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是49. 5.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( D ) (A )1 (B )2 (C )3 (D )4 6.某射手进行射击训练,假设每次射击击中目标的概率为53,且各次射击的结果互不影响。
(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. 【专家解答】(Ⅰ)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率1()()()P P A A A P A A A P A A A =⋅⋅+⋅⋅+⋅⋅33223333363555555555125=⨯⨯+⨯⨯+⨯⨯=(Ⅱ)射手第3次击中目标时,恰好射击了4次的概率2223323162()555625p C =⨯⨯⨯=(Ⅲ)由题设,“k ξ=”的概率为()P k ξ=233123()()55k k C --=⨯⨯(*k N ∈且3k ≥)所以,ξ的分布列为:★★★高考要考什么【考点透视】等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差.【热点透析】1.相互独立事件同时发生的概率,其关键是利用排列组合的内容求解m ,n . 2.独立重复试验,其关键是明确概念,用好公式,注意正难则反的思想.3.离散型随机变量的分布列、期望和方差,注意ξ取值的完整性以及每一取值的 实际含义.★★★突破重难点【范例1】某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.解(1)0,1,2,3ξ=22342255189P( 0)=10050C C C C ξ=∙==, 211123324422225555C 24P( 1 )=C 50C C C C C C C ξ=∙+∙=,11122324422222555515(2)50C C C C C P C C C C ξ==∙+∙=, 124222552(3)50C C P C C ξ==∙=所以ξ的分布列为ξ的数学期望E(ξ)=0123 1.250505050⨯+⨯+⨯+⨯=(2) P(2ξ≥)=15217(2)(3)505050P P ξξ=+==+=【点晴】本题以古典概率为背景,其关键是利用排列组合的方法求出m ,n ,主要考察分布列的求法以及利用分布列求期望和概率。
高三数学练习题集一、函数与方程1. 已知函数f(x)=3x+5,求f(2)的值。
2. 如果函数g(x)满足g(x+3)=2x+7,求函数g(x)的表达式。
3. 解方程2x+3=7,并判断方程的解是否唯一。
4. 求方程组 { 2x+y=5 { x-2y=3 的解。
5. 已知函数h(x)=(x-1)(x+2),求h(x)的零点。
二、三角函数1. 求直角三角形中的一个角度θ,其中sinθ=0.6。
2. 已知角A的正弦值为0.8,求角A的余弦值。
3. 计算tan(45°)的值。
4. 已知三角形ABC,角A=30°,角B=60°,求角C的度数。
5. 转化下列角度为弧度制:a) 45°,b) 120°,c) -60°。
三、概率与统计1. 掷一枚骰子,求得到奇数的概率。
2. 从一副52张扑克牌中随机抽取一张,求抽到红桃的概率。
3. 有一个装有5个红球和3个蓝球的盒子,从盒子中不放回地抽取两个球,求抽到两个红球的概率。
4. 一组数据为:5, 7, 3, 8, 4,求这组数据的平均值。
5. 对于一组数据:2, 3, 5, 4, 6,求数据的中位数。
四、数列与级数1. 已知等差数列的首项为3,公差为5,求第10项的值。
2. 求等差数列1, 3, 5, ...的前n项和Sn。
3. 求等比数列2, 4, 8, ...的前n项和S_n。
4. 求级数1+0.5+0.25+0.125+...的和。
5. 求级数1+2+4+8+...+128的和。
五、立体几何1. 一个正方体的棱长为a,求它的表面积和体积。
2. 在平面直角坐标系中,已知四个点A(2, 3),B(5, 7),C(-1, 4),D(3, -2),判断四边形ABCD是否为矩形。
3. 已知一个圆的半径为r,求它的周长和面积。
4. 已知直角三角形的两条直角边长分别为a和b,求它的斜边长c。
5. 一个椎体的底面是一个半径为r的圆,高为h,求它的体积。
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
1.【2012高考真题辽宁理19】(本小题满分12分)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。
现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。
若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。
附:22112212211212(),n n n n n n n n n χ++++-=【答案】【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。
准确读取频率分布直方图中的数据是解题的关键。
9.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。
【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10.【2012高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 【答案】(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=,降水量X 300X <300700X ≤< 700900X ≤<900X ≥工期延误天数Y2610(700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=.由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.11.【2012高考江苏25】(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C 对相交棱。
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
大学生高三数学练习题在大学生高三学习阶段,数学练习题是非常重要的一部分。
通过练习题,学生们可以巩固数学知识,提高解题能力,并为高考做好充分准备。
本文将介绍一些适合大学生高三阶段的数学练习题,旨在帮助学生们提高数学水平。
一、代数与函数1. 设函数 f(x) = 3x - 2,求解方程 f(x) = 0 的解。
2. 已知函数 f(x) = x^2 + 2x + 1,求解方程 f(x) = 4 的解。
3. 计算方程组:{ 2x + 3y = 5{ x - y = -14. 求函数 f(x) = -2x^3 + 3x^2 - x + 1 的极大值和极小值。
二、几何与三角函数1. 在三角形 ABC 中,已知∠B = 60°,AB = 3,BC = 4,求AC 的长度。
2. 在平面直角坐标系中,点 A(2, 1) 和点 B(4, -3) 为一条直线的两个点,求这条直线的斜率。
3. 已知直角三角形的两条直角边分别为 a 和 b,求斜边 c 的长度。
4. 已知 sin x = 1/2,cos y = -1/2,且 x 和 y 均位于第一象限,求sin(x + y) 的值。
三、概率与统计1. 掷两个均匀硬币,求至少得到一个正面的概率。
2. 一袋中有6个红球和4个蓝球,从袋中随机取出3个球,求恰好取出两个红球的概率。
3. 某高中120名学生参加一次数学考试,成绩平均分为80分,标准差为5分。
求成绩高于85分的学生人数。
4. 一批产品中有10%的次品,从中随机抽取5个产品进行检验,求至少有一个次品的概率。
四、数学证明1. 证明:若 a 和 b 为正实数,则(a + b)^2 ≥ 4ab。
2. 证明:若 a > b > 0,则 a^2 + 1 > b^2 + 1。
3. 证明:根号2 的值为无理数。
4. 证明:若 a、b、c 为正整数且 a + b = c,则 a、b 和 c 不能同时为奇数。
CDBAE概率与统计专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )(A )511 (B )681 (C )3061 (D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A.256625B.192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.75 14. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C三人独立解答此题,只有1人解出的概率为 ()31.2417.2411.241.D C B A则两人射击成绩的稳定程度是__________________。
高三数学经典习题集一、综合题题目1:已知函数$f(x) = \frac{ax+b}{x+c}$,其中$a,b,c$为常数,且$f(x+1)-f(x) = \frac{1}{x}$,求函数$f(x)$的表达式。
解答:根据题意,我们可以得到如下等式:$\frac{a(x+1)+b}{x+1+c} - \frac{ax+b}{x+c} = \frac{1}{x}$化简上式,得到:$\frac{a(x+1)+b}{x+1+c} - \frac{ax+b}{x+c} = \frac{a(x+c)-(ax+b)}{(x+c)(x+1+c)} = \frac{1}{x}$进一步化简,得到:$\frac{ac+b}{(x+c)(x+1+c)} = \frac{1}{x}$两边交叉相乘,得到:$x(ac+b) = (x+c)(x+1+c)$化简上式,得到:$acx + bx = x^2 + cx + x^2 + 2cx + c + c^2$合并同类项,得到:$2x^2 + (2c-b)x + (2c+c^2) = 0$根据等式左边为多项式的形式,我们可以得到两个等式:$2c + c^2 = 0 \Rightarrow c = -2$$2c-b = 0 \Rightarrow b = -4$将$b$和$c$的值代入函数$f(x)$的表达式,得到:$f(x) = \frac{ax - 4}{x - 2}$综上所述,函数$f(x)$的表达式为$\frac{ax - 4}{x - 2}$。
题目2:已知等差数列$\{a_n\}$满足$a_1 = 2$,$a_2 = 5$,$a_3 = 8$,求$a_{100}$的值。
解答:根据等差数列的性质,我们可以得到通项公式为:$a_n = a_1 + (n-1)d$其中$a_1$为首项,$d$为公差。
代入已知条件,得到:$2 = a_1 + d$$5 = a_1 + 2d$$8 = a_1 + 3d$解方程组,得到:$a_1 = 2$$d = 3$将$a_1$和$d$的值代入通项公式,得到:$a_n = 2 + (n-1)3$$a_{100} = 2 + 99 \times 3 = 299$综上所述,$a_{100}$的值为299。
高三数学练习题:概率与统计
问题1:
某班有40名学生,其中有30名学生参加了一个数学竞赛。
现在我们从这些学生中随机抽取一名学生,请计算以下概率:
a) 抽中一位参加了数学竞赛的学生;
b) 抽中一位未参加数学竞赛的学生。
问题2:
某班有50名学生,其中30人喜欢数学,20人喜欢英语,15人同时喜欢数学和英语。
现在我们从这些学生中随机选择一位学生,请计算以下概率:
a) 抽中一位喜欢数学的学生;
b) 抽中一位喜欢英语的学生;
c) 抽中一位同时喜欢数学和英语的学生。
问题3:
某地区的天气预报表明,星期一下雨的概率是0.3,星期二下雨的概率是0.4。
而星期一和星期二都下雨的概率是0.15。
现在,我们从这两个星期中随机选择一个天气预报,请计算以下概率:
a) 抽中星期一下雨;
b) 抽中星期二下雨;
c) 抽中星期一和星期二都下雨。
问题4:
某班有90名学生,其中40人喜欢数学,60人喜欢英语,20人同时喜欢数学和英语。
现在我们从这些学生中选择两个学生,请计算以下概率:
a) 抽中两位喜欢数学的学生;
b) 抽中两位喜欢英语的学生;
c) 抽中一位喜欢数学的学生和一位喜欢英语的学生。
问题5:
某打印店收到100份订单,其中有20份订单有错误。
现在,我们从这些订单中随机抽取一份,请计算以下概率:
a) 抽中一份有错误的订单;
b) 抽中一份没有错误的订单。
高三文科数学单元测试题(概率与统计)1.将一骰子抛掷两次,所得向上的点数分别为和,则函数在上为增函数的概率是( )A . B. C. D.2..下面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.910 3.设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( )A.12B.14C.18D.1164.从2004名学生中选取50名组成参观图,若采用下面的方法选取,先用简单随机抽样法从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率 A .不全相等 B .均不相等C .都相等且为251002D .都相等且为1405.(2012山东省济南市第二次模拟)下列命题:① 函数,的最小值为2;② 线性回归方程对应的直线至少经过其样本数据点(,),(,),…,(,)中的一个点;③ 命题p:x R ,使得,则p:x R ,均有x2+x+1≥0;④ 若x 1,x 2,…,x 10的平均数为a ,方差为b ,则x 1+5,x 2+5,…,x 10+5的平均数为a+5,方差为b+25.其中,错误命题的个数为( ) A. 0 B. 1 C. 2 D. 36.如图,A 是圆上固定的一点,在圆上其他位置任取一点A ',连结AA ',它是一条弦,它的长度大于等于半径长度的概率为A .12B .23C D .147.对于一组数据 (1,2,3,,)i x i n = ,如果将它们改变为(1,2,3,,)i x c i n +=,其中0c ≠,则下面结论中正确的是A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化 8.在发生某公共卫生事件期间, 有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天, 每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据, 一定符合该标志的是( )A. 甲地:总体均值为3, 中位数为4B. 乙地:总体均值为1, 总体方差大于0C. 丙地:中位数为2, 众数为3D. 丁地:总体均值为2, 总体方差为3其中污染指数时,空气质量为优;时,空气质量为良;100150T <≤时空气质量为轻微污染。
高三数学专题练习题汇总在高三数学的备考阶段,进行专题练习是非常重要的,它能够帮助学生系统地复习和巩固各个知识点,提高解题的能力。
本文将为大家汇总一些高三数学专题练习题,供同学们参考和练习。
一、函数与方程专题练习题1. 已知函数 f(x) = x^2 + 2x - 3,求 f(x) 的零点和顶点坐标。
2. 解方程组:{ 2x + y = 5{ 3x - y = 13. 已知函数 y = a^x 的图象经过点 (1, 4),求 a 的值。
二、三角函数专题练习题1. 求解方程 sin(x) + cos(x) = 1 在区间[0, 2π] 内的所有解。
2. 已知 sin(x) = 3/5,求 cos(x) 和 tan(x) 的值。
3. 某直角三角形的斜边长为 10,一锐角的对边长为 6,求另一锐角的余弦值。
三、导数与微分专题练习题1. 求函数 f(x) = 2x^3 - 3x^2 + 2x - 1 的导函数。
2. 已知函数 f(x) = x^3 + ax^2 + bx + c,在 x = 1 处的切线与坐标轴围成的区域的面积为 4,求 a, b, c 的值。
3. 求函数 y = e^x 在 x = 0 处的导数和二阶导数。
四、概率与统计专题练习题1. 一批产品有 20% 的次品率,现从中取出 10 件产品,求恰好有 2 件次品品的概率。
2. 甲、乙两个人射击靶,甲的命中率为 60%,乙的命中率为 70%,每人射 5 箭,求乙的命中数多于甲的概率。
3. 某次数学测试中,学生的得分分布如下:60-69 分:20 人70-79 分:30 人80-89 分:40 人90-100 分:10 人求平均分。
五、空间几何与立体几何专题练习题1. 平行六面体 ABCDEF 与平面 ACF 相交,求平面 ACF 与平面BCD 的夹角。
2. 已知四棱锥底面为等边三角形,侧棱长为 5,底面边长为 3,求四棱锥的体积。
3. 已知圆柱体的高为 h,底面圆的半径为 r,求圆柱体的体积与侧面积之比。
高三数学各知识点的例题1. 函数与方程例题1: 已知函数 f(x) = x^2 + 3x + 2,求 f(2) 的值。
例题2: 解方程 2x^2 + 3x - 5 = 0。
2. 三角函数例题3: 求 sin 30°的值。
例题4: 解方程 2sin^2x - 3sinx = 0。
3. 数列与数学归纳法例题5: 求等差数列的前 n 项和 Sn = 2n^2 + 3n 的表达式。
例题6: 求等比数列的前 n 项和 Sn = 5(1 - q^n) / (1 - q) 的表达式。
4. 概率与统计例题7: 从标有编号 1-50 的卡片中随机抽取一张,求抽到奇数的概率。
例题8: 一批产品中存在缺陷,已知产品的不良率为 5%,从中抽取 100 个产品,求其中不超过 3 个缺陷的概率。
5. 解析几何例题9: 判断点 P(1, 2) 是否在直线 L: 2x - y + 1 = 0 上。
例题10: 求直线 L: x + y = 4 与直线 L': 2x + y = 3 的交点坐标。
6. 三角恒等式与解三角形例题11: 证明恒等式 sin^2x + cos^2x = 1。
例题12: 已知∠A = 60°,a = 5,b = 3,求三角形 ABC 的第三边 c 的长度。
7. 排列与组合例题13: 从 10 个不同的数字中任取 4 个,求不重复的取法有多少种。
例题14: 有 5 个男生和 4 个女生,从中选择 3 个人组成一个小组,其中至少有一个男生的组合方式有多少种。
8. 导数与微分例题15: 求函数 f(x) = x^3 - 2x^2 + x 的导数。
例题16: 已知函数 y = x^3 - 2x^2 + x,求函数在 x = 2 处的切线方程。
以上为高三数学各知识点的例题,通过这些例题的训练和掌握,可以帮助同学们加深对各个数学知识点的理解和应用能力。
在备战高考的过程中,多做例题,多理解解题思路,相信能够取得好成绩。
高三数学单元练习题:概率与统计(Ⅲ)一、选择题(本题共12小题,每小题5分,共60分)1设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是 ( ) A .M N + B .M N ⋅ C . M N M N ⋅+⋅ D .M N ⋅2. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一,高二,高三各年级抽取的人数分别为 ( )A..15,10,20B.15,15,15C.10,5,30 D15,5,253.设一随机试验的结果只有A 和B ,且P(A)=m,令随机变量ξ=1⎧⎪⎨⎪⎩A发生 B 发生,则ξ的方差为( )A.mB.2m(1-m)C.m(m-1)D.m(1-m)4. 设ξ是离散型随机变量,η=2ξ+3,则有 ( ) A .E η=2E ξ,D η=4D ξ B .E η=2E ξ+3,D η=4D ξ C .E η=2E ξ+3,D η=2D ξ+3 D .E η=2E ξ,D η=4D ξ+35.观察2000名新生婴儿的体重,得到频率分布直方图如图,则其中体重[2700,3000]的婴儿有( )A.2名B.600名C.20名D.6名 6. 将一组数据x 1,x 2,…,x n 改变为x 1-c ,x 2-c ,…,x n -c (c ≠0),下面结论正确的是A.平均数和方差都不变B.平均数不变,方差变了C.平均数变了,方差不变D.平均数和方差都变了7. 船队若出海后天气好,可获利5000元,若出海后天气坏,将损失2000元;若不出海也要损失1000元,根据预测天气好的概率为0.6,则出海效益的期望是( ) A 、2600 B 、2400 C 、 2200 D 、20008.设随机变量ξ服从正态分布N(0,1),记()()x P x ξΦ=<.给出下列结论:①1(0)2Φ=;②()1()x x Φ=-Φ-;③(||)2()1P a a ξ=Φ-<;④(||)1()P a a ξ=-Φ>.其中正确命题的个数为( )A.1B.2C.3D.4 9. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为 ( ) A .0.27, 78 B .0.27, 83 C . 2.7, 78 D .2.7, 83 10. 抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是 ( )A.310B.955 C. 950D. 98011.如果随机变量ξ~N (1,0),标准正态分布表中相应0x 的值为)(0x Φ则 ( )A.)()(00x x P Φ==ξB.)()(00x x P Φ=>ξC.)()|(|00x x P Φ=<ξD. )()(00x x P Φ=<ξ12.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l .已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数据的平均数都为t ,那么下列说法正确的是( )A. 1l 与2l 有交点(s ,t )B.1l 与2l 相交,但交点不是(s ,t )C. 1l 与2l 平行D. 1l 与2l 重合二、填空题:(共4小题;每小题4分,共16分)13. 若以连续掷两次骰子分别得点数m ,n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=16内的概率是 14. 一个容量为n 的样本,分成若干组,已知某组频数和频率分别为36和0.25,则n=__________. 15.五组(,)x y 数据的散点图如图所示,现去掉其中一组数据后,对剩下的四组数据进行线性相关分析,为使线性相关分数最大,应去掉的一组数据是 .16.. 有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则D ξ=三、解答题(本大题共6小题,共76分)17. 一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ε部电话占线,试求随机变量ε的概率分布和它的期望18.蓝球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P .(1) 记投篮1次得分ξ,求方差D ξ的最大值;(2) 当(1)中D ξ取最大值 时,甲一投3次篮,求所得总分y 的概率分布.19. 甲、乙两个商店购进同一种商品的价格为每件30元,销售价均为每件50元。
根据前5年的有关资料统计,甲商店这种商品的需求量ξ服从以下分布:乙商店这种商品的需求量服从二项分布~ B ( 40,0.8 )若这种商品在一年内没有售完,则甲商店在一年后以每件25元的价格处理。
乙商店一年后剩下的这种商品第1件按25元的价格处理,第2件按24元的价格处理,第3件按23元的价格处理,依此类推。
今年甲、乙两个商店同时购进这种商品40件,根据前5年的销售情况,请你预测哪间商店的期望利润较大?20. 甲、乙两个篮球队进行比赛每场比赛均不出现平局,而且若有一队胜4场,则比赛宣告结束,假设甲、乙在每场比赛中获胜的概率都是.21(1)求需要比赛场数ξ的分布列及数学期望E ξ;(2)如果比赛场馆是租借的,场地租金200元,而且每赛一场追加服务费32元,那 么举行一次这样的比赛,预计平均花销费用多少元钱?.21. 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为1,7现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数. (1)求袋中所有的白球的个数; (2)求随机变量ξ的概率分布;(3)求甲取到白球的概率. .22. 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(1)求ξ的分布及数学期望;(2)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.(1,2)(2,3.5)(3,9)(5,9.5)(4,7.8)x y参考答案一、D 、A 、D 、B 、B 、C 、B 、C 、A 、C 、D 、A 二、13.29; 14. 144; 15.(3,9); 16. 3980三、17.解:P(ε=0)=0.52×0.62-0.09.P(ε=1)=32C ×0.52×0.62+12C ×0.52×0.4×0.6 – 0.3.P(ε = 2 ) = 32C ×0.52×0.62+1212C C ×0.52×0.4×0.6 +32C ×0.52×0.42-0.37 .P(ε = 3 ) = 1232C C ×0.52×0.4×0.6+2212C C ×0.52×0.42×0.2.P(ε = 4 ) = 0.52×0.42= 0.04.所以E = 0 ×0.09 + 1 ×0.3 + 2 ×0.37 + 3 ×0.2 + 4 ×0.04 =1.8.18.解:(1)依题意,ξ的分布列为2220(1)111(0)(1)(1)()24E P P PD P P P P P ξξ∴=⨯-+⨯==-⨯-+-⨯=--+12P ∴=时.D ξ取最大值,最大值是14.(2)1~(3,),B ηη∴的分布列是19.0.30 + 50× 0.10 =30 ∴甲商店的期望利润为30 ×(50 – 30)–(40 – 30 )×(30 – 25 )=550 (元) E η=40× 0.8 = 32由题意知,乙商店剩下的产,商品亏本金额是以30 – 25 =5为首项,公差为1,项数为40 – 32 = 8的等差数列。
∴乙商店剩下的亏本金额为 8×5 +8(81)2⨯-×1 = 68(元) ∴乙商店的期望利润为32×(50 – 30)– 68 = 576(元)> 550(元) 答:乙商店的期望利润较大。
20.解:设:测量一次绝对误差不超过10m 的概率1P . 则1107.5107.5(||10)()()(0.25)( 1.75)1010P P η---=≤=Φ-Φ=Φ-Φ- (0.25)(1.75)10.5586=Φ+Φ-=.∴n 次测量至少有一次测量的绝对误差不超过10m 的概率21(10.5586)1(0.4414)n nP =--=- 由1(0.4414)0.9n -> 得12.815.lg(0.4414)n -=>∴至少要进行三次测量.21.解:解:(1)设袋中原有n 个白球,由题意知227(1)1(1)2767762n n n C n n C --===⨯⨯ 可得3n =或2n =-(舍去)即袋中原有3个白球.(2)由题意,ξ的可能取值为1,2,3,4,53(1);7P ξ==()4322;767P ξ⨯===⨯4326(3);76535P ξ⨯⨯===⨯⨯43233(4);765435P ξ⨯⨯⨯===⨯⨯⨯432131(5);7654335P ξ⨯⨯⨯⨯===⨯⨯⨯⨯所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次,第三次和第5次取球,记”甲取到白球”为事件A ,则()()()22()13535P A P P P ξξξ==+=+==. 22.解:(1)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5, P (A 3)=0.6.客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取 值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+ P (321A A A ⋅⋅)= P (A 1)P (A 2)P (A 3)+P ()()()321A P A P A ) =2×0.4×0.5×0.6=0.24,P (ξ=1)=1-所以ξ的分布列为E ξ(2)解法一 因为,491)23()(22ξξ-+-=x x f 所以函数),23[13)(2+∞+-=ξξ在区间x x x f 上单调递增,要使),2[)(+∞在x f 上单调递增,当且仅当.34,223≤≤ξξ即 从而.76.0)1()34()(===≤=ξξP P A P 解法二:ξ的可能取值为1,3.当ξ=1时,函数),2[13)(2+∞+-=在区间x x x f 上单调递增, 当ξ=3时,函数),2[19)(2+∞+-=在区间x x x f 上不单调递增.0 所以.76.0)1()(===ξP A P。