第7章单片机接口技术
- 格式:ppt
- 大小:1.45 MB
- 文档页数:62
第七章1、什么是串行异步通信,它有哪些作用?答:在异步串行通信中,数据是一帧一帧(包括一个字符代码或一字节数据)传送的,每一帧的数据格式参考书。
通信采用帧格式,无需同步字符。
存在空闲位也是异步通信的特征之一。
2、89C51单片机的串行口由哪些功能部件组成?各有什么作用?答:89C51单片机的串行接口由发送缓冲期SBUF,接收缓冲期SBUF、输入移位寄存器、串行接口控制器SCON、定时器T1构成的波特率发生器等部件组成。
由发送缓冲期SBUF发送数据,接收缓冲期SBUF接收数据。
串行接口通信的工作方式选择、接收和发送控制及状态等均由串行接口控制寄存器SCON控制和指示。
定时器T1产生串行通信所需的波特率。
3、简述串行口接收和发送数据的过程。
答:串行接口的接收和发送是对同一地址(99H)两个物理空间的特殊功能寄存器SBUF进行读和写的。
当向SBUF发“写”命令时(执行“MOV SBUF,A”),即向缓冲期SBUF装载并开始TXD引脚向外发送一帧数据,发送完便使发送中断标志位TI=1。
在满足串行接口接收中断标志位RI(SCON.0)=0的条件下,置允许接收位REN (SCON.4)=1,就会接收一帧数据进入移位寄存器,并装载到接收SBUF中,同时使RI=1。
当发读SBUF命令时(执行“MOV A, SBUF”),便由接收缓冲期SBUF 取出信息通过89C51内部总线送CPU。
4、89C51串行口有几种工作方式?有几种帧格式?各工作方式的波特率如何确定?答:89C51串行口有4种工作方式:方式0(8位同步移位寄存器),方式1(10位异步收发),方式2(11位异步收发),方式3(11位异步收发)。
有2种帧格式:10位,11位方式0:方式0的波特率≌fosc/12(波特率固定为振荡频率1/12)方式2:方式2波特率≌2SMOD/64×fosc方式1和方式3:方式1和方式3波特率≌2SMOD/32×(T1溢出速率)如果T1采用模式2则:5、若异步通信接口按方式3传送,已知其每分钟传送3600个字符,其波特率是多少?答:已知每分钟传送3600个字符,方式3每个字符11位,则:波特率=(11b/字符)×(3600字符/60s)=660b/s6、89C51中SCON的SM2,TB8,RB8有何作用?答:89c51SCON的SM2是多机通信控制位,主要用于方式2和方式3.若置SM2=1,则允许多机通信。
单片机原理及接口技术在当今数字化时代,单片机已经成为嵌入式系统设计中不可或缺的重要组成部分。
本文将介绍单片机的工作原理以及与外部设备进行通信的接口技术。
单片机工作原理单片机是一种集成了处理器、存储器和输入输出设备等功能模块的微型计算机系统。
它通常由中央处理器(CPU)、存储器(RAM和ROM)、计时器(Timer)、串行通信接口(UART)和引脚(Port)组成。
单片机的工作原理可以简要描述为以下几个步骤:1.初始化:单片机在上电时会执行初始化程序,设置各种工作模式、配置寄存器等。
2.执行程序:单片机会根据存储器中存储的程序指令序列来执行相应的操作,包括算术逻辑运算、控制流程等。
3.输入输出操作:单片机通过输入输出接口与外部设备进行通信,如传感器、执行器等。
4.中断处理:单片机可以在特定条件下触发中断请求,暂停当前执行的程序,转而执行中断服务程序,处理相应的事件或信号。
单片机接口技术单片机与外部设备的通信主要依赖于接口技术,包括数字输入输出接口、模拟输入输出接口以及通信接口等。
数字输入输出接口数字输入输出接口用于与二进制设备进行通信,通过配置相应的引脚工作在输入或输出模式,实现信号的采集与输出。
常用的数字输入输出方式包括GPIO口、SPI接口、I2C接口等。
模拟输入输出接口模拟输入输出接口用于处理模拟信号,包括模拟输入端口和模拟输出端口。
模拟输入端口通过模数转换器将模拟信号转换为数字信号,模拟输出端口则通过数模转换器将数字信号转换为模拟信号。
通信接口通信接口是单片机与外部设备进行数据交换的重要手段,主要有串行通信接口(UART)、并行通信接口(Parallel)、CAN接口等。
通过这些通信接口,单片机可以实现与其他设备的数据交换与通信。
结语单片机原理及接口技术是嵌入式系统设计的基础知识,通过深入了解单片机的工作原理和接口技术,可以更好地应用单片机进行系统设计与开发。
希望本文对读者有所帮助,谢谢!以上是关于单片机原理及接口技术的简要介绍,希望能对读者有所启发。
第七章单片机接口技术教学内容:1、I/O口扩展技术2、存储器扩展技术3、 A/D转换和D/A转换技术4、键盘接口技术5、显示接口技术本章重点:1、可编程I/O口扩展技术2、数据存储器的扩展技术3、键盘接口技术4、显示接口技术教学要求:1、通过本章的学习,应掌握通用I/O、可编程I/O口、数据存储器、键盘、显示接口的工作原理及扩展方法。
2、掌握接口的程序设计方法。
3、具备应用系统的开发能力教案:第一节 I/O口扩展技术1、简单I/O口扩展技术1)、I/O口扩展方法芯片:简单输入口扩展采用标准接口芯片,如74HC244、74HC373、74HC245等等。
扩展方法:I/O口线与单片机口线相连,接口的控制线由单片机的其它口线或控制信号相连。
注意事项:如果控制线由通用的I/O口提供,此时单片机的接口相当于端口,访问时用MOV类指令;如果控制信号由单片机的控制口线提供,此时外面扩展的单元就相当于外部的一个存储单元,访问时要用MOVX指令。
2)、输入口扩展如图1所示为用74HC244扩展的通用的输出口。
图1 输入口扩展电路3)、输出口扩展图2是用74HC373扩展的输出电路图2 输出口扩展电路2、可编程I/O口扩展技术可编程I/O口芯片很多,但扩展方法是一样的,下面以8255和8155可编程为例来说明可编程I/O口的扩展方法1)、8255A可编程接口芯片扩展I/O口(1)8255A的内部结构8255A是可编程的I/O接口芯片,通用性强且使用灵活,常用来实现51系列单片机的并行I/O扩展。
8255A按功能分为三部分,即:总线接口电路、口电路和控制逻辑电路。
其内部结构如图3所示。
图3 8255A内部结构数据总线缓冲器:直接与CPU的系统总线连接,以实现CPU和接口之间数据、控制及状态信息的传送。
读写控制逻辑:负责管理内部和外部的数据传送,8255A读写控制如表1所示。
表1 8255A读/写控制表CSA1A0RDWR所选端口操作A口读端口A1B口读端口B1C口读端口C11A口写端口A111B口写端口B111C口写端口C1111控制寄存器写控制字1××××/数据总线缓冲器输出高阻A组与B组控制:每组控制电路一方面接收来自读/写控制逻辑电路的读/写命令,另一方面接收芯片内部总线的控制字,据此向对应的口发出相应的命令,以决定对应口的工作方式和读/写操作。
第七章1、什么是串行异步通信,它有哪些作用?答:在异步串行通信中,数据是一帧一帧(包括一个字符代码或一字节数据)传送的,每一帧的数据格式参考书。
通信采用帧格式,无需同步字符。
存在空闲位也是异步通信的特征之一。
2、89C51单片机的串行口由哪些功能部件组成?各有什么作用?答:89C51单片机的串行接口由发送缓冲期SBUF,接收缓冲期SBUF、输入移位寄存器、串行接口控制器SCON、定时器T1构成的波特率发生器等部件组成。
由发送缓冲期SBUF发送数据,接收缓冲期SBUF接收数据。
串行接口通信的工作方式选择、接收和发送控制及状态等均由串行接口控制寄存器SCON控制和指示。
定时器T1产生串行通信所需的波特率。
3、简述串行口接收和发送数据的过程。
答:串行接口的接收和发送是对同一地址(99H)两个物理空间的特殊功能寄存器SBUF进行读和写的。
当向SBUF发“写”命令时(执行“MOV SBUF,A”),即向缓冲期SBUF装载并开始TXD引脚向外发送一帧数据,发送完便使发送中断标志位TI=1。
在满足串行接口接收中断标志位RI(SCON.0)=0的条件下,置允许接收位REN (SCON.4)=1,就会接收一帧数据进入移位寄存器,并装载到接收SBUF中,同时使RI=1。
当发读SBUF命令时(执行“MOV A, SBUF”),便由接收缓冲期SBUF 取出信息通过89C51内部总线送CPU。
4、89C51串行口有几种工作方式?有几种帧格式?各工作方式的波特率如何确定?答:89C51串行口有4种工作方式:方式0(8位同步移位寄存器),方式1(10位异步收发),方式2(11位异步收发),方式3(11位异步收发)。
有2种帧格式:10位,11位方式0:方式0的波特率≌fosc/12(波特率固定为振荡频率1/12)方式2:方式2波特率≌2SMOD/64×fosc方式1和方式3:方式1和方式3波特率≌2SMOD/32×(T1溢出速率)如果T1采用模式2则:5、若异步通信接口按方式3传送,已知其每分钟传送3600个字符,其波特率是多少?答:已知每分钟传送3600个字符,方式3每个字符11位,则:波特率=(11b/字符)×(3600字符/60s)=660b/s6、89C51中SCON的SM2,TB8,RB8有何作用?答:89c51SCON的SM2是多机通信控制位,主要用于方式2和方式3.若置SM2=1,则允许多机通信。
《单片机原理及接口技术》(第2版)人民邮电出版社第7章 AT89S51单片机的串行口思考题及习题71.帧格式为1个起始位,8个数据位和1个停止位的异步串行通信方式是方式。
答:方式1。
2.在串行通信中,收发双方对波特率的设定应该是的。
答:相等的。
3.下列选项中,是正确的。
A.串行口通信的第9数据位的功能可由用户定义。
对B.发送数据的第9数据位的内容是在SCON寄存器的TB8位中预先准备好的。
对C.串行通信帧发送时,指令把TB8位的状态送入发送SBUF中。
错D.串行通信接收到的第9位数据送SCON寄存器的RB8中保存。
对E.串行口方式1的波特率是可变的,通过定时器/计数器T1的溢出率设定。
对4.通过串行口发送或接收数据时,在程序中应使用。
A.MOVC指令B.MOVX指令 C.MOV指令 D.XCHD指令答:C5.串行口工作方式1的波特率是。
A.固定的,为f osc/32 B.固定的,为f osc/16C.可变的,通过定时器/计数器T1的溢出率设定D.固定的,为f osc/64答:C6.在异步串行通信中,接收方是如何知道发送方开始发送数据的?答:当接收方检测到RXD端从1到0的跳变时就启动检测器,接收的值是3次连续采样,取其中2次相同的值,以确认是否是真正的起始位的开始,这样能较好地消除干扰引起的影响,以保证可靠无误的开始接受数据。
7.AT89S51单片机的串行口有几种工作方式?有几种帧格式?各种工作方式的波特率如何确定?答:串行口有4种工作方式:方式0、方式1、方式2、方式3;有3种帧格式,方式2和3具有相同的帧格式;方式0的发送和接收都以fosc/12为固定波特率,方式1的波特率=2SMOD /32×定时器T1的溢出率方式2的波特率=2SMOD /64×fosc方式3的波特率=2SMOD /32×定时器T1的溢出率8.假定串行口串行发送的字符格式为1个起始位、8个数据位、1个奇校验位、1个停止位,请画出传送字符“B ”的帧格式。
单片机原理及接口技术单片机原理及接口技术(上)一、单片机基本原理单片机(Microcontroller)是由中央处理器(CPU)、存储器(ROM、RAM)、输入/输出接口(I/O)和定时/计数器等模块所组成的一个微型计算机系统。
单片机通过程序控制,能够完成各种控制任务和数据处理任务。
目前,单片机已广泛应用于计算机、通讯、电子、仪表、机械、医疗、军工等领域。
单片机的基本原理是程序控制。
单片机执行的程序,是由程序员以汇编语言或高级语言编制而成,存放在存储器中。
当单片机加电后,CPU按指令序列依次从存储器中取得指令,执行指令,并把执行结果存放到存储器中。
程序员通过编写的程序,可以对单片机进行各种各样的控制和数据处理。
单片机的CPU是整个系统的核心,它负责执行指令、处理数据和控制系统的各种操作。
CPU通常包括运算器、控制器、指令译码器和时序发生器等模块。
其中,运算器主要用于执行算术和逻辑运算;控制器用于执行指令操作和控制系统的运行;指令译码器用于识别指令操作码,并将操作码转化为相应的操作信号;时序发生器用于产生各种时序信号,确保系统按指定的时间序列运行。
存储器是单片机的重要组成部分,用于存储程序和数据。
存储器一般包括ROM、EPROM、FLASH和RAM等类型。
其中,ROM是只读存储器,用于存储程序代码;EPROM是可擦写可编程存储器,用于存储不经常改变的程序代码;FLASH是可擦写可编程存储器,用于存储经常改变的程序代码;RAM是随机存储器,用于存储数据。
输入/输出接口(I/O)用于与外部设备进行数据交换和通信。
单片机的I/O口可分为并行I/O和串行I/O两类。
并行I/O通常包括数据总线、地址总线和控制总线等,用于与外部设备进行高速数据传输。
串行I/O通常通过串口、I2C总线、SPI总线等方式实现,用于与外部设备进行低速数据传输。
定时/计数器是单片机中的重要组成部分,它可以产生各种时间、周期和脉冲信号,用于实现各种定时和计数操作。
第7章思考题及习题7参考答案一、填空1.如果采用晶振的频率为3MHz,定时器/计数器T x(x=0,1)工作在方式0、1、2下,其方式0的最大定时时间为,方式1的最大定时时间为,方式2的最大定时时间为。
答:32.768ms,262.144ms,1024µs2.定时器/计数器用作计数器模式时,外部输入的计数脉冲的最高频率为系统时钟频率的。
答:1/243.定时器/计数器用作定时器模式时,其计数脉冲由提供,定时时间与有关。
答:系统时钟信号12分频后,定时器初值4.定时器/计数器T1测量某正单脉冲的宽度,采用方式可得到最大量程?若时钟频率为6MHz,求允许测量的最大脉冲宽度为。
答:方式1定时,131.072ms。
5. 定时器T2 有3种工作方式:、和,可通过对寄存器中的相关位进行软件设置来选择。
答:捕捉,重新装载(增计数或减计数),波特率发生器,T2CON6. AT89S52单片机的晶振为6MHz,若利用定时器T1的方式1定时2ms,则(TH1)= ,(TL1)= 。
答:FCH,18H。
二、单选1.定时器T0工作在方式3时,定时器T1有种工作方式。
A.1种B.2种 C.3种D.4种答:C2. 定时器T0、T1工作于方式1时,其计数器为位。
A.8位B.16位C.14位D.13位答:B3. 定时器T0、T1的GATE x=1时,其计数器是否计数的条件。
A. 仅取决于TR x状态B. 仅取决于GATE位状态C. 是由TR x和INT x两个条件来共同控制D. 仅取决于INT x的状态答:C4. 定时器T2工作在自动重装载方式时,其计数器为位。
A.8位B. 13位C.14位D. 16位答:D5. 要想测量INT0引脚上的正单脉冲的宽度,特殊功能寄存器TMOD的内容应为。
A.87HB. 09HC.80HD. 00H答:B三、判断对错1.下列关于T0、T1的哪些说法是正确的。
A.特殊功能寄存器SCON,与定时器/计数器的控制无关。
单片机接口技术简介单片机是一种集成了处理器、存储器和各种输入/输出(I/O)接口功能的微型计算机系统。
单片机常用于嵌入式系统中,广泛应用于家电、汽车、医疗设备、通信设备等领域。
而单片机的接口技术则是连接单片机与外部设备之间的桥梁,它是实现单片机与外部环境交互的关键。
单片机接口技术主要包括数字接口和模拟接口两种类型。
数字接口用于数字信号的输入输出,而模拟接口用于模拟信号的输入输出。
下面将依次介绍这两种接口技术。
数字接口技术是单片机与数字设备之间进行数据交换的一种方式。
常见的数字接口技术有并行接口、串行接口和通用串行总线(USB)接口。
1. 并行接口是将数据以并行方式传输的接口技术。
它通过多条数据线同时传输数据,传输速度较快,适用于要求高速数据传输的场景。
常见的并行接口有通用并行接口(GPIO)、外部存储器接口(EMI)等。
2. 串行接口是一种将数据逐位按顺序传输的接口技术。
与并行接口相比,串行接口需要较少的数据线,占用的引脚较少,适用于对引脚数量有限的场景。
常见的串行接口有串行外设接口(SPI)、I2C接口、异步串行通信接口(UART)等。
3. 通用串行总线(USB)接口是一种广泛应用于计算机和外部设备之间的接口技术。
USB接口具有热插拔、高速传输、兼容性好等特点,广泛应用于各种外部设备,如键盘、鼠标、打印机等。
模拟接口技术是单片机与模拟设备之间进行数据交换的一种方式。
常见的模拟接口技术有通用模拟接口(ADC/DAC接口)和PWM(脉宽调制)接口。
1. 通用模拟接口(ADC/DAC接口)用于将模拟信号转换为数字信号(ADC)或将数字信号转换为模拟信号(DAC)。
ADC(模数转换器)将模拟信号转换为数字信号,以便单片机进行处理,而DAC(数模转换器)则将数字信号转换为模拟信号,以便控制外部模拟设备。
2. PWM(脉宽调制)接口是一种通过调节脉冲信号的高电平时间来控制模拟设备的接口技术。
PWM接口广泛应用于电机控制领域,通过改变脉冲的占空比可以控制电机的转速和转向。
单片机工作模式及接口技术详解单片机(Microcontroller)是一种集成了微处理器、存储器和其他外设的专用集成电路。
它广泛应用于各种电子设备中,如家电、汽车、工业控制等。
单片机的工作模式和接口技术是了解和使用单片机的重要基础。
本文将详细介绍单片机的工作模式和常见的接口技术。
一、单片机的工作模式1. 单片机工作模式概述单片机的工作模式通常可以分为运行模式和休眠模式两种。
在运行模式下,单片机执行程序中的指令,完成各种任务。
在休眠模式下,单片机进入低功耗状态,以节省能源。
2. 运行模式(1)单片机的运行模式包括内部晶振模式和外部晶振模式。
内部晶振模式是指单片机内部集成了一个低频振荡器,可以通过配置寄存器选择合适的频率。
这种模式适用于一些低要求的应用场景,节省了外部晶振的成本。
外部晶振模式是指单片机通过外部引脚连接到外部晶振,并通过配置寄存器选择合适的频率。
这种模式适用于对时钟精度要求较高的应用场景。
(2)单片机的运行模式还包括普通模式和中断模式。
普通模式是指单片机按照程序顺序执行,不进行中断处理。
中断模式是指单片机在执行一段程序时,可以被来自外部的中断信号打断,执行中断服务程序,处理相应的事件后再返回到被打断的程序继续执行。
中断模式可以提高单片机的响应速度。
3. 休眠模式(1)单片机的休眠模式包括睡眠模式和停机模式。
睡眠模式是指单片机在执行完当前指令后,将处于低功耗状态,所有的功能模块停止工作,只有时钟运行。
当外部中断或定时器产生中断时,单片机被唤醒,恢复正常工作。
停机模式是指单片机将所有的功能模块停止工作,唯一工作的是时钟和复位电路,以达到最低功耗的状态。
当外部中断或复位信号触发时,单片机被唤醒,重新开始工作。
二、单片机的接口技术1. 数字接口技术(1)GPIO(General Purpose Input/Output)GPIO是单片机的通用输入输出引脚,可以通过配置寄存器设置为输入或输出模式。
单片机原理及运用和单片机接口技术1. 单片机的原理及运用:单片机(Microcontroller)是一种集成电路,包含了处理器(CPU)、存储器(RAM 和ROM)、输入输出接口(I/O)、定时器/计数器等功能模块。
单片机通过内部程序的控制实现各种功能,广泛应用于嵌入式系统中。
单片机的工作原理是通过执行内部程序指令来完成各种任务。
单片机的内部存储器(ROM)中存储了一段程序代码,CPU会按照程序指令的顺序执行这些代码。
通过编写适当的程序代码,可以实现各种功能,如控制外部设备、处理数据等。
单片机可以应用于各种领域,如家电控制、工业自动化、电子仪器仪表和通信设备等。
在家电控制方面,单片机可以实现对电灯、电视、空调等设备的控制;在工业自动化方面,单片机可以用于控制机器人、生产线等;在电子仪器仪表方面,单片机可以实现对传感器的数据采集和处理;在通信设备方面,单片机可以用于控制无线通信模块等。
2. 单片机接口技术:单片机接口技术是指将单片机与外部设备连接起来的技术。
通过合适的接口技术,单片机可以与各种外部设备进行通信和控制。
常见的单片机接口技术包括以下几种:2.1 并行接口(Parallel Interface):并行接口是一种多线接口,通过多根线同时传输数据。
在单片机中,常用的并行接口是通用并行接口(GPIO),可以用来连接并行设备,如LED显示屏、液晶显示模块等。
2.2 串行接口(Serial Interface):串行接口是一种逐位传输数据的接口,通过少量的线路传输数据。
常见的串行接口有串行通信接口(UART)、SPI(Serial Peripheral Interface)和I2C(Inter-Integrated Circuit)接口。
串行接口适用于连接串行设备,如串口设备、传感器等。
2.3 模拟接口(Analog Interface):模拟接口用于连接模拟设备,如传感器、电机等。
单片机通过模拟输入输出口(ADC和DAC)与模拟设备进行通信,实现模拟信号的采集和输出。
单片机的原理及接口技术
单片机是一种集成电路,封装了中央处理器、存储器和各种输入输出设备,用于控制和执行特定的任务。
它具有自主工作能力,可独立完成各种计算和控制操作。
接口技术是指单片机与外部设备之间的数据传输和控制相互连接的方式和方法。
单片机的接口技术多种多样,常见的包括串口、并行口、模拟输入输出等。
串口是单片机与计算机、外围设备之间数据传输的一种接口技术。
通过串口,单片机可以与计算机进行通信,实现数据的输入和输出。
串口由几个主要的信号线组成,包括发送线、接收线、时钟线、复位线等。
并行口是单片机与外设设备之间并行传输数据的接口技术。
通过并行口,单片机可以同时传输多个位的数据,实现对外设设备的控制和操作。
并行口通常包括数据线、地址线、控制线等。
模拟输入输出是单片机与模拟电路之间的接口技术。
单片机可以通过模拟输入输出,实现对模拟电路的监测和控制。
模拟输入可以将外界模拟信号转换为数字信号输入到单片机中,而模拟输出可以将单片机处理后的数字信号转换为模拟信号输出到外界电路中。
除了上述接口技术之外,单片机还可以通过其他方式进行数据传输和控制,如I2C总线、SPI总线、智能控制等。
这些接口
技术的选择取决于具体应用需求和外设设备的特性。
单片机通
过接口技术实现与外设设备的连接,可以实现各种应用场景下的数据传输和控制操作。
因此,掌握并理解单片机的接口技术对于进行单片机的开发和应用至关重要。
单片机接口技术一、概述单片机接口技术是指将单片机与外部设备进行连接和通信的技术。
单片机作为控制器,需要通过接口与外部设备进行数据的输入和输出,实现对外部设备的控制和操作。
本文将介绍单片机接口技术的基本原理、常用接口类型以及实现方法。
二、基本原理1. 串行通信串行通信是指在单根线路上,按照一定的时间间隔传输数据的方式。
串行通信可以分为同步串行通信和异步串行通信两种方式。
同步串行通信需要发送方和接收方在时钟上保持同步,而异步串行通信则不需要。
2. 并行通信并行通信是指在多根线路上同时传输数据的方式。
并行通信可以分为标准模式和高速模式两种方式。
标准模式下,每个数据线都只能传输一个比特位;而高速模式下,则可以同时传输多个比特位。
3. 中断技术中断技术是指当某个事件发生时,会引起CPU中断,并执行相应的中断服务程序。
中断技术可以有效地提高系统效率,使CPU能够及时地响应外部事件。
三、常用接口类型1. 串口接口串口接口是指将单片机与外部设备通过串行通信进行连接的接口。
串口接口可以分为RS232、RS485、TTL等多种类型,其中RS232是最为常用的一种。
2. 并口接口并口接口是指将单片机与外部设备通过并行通信进行连接的接口。
并口接口可以分为标准模式和高速模式两种类型,其中标准模式下使用的最为广泛的是Centronics接口。
3. USB接口USB接口是指将单片机与外部设备通过USB总线进行连接的接口。
USB接口具有传输速度快、数据稳定性好等优点,因此在许多应用中得到了广泛应用。
四、实现方法1. 软件实现软件实现是指通过编写程序来实现单片机与外部设备之间的通信。
软件实现需要掌握相应的编程语言和单片机控制器的操作方法,对于一些简单的应用场景来说效果较好。
2. 硬件实现硬件实现是指通过电路设计来实现单片机与外部设备之间的通信。
硬件实现需要掌握相应的电路设计技术和电子元器件知识,对于一些复杂或高速传输要求较高的应用场景来说效果较好。
第7章单片机的典型外围接口技术7.1键盘接口7.2显示接口7.3DAC接口7.4ADC接口7.1键盘接口(1)独立连接式键盘优点:结构简单、使用方便。
缺点:占用的I/O口线多。
(2)矩阵式键盘⏹键盘上的键按行列构成矩阵,在行列的交点上都对应有一个键。
⏹所谓键实际上就是一个机械开关,被按下则其交点的行线和列线接通。
⏹非编码键键盘接口技术的主要内容就是如何确定被按键的行列位置,并根据此产生键码。
1.键输入过程与软件结构键扫描有无键按下查键号JMP @A+DPTR00#按键应用程序01#按键应用程序NN #按键应用程序A=00H A=01H A=NNH...N Y2.键盘输入接口与软件应解决的任务⏹(1)键开关的可靠输入⏹抖动的处理有硬件处理和软件处理两种。
⏹(2)按键编码与键号定义⏹(3)键盘检测与编制键盘程序3.矩阵式键盘电路的结构及工作原理一个4×4的行、列结构可以构成一个含有16个按键的键盘。
0123106759841114151312+5V X3X2X1X0Y3Y0Y2Y1扫描方法:先令列线Y0为低电平(0),其余3根列线Y1、Y2、Y3都为高电平,读行线状态。
如果X0、X1、X2、X3都为高电平,则Y0这一列上没有键闭合,如果读出的行线状态不全为高电平,则为低电平的行线和Y0相交的键处于闭合状态;如果Y0这一列上没有键闭合,接着使列线Y1为低电平,其余列线为高电平。
用同样的方法检查Y1这一列上有无键闭合,依次类推,最后使列线Y3为低电平,其余列线为高电平,检查Y3这一列有无键闭合。
按键开关的抖动问题组成键盘的按键有触点式和非触点式两种,单片机中应用的一般是由机械触点构成的。
P1.0由于按键是机械触点,当机械触点断开、闭合时,会有抖动,P1.0输入端的波形如图所示。
常用去抖动方法:⏹(1)硬件方法增加去抖动电路。
⏹(2)软件方法采用软件延时(10ms)躲过抖动(3)键盘的接口电路7.2显示接口⏹7.2.1 基本LED 显示原理⏹1.LED显示器的结构与原理d 1234a b c dp f e c dpd e g f b a GND GND abcdefgdp a b c d e f g dp +5v 8R ⨯8R ⨯g 共阴极共阳极2. 十六进制数字形代码表字型共阳极代码共阴极代码字型共阳极代码共阴极代码0C0H3FH990H6FH1F9H06H A88H77H2A4H5BH B83H7CH3B0H4FH C C6H39H 499H66H D A1H5EH 592H6DH E86H79H 682H7DH F84H71H7F8H07H灭FFH00H 880H7FH7.2.2 LED 显示方式在单片机应用系统中使用LED 显示块构成N 位LED 显示器。
单片机原理及接口技术讲解单片机(Microcontroller)是一种集成电路芯片,内含有中央处理器(CPU)、存储器、输入输出端口、定时器计数器、串行通信接口等核心模块,可用于控制、计算、存储和通信等多种功能。
单片机的工作原理是通过处理器执行存储在存储器中的指令来实现各种功能。
它的内部包含一个由晶体管、逻辑门等构成的微处理器,负责执行计算和控制指令。
单片机的芯片上还集成了存储器,用于存储程序指令和数据。
输入输出端口可以与外部设备进行数据交互,定时器计数器可以实现精确的定时和计数功能。
通过串行通信接口,单片机可以与其他设备进行数据传输和通信。
单片机的接口技术是指单片机与外部设备进行数据传输和通信的技术。
常见的接口技术包括并行接口、串行接口、模拟接口等。
并行接口是通过多个并行数据线同时传输数据的接口技术。
常见的并行接口有通用并行接口(GPIO)、地址总线、数据总线等。
通用并行接口(GPIO)是一组可编程的并行输入输出线,可以被程序员控制来进行数据的输入输出。
地址总线用于传输内存或外设的地址信息,数据总线用于传输数据信息。
串行接口是通过单个数据线按照一定的时间顺序传输数据的接口技术。
常见的串行接口有串行通信接口(UART)、串行外设接口(SPI)、I²C接口等。
串行通信接口(UART)是一种通用的串行数据通信接口,用于将数据转换为串行格式进行传输。
串行外设接口(SPI)是一种高速串行接口,用于在单片机与其他外设之间进行数据传输和通信。
I²C接口是一种双线制的串行接口,用于在多个设备之间进行数据传输和通信。
模拟接口是通过模拟信号进行数据传输和通信的接口技术。
模拟接口包括模数转换接口、数字模拟转换接口等。
模数转换接口用于将模拟信号转换为数字信号,数字模拟转换接口用于将数字信号转换为模拟信号。
单片机接口技术的选择取决于具体应用的需求。
并行接口适合需要大量数据同时进行传输的场景,串行接口适合需要高速传输的场景。
单片机原理及其接口技术
单片机(Microcontroller)是一种集成了微处理器、存储器、计时器、通信接口、模拟输入输出等电子功能的小型集成电路芯片。
它具有处理器、存储器、输入输出接口等基本功能,而且可以集成控制、调节、监测等多种复杂的控制功能,因此被广泛应用于自动化控制和智能化设备中。
单片机的工作原理是:将程序代码存储在内部存储器中,通过输入接口输入控制信号,然后通过处理器进行计算,并通过输出接口输出控制信号,从而实现对外部设备的控制。
单片机的接口技术主要包括数字接口技术和模拟接口技术。
数字接口技术主要包括并行接口和串行接口。
并行接口是一种多线传输接口,可以同时传输多个数据位,速度快、数据传输量大,适用于数据量较大的数据传输。
串行接口是一种单线传输接口,可以逐位传输数据,需要较少的引脚,适用于数据量较小的数据传输。
模拟接口技术主要是模拟信号和数字信号之间的转换。
单片机内部只能处理数字信号,因此需要通过模拟接口将模拟信号转换为数字信号。
模拟接口技术包括模拟输入技术和模拟输出技术。
模拟输入技术是将模拟信号转换为数字信号输入到单片机内部。
模拟输出技术是将数字信号转换为模拟信号输出到外部设备中。
总之,单片机是现代控制技术和通信技术的核心,其接口技术在自动化控制和智
能化设备中具有重要的作用。