算法设计与分析 第3章2
- 格式:ppt
- 大小:3.08 MB
- 文档页数:110
习题2-1 求下列函数的渐进表达式:3n^2+10n; n^2/10+2n; 21+1/n; logn^3; 10 log3^n 。
解答:3n^2+10n=O(n^2),n^2/10+2^n=O(2^n),21+1/n=O(1),logn^3=O(logn),10log3^n=O(n).习题2-3 照渐进阶从低到高的顺序排列以下表达式:n!,4n^2,logn,3^n,20n,2,n^2/3。
解答:照渐进阶从高到低的顺序为:n!、3^n、4n^2 、20n、n^2/3、logn、2习题2-4(1)假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成该算法的时间为t秒。
现有另外一台计算机,其运行速度为第一台计算机的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?(2)若上述算法的计算时间改进为T(n)=n^2,其余条件不变,则在新机器上用t秒时间能解输入规模多大的问题?(3)若上述算法的计算时间进一步改进为,其余条件不变,那么在新机器上用t秒时间能解输入规模多大的问题?解答:(1)设能解输入规模为n1的问题,则t=3*2^n=3*2^n/64,解得n1=n+6(2)n1^2=64n^2得到n1=8n(3)由于T(n)=常数,因此算法可解任意规模的问题。
习题2-5 XYZ公司宣称他们最新研制的微处理器运行速度为其竞争对手ABC公司同类产品的100倍。
对于计算复杂性分别为n,n^2,n^3和n!的各算法,若用ABC公司的计算机能在1小时内能解输入规模为n的问题,那么用XYZ公司的计算机在1小时内分别能解输入规模为多大的问题?解答:n'=100nn'^2=100n^2得到n'=10nn'^3=100n^3得到n'=4.64nn'!=100n!得到n'<n+log100=n+6.64习题2-6对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。
解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
3.1//计算2+22+222+...+222 (2)void main(){int i,n,sum=0;print("请输入最后一个因子的位数\n");scanf("%d",&n);for(i=1;i<=n;i++)sum=sum+((int)pow(10,i)-1)/9*2;print("2+22+222+...+222……2=%d\n",sum); }3.2显示{5,7,4,8,9,1}的方阵方式main(){int i,j,t,ori[6]={5,7,4,8,9,1};for(i=0;i<6;i++){for(j=0;j<6;j++){t=(j-i)<0?j-i+6:j-i;printf("%d ",ori[t]);}printf("\n");}}3.3main(){int n;int **up(int **array);scanf("%d",&n);int arr[1][1]={{n*n}};for(j=1;j<n;j++)arr=up(**arr,j);}int **up(int **array,n){int upN=n+1;int[upN][upN] tem;tem[1][1]=array[1][1]-pow(n+1,2);for(i=1;i<=n;i++)tem[1][i]=tem[1][i-1]+1;for(i=1;i<=n;i++)tem[n][i]=tem[n][i-1]+1;for(i=1;i<=n;i++)tem[n][n-i]=tem[n][n+1-i]+1;for(i=1;i<n;i++)tem[1][n-i]=tem[1][n-i+1]+1return **tem;}3.4main(){int i,j,t=0,next=1,n;printf("请输入n\n");scanf("%d",&n);printf("显示效果如下\n");for(i=1;i<=n;i++){for(j=1;j<=n-i+1;j++){if(j==1)t=next;elset=t+i+j-1;if(j==2)next=t-1;printf("%d ",t);}printf("\n");}}//思想:每一行的第二个数为next,下一行的第一个数为next-13.5main(){int n,i,j,k;int arr[100][100]={{0}};//动态定义数组太难,所以在系统直接定义一个100*100的方阵,可以处理部分小问题for(i=0;i<100;i++)for(j=0;j<100;j++)arr[i][j]=0;printf("请输入n\n");scanf("%d",&n);/*if(n%2==0){for(k=0;k<n/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;}else{for(k=0;k<(n+1)/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;}*///可将第一个for循环中的判断条件统一改为k<(n+1)/2 for(k=0;k<(n+1)/2;k++)for(i=k;i<n-k;i++)for(j=k;j<n-k;j++)arr[i][j]=k+1;printf("显示效果如下:\n")for(i=0;i<n;i++){for(j=0;j<n;j++)printf("%2d",arr[i][j]);printf("\n");}}3.7main(){int ack(int m,int n);int m,n,score;printf("请输入ackermann函数的m,n:\n");printf("m:");scanf("%d",&m);printf("n:");scanf("%d",&n);score=ack(m,n);printf("ack(%d,%d)=%d\n",m,n,score);}int ack(int m,int n){if(m==0)return n+1;elseif(n==0)return ack(m-1,1);elsereturn ack(m-1,ack(m,n-1));}3.8main(){char str[40];int i,l,t=1;printf("Please input a string!\n");scanf("%s",str);l=strlen(str);for(i=0;i<l/2;i++)if(str[i]!=str[l-i-1])t=0;if(t)printf("The string is Huiwen!\n");elseprintf("The string is not Huiwen!\n");}3.11main(){int i,n,sum=0;//sum为零的个数int zero(int pro);printf("此程序用于计算1*2*3*…*n所得的数末尾有多少个零。
《算法设计与分析》习题第一章算法引论1、算法的定义?答:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。
通俗讲,算法:就是解决问题的方法或过程。
2、算法的特征?答:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性;4)有穷性3、算法的描述方法有几种?答:自然语言、图形、伪代码、计算机程序设计语言4、衡量算法的优劣从哪几个方面?答:(1) 算法实现所耗费的时间(时间复杂度);(2) 算法实现所所耗费的存储空间(空间复杂度);(3) 算法应易于理解,易于编码,易于调试等等。
5、时间复杂度、空间复杂度定义?答:指的是算法在运行过程中所需要的资源(时间、空间)多少。
6、时间复杂度计算:{i=1;while(i<=n)i=i*2; }答:语句①执行次数1次,语句②③执行次数f(n), 2^f(n)<=n,则f(n) <=log2n;算法执行时间: T(n)= 2log2n +1时间复杂度:记为O(log2n) ;7.递归算法的特点?答:①每个递归函数都必须有非递归定义的初值;否则,递归函数无法计算;(递归终止条件)②递归中用较小自变量函数值来表达较大自变量函数值;(递归方程式)8、算法设计中常用的算法设计策略?答:①蛮力法;②倒推法;③循环与递归;④分治法;⑤动态规划法;⑥贪心法;⑦回溯法;⑧分治限界法9、设计算法:递归法:汉诺塔问题?兔子序列(上楼梯问题)?整数划分问题?蛮力法:百鸡百钱问题?倒推法:穿越沙漠问题?答:算法如下: (1) 递归法● 汉诺塔问题void hanoi(int n, int a, int b, int c) {if (n > 0) {hanoi(n-1, a, c, b); move(a,b);hanoi(n-1, c, b, a); } }● 兔子序列(fibonaci 数列 )递归实现:Int F(int n) {if(n<=2) return 1; elsereturn F(n-1)+ F(n-2); }● 上楼梯问题 Int F(int n) {if(n=1) return 1 if(n=2) return 2; elsereturn F(n-1)+ F(n-2); }● 整数划分问题问题描述:将正整数n 表示成一系列正整数之和,n=n1+n1+n3+…将最大加数不大于m 的划分个数,记作q(n,m)。
高二信息技术教案程序设计与算法分析高二信息技术教案——程序设计与算法分析引言:程序设计与算法分析是高中信息技术课程中的重要组成部分。
通过学习程序设计和算法分析,学生能够提高他们的计算机编程能力和问题解决能力。
本教案旨在介绍程序设计与算法分析的基础知识和学习内容,通过实例和练习来巩固学生对相关概念的理解,并培养学生的编程思维和分析能力。
第一章程序设计基础1.1 程序设计概述1.1.1 程序设计的定义1.1.2 程序设计的重要性1.2 程序设计语言1.2.1 C语言简介1.2.2 Python语言简介1.3 编程环境搭建1.3.1 C语言编程环境搭建1.3.2 Python编程环境搭建第二章算法分析2.1 算法的概念2.1.1 算法的定义2.1.2 算法的特性2.2 算法复杂性分析2.2.1 时间复杂度分析2.2.2 空间复杂度分析2.3 常用算法示例2.3.1 排序算法:冒泡排序、快速排序2.3.2 查找算法:顺序查找、二分查找第三章程序设计基本语法3.1 变量和数据类型3.1.1 变量的定义与使用3.1.2 常用数据类型:整型、浮点型、字符型、布尔型等3.2 运算符3.2.1 算术运算符3.2.2 关系运算符3.2.3 逻辑运算符3.3 控制语句3.3.1 条件语句:if-else语句、switch语句3.3.2 循环语句:for循环、while循环3.4 函数3.4.1 函数的定义与调用3.4.2 函数参数的传递3.4.3 递归函数的设计与使用第四章算法设计与分析4.1 算法设计方法4.1.1 递推法4.1.2 分治法4.1.3 贪心算法4.1.4 动态规划算法4.2 算法性能评估指标4.2.1 最坏情况时间复杂度4.2.2 平均情况时间复杂度4.2.3 最好情况时间复杂度4.2.4 空间复杂度4.3 算法示例分析4.3.1 背包问题4.3.2 最短路径问题结语:通过学习本教案的内容,学生将能够全面了解程序设计与算法分析的基础知识和学习方法。
实验内容3-2 双关系递推数列集合M定义如下:1)M∈12)21,31∈⇒+∈+∈x M x M x M3)再无别的数属于M试求集合M元素从小到大排列的第2015个元素与前2015 个元素之和。
1、设计思路和关键点对数组m(i)设置两个队列:2*m(p1)+1,p1=1,2,3, …..3*m(p2)+1,p2=1,2,3, …..从两队列中选一排头,通过比较选数值较小者送入数组m中,所谓“排头”就是队列中尚未选入m的最小的下标。
2、伪代码#include<iostream>using namespace std;int main(){int n;int a[100001];int s=1;cout<<"请输入n:";cin>>n;int p1=1,p2=1;a[1]=1;for(int i=2;i<=n;i++)if(a[p1]*2+1<a[p2]*3+1){a[i]=a[p1++]*2+1;s+=a[i]; }else{a[i]=a[p2]*3+1; s+=a[i];if(a[p1]*2+1==a[p2]*3+1) p1++; p2++; }cout<<"m<"<<n<<">="<<a[n]<<endl; cout<<"s="<<s; return 0; }3、运行结果3-3 多幂序列设x,y,z 为非负整数,试计算集合}0,0,0|5,3,2{≥≥≥=z y x M z y x的元素由小到大排列的多幂序列第n 项与前n 项之和。
1、设计思路和关键点集合M 由2的指数,3的指数以及5的指数组成,是三个递推关系,第一项为1,从第二项开始,设置k 循环,在k 循环外赋初值:a=2;b=3;c=5;s=1;在k 循环中通过比较赋值。