第四章 抽样与抽样分布
- 格式:ppt
- 大小:487.50 KB
- 文档页数:42
第四章抽样与抽样分布一、单项选择题1.抽样调查的目的在于(a )。
A、了解总体的基本情况B、用样本指标推断总体指标C、对样本进行全面调查D、了解样本的基本情况2.假定10亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽.样方法抽取本国的1%人口计算平均年龄,则抽样误差(c)。
A、两者相等B、前者大于后者C、前者小于后者D、不能确定3、抽样调查,随着样本量的增加,调查的误差(a)A、减小B、不变C、扩大D、不确定4、对某单位职工的文化程度进行抽样调查,得知其中80%的人是高中毕业,抽样平均误差为2%,当概率为95.45%(Z=2)时,该单位职工中具有高中文化程度的比重是( c )A、等于78%B、大于84%C、在76%与84%之间D、小于76%5、某银行想知道平均每户活期存款余额和估计其总量,根据存折账号的顺序,每50本存折抽出一本登记其余额。
这样的抽样组织形式是( c )A、类型抽样B、整群抽样C、机械抽样D、纯随机抽样6、农户家计调查中,按地理区域划分所进行的区域抽样,其抽样组织方式属于(d)A、简单随机抽样B、类型抽样C、等距抽样D、整群抽样7、抽样平均误差是指样本平均数或样本成数的( c )A、平均数B、平均差C、标准差D、标准差系数8、在不重复抽样中,抽样单位数从5%增加到25%,抽样平均误差( c )。
A、增加39.7%B、增加约3/5C、减少约3/5D、没有什么变化9、(甲)某高校新生1000人,从理科中随机抽取60人,文科中随机抽取40人,进行英语水平测试;(乙)从麦地总垅长中每3000市尺测竿落点处前后5尺长垅的产量进行实割实测;(丙)为研究城市青年业余时间活动情况,某城市每第10个居委会被抽取,并询问住在那里所有从16岁到30岁的青年人。
上述哪项属于类型抽样?( a )A、甲B、乙C、乙、丙D、甲、乙、丙10、抽样调查所遵循的基本原则是( b )A、准确性原则B、随机性原则C、可靠性原则】D、灵活性原则11、在其它条件不变的情况下,如果允许误差范围缩小为原来的1/2,则样本容量(a )A、扩大为原来的4倍B、扩大为原来的2倍C、缩小为原来的1/2倍D、缩小为原来的1/4倍12、对一批产品按不重复抽样方法抽取200件进行调查,其中废品8件,已知样本容量是产品总量的1/20,当F(Z)=95.45%时,不合格率的抽样极限误差是( d )A、1.35%B、1.39%C、2.70%D、2.78%13、抽样平均误差,确切地说是所有样本指标(样本平均数和样本成数)的( b)。
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
大学应用数学第四章大学应用数学是一门培养学生数学思维、解决实际问题的专业课程。
第四章是该课程的关键章节之一,主要涉及概率论与数理统计。
本文将围绕概率论和数理统计这两大内容展开论述,并结合实际案例进行讲解。
一、概率论概率论是研究随机事件发生的规律性的数学学科,它广泛应用于各个领域,包括自然科学、社会科学和工程技术等。
在大学应用数学中,概率论有着重要的作用。
1.1 概率的基本概念概率的基本概念包括样本空间、随机事件、事件的概率等。
样本空间是指随机试验的所有可能结果的集合,随机事件是指样本空间的子集,事件的概率是指某个事件发生的可能性大小。
1.2 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于求两个事件中任一事件发生的概率,乘法规则适用于求两个事件同时发生的概率。
1.3 条件概率和独立性条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
独立性是指两个事件的发生与否互相不影响。
二、数理统计数理统计是指通过对样本数据的收集和整理,来对总体进行推断的一门学科,它可以帮助我们了解总体的特征和规律。
2.1 抽样与抽样分布抽样是指从总体中获取样本的过程,通过样本数据可以对总体进行推断。
抽样分布是指在特定条件下的样本统计量所服从的分布。
2.2 参数估计参数估计是通过样本数据对总体参数进行估计,其中最常用的方法是点估计和区间估计。
点估计是指通过样本数据推断出总体参数的一个估计值,区间估计是指通过样本数据推断出总体参数的一个估计区间。
2.3 假设检验假设检验是通过样本数据对总体的某个假设进行推断的方法。
它包括建立原假设和备择假设、选择合适的检验统计量以及确定显著性水平等步骤。
三、实际应用案例在实际生活中,概率论和数理统计有着广泛的应用。
以市场营销为例,通过对顾客购买行为的概率分析,可以制定更有效的宣传策略;以金融领域为例,通过数理统计方法对股票价格进行预测,有助于投资者进行决策。
结语大学应用数学第四章内容涉及概率论和数理统计,这两大内容在实际应用中发挥着重要的作用。
抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。
而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。
本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。
一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。
抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。
抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。
二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。
简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。
2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。
系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。
3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。
整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。
4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。
分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。
三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。
即样本统计量是对总体参数的无偏估计。
无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。
2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。
即样本统计量在大样本情况下能够接近总体参数,具有一致性。