不定积分习题课
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
. 1 .第四章 不定积分 习题课1.原函数 若,则称为的一个原函数.)()(x f x F =')(x F )(x f 若是的一个原函数,则的所有原函数都可表示为)(x F )(x f )(x f .C x F +)(2.不定积分 的带有任意常数项的原函数叫做的不定积)(x f )(x f 分,记作.⎰dx x f )(若是的一个原函数,则,)(x F )(x f C x F dx x f +=⎰)()(3.基本性质1),或;)(])([x f dx x f ='⎰dx x f dx x f d )(])([=⎰2),或;C x F x dF +=⎰)()(C x F dx x F +='⎰)()(3);⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([4),(,常数).⎰⎰=dx x f k dx x kf )()(0≠k 4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一.5. 例题例1 已知的一个原函数是,求.)(x f x 2ln )(x f '解 , .x x x x f 1ln 2)(ln )(2⋅='=)ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='. 2 .例2 设,求.C x dx x f +=⎰2sin 2)()(x f 解 积分运算与微分运算互为逆运算,所以.2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰例3 若的一个原函数是,求.)(x f x 2⎰'dx x f )(解 因为是的原函数,故,所以x 2)(x f 2ln 2)2()(x x x f ='=.C C x f dx x f x +=+='⎰2ln 2)()(例4 求不定积分.⎰-dx e x x 3解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即.⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13例5 求不定积分.⎰'⎪⎭⎫⎝⎛dx x x 2sin 解 利用求导运算与积分运算的互逆性,得.C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin 例6 求不定积分.⎰⋅dx xxx 533解 先用幂函数的性质化简被积函数,然后积分..C x dx x dx x dx xxx +===⋅⎰⎰⎰-+15261511533115332615. 3 .例7 求不定积分.⎰++++dx xx x x x 32313解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113.⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln 例8 求不定积分.⎰-dx x2cos 11解 用三角恒等式将被积函数变形,然后积分.x x 2sin 212cos -=.⎰⎰=-dx xdx x 2sin 212cos 11⎰=xdx 2csc 21C x +-=cot 21例9 求不定积分.⎰+dx x x )sec (tan 22解 用三角恒等式将被积函数统一化为的函数,1sec tan 22-=x x x 2sec 再积分.⎰⎰+-=+dxx x dx x x )sec 1(sec )sec (tan2222.⎰-=dx x )1sec 2(2C x x +-=tan 2例10 求不定积分.⎰++dx x x x )1(21222解 .⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan. 4 .例11 求不定积分.⎰+dx x x )1(124解 类似于例10,拆项后再积分⎰⎰++--+=+dxx x x x x x dx x x )1(1)1(124442224.⎰⎪⎭⎫ ⎝⎛++-=dx x x x 2241111C x x x +++-=arctan 1313例12 一连续曲线过点,且在任一点处的切线斜率等于,)3,(2e x2求该曲线的方程.解 设曲线方程为,则,积分得)(x f y =xx f 2)(='. (曲线连续,过点,故C x dx xx f +==⎰ln 22)()3,(2e )0>x 将代入,得,解出.所以,曲线方程为3)(2=e f C e +=2ln 231-=C .1ln 2-=x y 例13 判断下列计算结果是否正确1); 2).C x dx xx +=+⎰322)(arctan 311)(arctan ()C e dx ex x++=+⎰1ln 11解 1),所以计算结果正确.2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+2), 计算结果不正确,即[]xx x xe e e C e +≠+='++111)1ln(.()C e dx ex x++≠+⎰1ln 11. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式1)时,.0≠a ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f 2).⎰⎰=x d x f xdx x f sin )(sin cos )(sin 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln 5),时,0>a 1≠a =⎰dx a a f x x )(6)时,0≠μ1()f x x dx μμ-=⎰7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin 10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()(例14 求.⎰dx xx xcos sin tan ln 解 ⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=xd xxtan tan tan ln .⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21. 6 .注由于被积函数中含有,表明,故x tan ln 0tan >x .x d x d xtan ln tan tan 1=例15 求下列不定积分1); 2).⎰+dx xx xln 1ln ⎰+dx x x 100)1(解 1) (请注意加1、减1的技巧)⎰⎰⋅+-+=+dx xx x dx xx x1ln 111ln ln 1ln⎰+⎪⎪⎭⎫ ⎝⎛+-+=)ln 1(ln 11ln 1x d x x .C x x ++-+=2123)ln 1(2)ln 1(322)dxx x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x.C x x ++-+=101102)1(1011)1(1021例16 设,不求出,试计算不定积分C x dx x f +=⎰2)()(x f .⎰-dx xxf )1(2解 (将看作变量)2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰21x -u .C x +--=22)1(21例17 设,求.x e x f -=)(⎰'dx xx f )(ln 解 先凑微分,然后利用写出计算结果.即C u f u d u f +='⎰)()(. 7 ..⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1例18 计算不定积分.⎰+dx x x )1(124 【提示】 分母中有时,考虑用“倒代换”.k x tx 1=解 设,则,t x 1=dt tdx 21-=4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+.3111arctan 3C x x x=-+-+例19 求不定积分.⎰+dx x x )4(16解 ⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 . 1ln 244t C t =++661ln 244x C x =++分部积分.⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分目的,使公式右边的积分要比左边的积分容易计算,u vdx '⎰⎰'dx v u 关键在于正确地选取和凑出.u. 8 .例 20 求不定积分.⎰dx xxarcsin 解一 这是一道综合题,先作变量代换,再分部积分.令,x t =则,,2t x =tdt dx 2= ⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=td t t t arcsin arcsin 2⎰--=dtttt t 212arcsin 222arcsin (1)t t t =+- Ct t t +-+=212arcsin 2.C x x x +-+=12arcsin 2解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2 ⎰--=dt tt t t 212arcsin 2.C t t t +-+=212arcsin 2C x x x +-+=12arcsin 2例 21 已知的一个原函数是,求.)(x f 2x e-⎰'dx x f x )(【提 示】 不必求出,直接运用分部积分公式.)(x f '解 由已知条件,,且,故)(x f ()'=-2x e ⎰dx x f )(C e x +=-2⎰⎰=')()(x xdf dx x f x ⎰-=dxx f x xf )()(()Ceex x x +-'=--22. 9 ..C e e x x x +--=--2222例 22 设,求.x x x f ln )1()(ln +=')(x f 解 先求出的表达式.设,则,)(x f 't x =ln t e x =)1()(+='t e t t f ⎰+=dt e t t f t )1()(⎰⎰+=tdttde t,22t dt e te tt +-=⎰C t e te tt ++-=22所以.C x e xe x f x x++-=2)(2例23 求不定积分.5432x x dx x x+--⎰解 将分子凑成,23332()()2x x x x x x x x x x -+-+-++-把分式化为多项式与真分式的和;542233221x x x x x x x x x x+-+-=+++--再将真分式化为最简分式的和,232x x x x+--,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰.322ln ln 132x x x x x C =+++-++. 10 .例24 求不定积分.⎰+-dx x x x )1(188解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x (换元,令)⎰+-=du u u u )1(1818x u =⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81.()C x x ++-=81ln 41||ln 例25 求不定积分.⎰+dx xsin 11解 ⎰⎰--=+dx xx dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1.⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan 例26 求不定积分.⎰+++++dx x x x)11()1(11365解 为同时去掉三个根式,设,则,,t x =+6116-=t x dt t dx 56= dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t +-+=+⎰⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116()C t t t +++-=arctan 61ln 3322.()3311ln 313x x ++-+=C x +++61arctan 6。
《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。
2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。
二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。
(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。
(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。
. 1 .第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数).4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='.. 2 .例2 设C xdx x f +=⎰2sin 2)(,求)(x f . 解 积分运算与微分运算互为逆运算,所以2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰.例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以C C x f dx x f x +=+='⎰2ln 2)()(.例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13.例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin .例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分.C x dx x dx xdx xxx +===⋅⎰⎰⎰-+15261511533115332615.. 3 .例7 求不定积分⎰++++dx xx x x x 32313. 解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln .例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分.⎰⎰=-dxxdx x 2sin 212cos 11 ⎰=xdx 2csc 21C x +-=cot 21.例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec t an 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.⎰⎰+-=+dx x x dx x x )sec 1(sec )sec (tan2222⎰-=dx x )1sec 2(2C x x +-=t a n2.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan .. 4 .例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分⎰⎰++--+=+dx x x x x x x dx x x )1(1)1(124442224⎰⎪⎭⎫⎝⎛++-=dx x xx2241111C x xx +++-=arctan 1313.例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(. (曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx xx +=+⎰322)(arctan 311)(arctan ; 2)()C e dx e x x ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xe e e C e +≠+='++111)1ln(, 计算结果不正确,即()C e dx ex x++≠+⎰1ln 11.. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21.. 6 .注 由于被积函数中含有x t a n ln ,表明0t a n >x ,故x d x d xt a nln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) ⎰+⎪⎪⎭⎫⎝⎛+-+=)ln 1(ln 11ln 1x d x x C x x ++-+=2123)ln 1(2)ln 1(32.2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x C x x ++-+=101102)1(1011)1(1021. 例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2. 解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) C x +--=22)1(21.例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1.. 7 .例18 计算不定积分⎰+dx x x )1(124.【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111 ⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+ 3111a r c t a n 3C x x x=-+-+. 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 1ln 244tC t =++ 661ln 244x C x =++. 分部积分⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分.目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,. 8 .则2t x =,tdt dx 2=,⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=t d t t t arcsin arcsin 2⎰--=dttt t t 212arcsin 222arcsin (1)t t t =+-Ct t t +-+=212arcsin 2C x x x +-+=12arcsin 2.解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2⎰--=dt tt t t 212arcsin 2C t t t +-+=212a r c s i n 2C x xx +-+=12a r c s i n 2.例 21 已知)(x f 的一个原函数是2x e-,求⎰'dx x f x )(.【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故⎰⎰=')()(x xdf dx x f x ⎰-=dx x f x xf )()(()C ee x x x+-'=--22C e e x x x +--=--2222.. 9 .例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,)1()(+='t e t t f .⎰+=dt e t t f t )1()(⎰⎰+=tdt tde t22t dt e te tt+-=⎰C t e te tt ++-=22,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成23332()()2x x x x x x x x x x -+-+-++-,把分式化为多项式与真分式的和542233221x x x x x x x x x x+-+-=+++--; 再将真分式232x x x x+--化为最简分式的和,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++, 于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 322ln ln 132x x x x x C =+++-++.. 10 .例24 求不定积分⎰+-dx x x x )1(188.解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181 (换元,令8x u =) ⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81 ()C x x ++-=81ln 41||ln . 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan . 例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t+-+=+⎰ ⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116 ()Ct t t +++-=arctan 61ln 3322()3311ln 313x x ++-+=C x +++61arctan 6.。
【教学目的】
1. 理解原函数的概念,理解不定积分的概念。
2. 掌握不定积分的基本方法——直接求解法、换元积分法 【教学重点】不定积分的基本方法(直接求解法、换元积分法) 【教学难点】换元积分法 【教学过程】 一、预备知识
1. 原函数
()()x f x F ='或()()()dx x f dx x F x dF ='=,称()x F 为()
x f 在定义区间上的原函数
2. 原函数定理:相差一个常数(积分常数)
即()()x g x f '='→()()C x g x f +=
3. 导数公式P86 二、不定积分的概念
1.
()()C x F dx
x f +=⎰
2. 积分和求导或微分运算(互逆性)
()()C x F dx
x F +='⎰
()()C x F x dF +=⎰(先导后积还原+C ) ()[]()x f dx x f =
'⎰
(先积后导还原) ()()dx x f dx
x f d
=⎰
(先积后微还原dx )
三、不定积分的基本方法
1. 直接积分法
通过简单变形,利用基本积分公式和运算法则求不定积分的方法
a) 积分的基本公式P142 b) 积分的运算法则P143 练习:
⎰⎪⎪⎭
⎫
⎝
⎛-
+
+dx x x
x x
211sin 310 ()dx x
x
x ⎰
-2
1
()
dx e
x
x
2
2
⎰-
2. 换元积分法
()()[]()dt
t t f dx x f ϕϕ'−−−−−−
←−−−−−→
−⎰⎰第二类换元积分发
第一类换元积分法
a) 第一类换元积分法(凑微分法) 常见的凑微分形式例题讲解: 例:求下列不定积分
(1)
()⎰-3
32y dy
注:()b ax d a
dx +=
1
(2)
⎰
dx x x
2
ln
注:
()x d dx x
ln 1=
(3)
⎰-du u
u
52
注:(
)1
1
1
++=
αα
αx
d dx x
特例:()2
2
1x
d xdx =
()x d
dx x
21=
(4)
⎰xdx e
x
cos sin
注:()x d xdx cos sin -= ()x d xdx sin cos =
b) 第二类换元积分法(掌握根式换元) 直接令根式为t ,化根式为有理式 例:求下列不定积分
⎰+dx x x
1
例:求下列不定积分 ()
⎰
+dx x x 11
解法1: 令x u =
,dx x
du 2
1=
原积分⎰
+==
du u
x
u 2
112=C u +arctan 2C x x
u +==arctan 2
解法2: 令x t =,2
t x =,tdt dx 2=
原积分
()()⎰+=
=
tdt t t x
t 211
2
=C t +arctan
2C x x
t +==arctan 2
四、小结
化简直接积分,熟练积分公式 根据复合抓住u ,凑完微分配系数 使用公式要准确,积分消失加常数 【课外作业】(学习指导与训练P87)
2/(2)、(3)、(4)、(5) 3/(1)、(3)。