【导与练】2015届高三数学(人教,文)一轮专练 :第2篇 第6节 二次函数与幂函数]
- 格式:doc
- 大小:936.00 KB
- 文档页数:9
【锁定高考】(新课标版)2015届高考数学一轮总复习(基础达标+提优演练)第2章 第6节 二次函数与幂函数 文A 组 基础达标(时间:30分钟 满分:50分) 若时间有限,建议选讲3,7,9一、 选择题(每小题5分,共20分) 1. 幂函数y =x 43的图像是(A )∵y=x 43=3x 4,∴该函数为偶函数,其图像关于y 轴对称,且过原点,故选A. 2.如果x≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为 (B )A. 2B. 34C. 23D. 0由x≥0,y ≥0, x =1-2y≥0知0≤y≤12, t =2x +3y 2=2-4y +3y 2=3⎝ ⎛⎭⎪⎫y -232+23,在⎣⎢⎡⎦⎥⎤0,12上递减,当y =12时,t 取到最小值,t min =34.3.已知函数y =x 2-2x +3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是(C )A. [1,+∞)B. [0,2]C. [1,2]D. (-∞,2]y =(x -1)2+2,由x 2-2x +3=3得x =0或x =2,由x 2-2x +3=2得x =1,易知1≤m≤2,故选C.4.(2013·湛江模拟)若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值是(B ) A. 正数 B. 负数C. 非负数D. 不能确定正负f (x )=⎝ ⎛⎭⎪⎫x -122+a -14,其对称轴为直线x =12,而 -m ,m +1关于直线x =12对称, 故f (m +1)=f (-m )<0,故选B.二、 填空题(每小题5分,共15分)5. 已知(0.71.3)m <(1.30.7)m,则实数m 的取值范围是 (0,+∞) W.∵0<0.71.3<0.70=1,1.30.7>1.30=1,∴0.71.3<1.30.7.而(0.71.3)m <(1.30.7)m,故m >0.6. 若函数y =mx 2+x +5在[-2,+∞)上是增函数,则m 的取值范围是 ⎣⎢⎡⎦⎥⎤0,14W.由已知条件当m =0或⎩⎪⎨⎪⎧m >0,-12m ≤-2时,函数y =mx 2+x +5在[-2,+∞)上是增函数,解得0≤m≤14.7. 若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k 的取值范围是 ⎝ ⎛⎭⎪⎫12,23 W. 设f (x )=x 2+(k -2)x +2k -1,由题意知⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧2k -1>0,3k -2<0,4k -1>0,解得12<k<23. 三、 解答题(共15分)8.(7分)已知二次函数f (x )的二次项系数为a ,且f (x )>-2x 的解集为{x|1<x <3},方程f (x )+6a =0有两个相等的实根,求 f (x )的解析式.设f (x )+2x =a (x -1)(x -3)(a <0),则f (x )=ax 2-4ax +3a -2x ,∴f (x )+6a =ax 2-(4a +2)x +9a , ∵f (x )+6a =0有两个相等的实根,∴Δ=(4a +2)2-36a 2=0,(3分)∴16a 2+16a +4-36a 2=0,即(5a +1)(a -1)=0,解得a =-15或a =1(舍去).因此f (x )的解析式为f (x )=-15x 2-65x -35.(7分)9.(8分)已知函数f (x )=2x -x m 且f (4)=-72.(1)求m 的值;(2)求f (x )的单调区间.(1)f (4)=24-4m =-72,∴4m=4.∴m =1.故f (x )=2x-x.(4分)(2)由(1)知, f (x )=2·x -1-x , 定义域为(-∞,0)∪(0,+∞),且为奇函数,又y =x -1,y =-x 均为减函数, 故在(-∞,0),(0,+∞)上f (x )均为减函数. ∴f (x )的单调减区间为(-∞,0),(0,+∞).(8分)B 组 提优演练(时间:30分钟 满分:50分)若时间有限,建议选讲3,4,8一、 选择题(每小题5分,共20分)1.已知P =2-32,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是 (B )A. P <Q <RB. Q <R <PC. Q <P <RD. R <Q <P由函数y =x 3在R 上是增函数知⎝ ⎛⎭⎪⎫253<⎝ ⎛⎭⎪⎫123, 由函数y =2x 在R 上是增函数知,2-32 >2-3=⎝ ⎛⎭⎪⎫123,∴P >R >Q.2. 设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是 (D )对于选项A ,C ,都有⎩⎪⎨⎪⎧-b 2a <0,c <0,∴abc <0,故排除A ,C.对于选项B ,D ,都有-b2a>0,即ab <0,则当c <0时,abc >0,故选D.3.(2013·乐山模拟)下面给出四个幂函数的图像,则图像与函数大致对应的是(B )A. ①y =x 13,②y =x 2,③y =x 12,④y =x -1B. ①y =x 3,②y =x 2,③y =x 12,④y =x -1C. ①y =x 2,②y =x 3,③y =x 12,④y =x -1D. ①y =x 12,②y =x 2,③y =x 13,④y =x -1①关于O 点对称,且在(0,+∞)上函数值增得越来越快,指数应大于1且为奇数,则可排除A ,C ,D 项.4. (2013·济南模拟)函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是(A )A. f (1)≥25B. f(1)=25C. f (1)≤25D. f(1)>25由题意知m8≤-2,∴m ≤-16.∴f(1)=9-m≥25,故选A.二、 填空题(每小题5分,共10分)5. 已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是 (0,1) .作出函数y =f (x )的图像如图,则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根.6. 若二次函数y =ax 2+bx +c 的图像与x 轴交于A (-2,0),B (4,0),且函数的最大值为9,则这个二次函数的解析式是 y =-x 2+2x +8 .设y =a (x +2)(x -4),对称轴为x =1,当x =1时,y max =-9a =9,∴a =-1, ∴y =-(x +2)(x -4)=-x 2+2x +8.三、 解答题(共20分)7.(10分)已知函数y =log 2⎝ ⎛⎭⎪⎫ax 2-ax +1a .(1)若函数的定义域为R ,求实数a 的取值范围;(2)若函数的值域为R ,求实数a 的取值范围.(1)∵a≠0,函数的定义域为R ,则ax 2-ax +1a >0恒成立,∴⎩⎪⎨⎪⎧a >0,Δ=(-a )2-4a·1a <0, 解得a∈(0,2).(5分) (2)若函数的值域为R ,则必须满足ax 2-ax +1a 能够取遍所有大于0的数.∴⎩⎪⎨⎪⎧a >0,Δ=(-a )2-4a ·1a ≥0, 解得a∈[2,+∞).(10分) 8.(10分)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a≠0),满足条件f (1+x )=f (1-x ),且方程f (x )=x 有相等的实根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使f (x )的定义域和值域分别为[m ,n]和[3m ,3n]?如果存在,求出m ,n 的值;如果不存在,请说明理由.(1)∵f(x )满足f (1+x )=f (1-x ), ∴f (x )的图像关于直线x =1对称.而二次函数f (x )的对称轴为直线x =-b 2a ,∴-b2a =1. ①又f (x )=x 有相等的实根,即ax 2+(b -1)x =0有相等的实根,∴Δ=(b -1)2=0. ②由①②得b =1,a =-12,∴f (x )=-12x 2+x. (5分)(2)∵f(x )=-12x 2+x =-12(x -1)2+12≤12.若存在满足要求的m ,n ,则必须3n≤12,∴n ≤16.从而m <n≤16<1,又当x≤1时,f (x )单调递增,`可解得m =-4,n =0满足要求.∴存在m =-4,n =0满足要求。
第2讲 函数的单调性与最值基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=1-1x 在[3,4)上( ).A .有最小值无最大值B .有最大值无最小值C .既有最大值又有最小值D .最大值和最小值皆不存在解析 注意到函数f (x )在[3,4)上是增函数,又函数在区间[3,4)上左闭右开,故该函数有最小值无最大值,故选A. 答案 A2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ).A .⎝ ⎛⎭⎪⎫0,34B .⎝ ⎛⎦⎥⎤0,34 C .⎣⎢⎡⎭⎪⎫0,34D .⎣⎢⎡⎦⎥⎤0,34解析 当a =0时,f (x )=-12x +5在(-∞,3)上是减函数;当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34.综上,a 的取值范围是0≤a ≤34. 答案 D3.(2013·泉州月考)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x的取值范围是 ( ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 由f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0. ∴-1<x <0或0<x <1. 答案 C4.(2014·广州模拟)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为 ( ).A .c <b <aB .b <a <cC .b <c <aD .a <b <c解析 ∵函数图象关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 B5.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为( ).A .4B .5C .6D .7解析 由f (x )=min{2x ,x +2,10-x }(x ≥0)画出图象,最大值在A 处取到,联立⎩⎨⎧y =x +2,y =10-x ,得y =6.答案 C 二、填空题6.函数f (x )=log 5(2x +1)的单调增区间是________.解析 由2x +1>0,得x >-12,所以函数的定义域为⎝ ⎛⎭⎪⎫-12,+∞,由复合函数的单调性知,函数f (x )=log 5(2x +1)的单调增区间是⎝ ⎛⎭⎪⎫-12,+∞.答案 ⎝ ⎛⎭⎪⎫-12,+∞7.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析∵f (x )=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a2,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-a 2上单调递减,在⎣⎢⎡⎭⎪⎫-a 2,+∞上单调递增.∴-a2=3,∴a =-6.答案 -68.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析 由a >1知函数f (x )在[a,2a ]上为单调增函数,则log a (2a )-log a a =12,解得a =4. 答案 4 三、解答题 9.试讨论函数f (x )=axx 2-1,x ∈(-1,1)的单调性(其中a ≠0). 解 任取-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴|x 1|<1,|x 2|<1,x 2-x 1>0,x 21-1<0,x 22-1<0,|x 1x 2|<1,即-1<x 1x 2<1, ∴x 1x 2+1>0, ∴(x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1)>0,因此,当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),此时函数为减函数; 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),此时函数为增函数. 10.已知函数f (x )=1a -1x (a >0,x >0). (1)判断函数f (x )在(0,+∞)上的单调性; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.解 (1)任取x 1>x 2>0,则x 1-x 2>0,x 1x 2>0, ∵f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1a -1x 1-⎝ ⎛⎭⎪⎫1a -1x 2=1x 2-1x 1=x 1-x 2x 1x 2>0,∴f (x 1)>f (x 2),因此,函数f (x )是(0,+∞)上的单调递增函数. (2)∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2, 即1a -2=12,1a -12=2. 解得a =25.能力提升题组 (建议用时:25分钟)一、选择题1.(2014·太原一模)下列函数中,在[-1,0]上单调递减的是 ( ).A .y =cos xB .y =-|x -1|C .y =ln2+x2-xD .y =e x +e -x解析 对于A ,结合余弦函数的图象可知,y =cos x 在[-1,0]上是增函数;对于B ,注意到当x =-1,0时,相应的函数值分别是-2,-1,因此函数y =-|x -1|在[-1,0]上不是减函数;对于C ,注意到函数y =ln 2+x2-x =ln ⎝⎛⎭⎪⎫-1+42-x 在[-1,0]上是增函数;对于D ,当x ∈[-1,0]时,y ′=e x-e -x≤0,因此该函数在[-1,0]上是减函数,综上所述,选D.答案 D2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数解析 由题意知a <1,又函数g (x )=x +ax -2a 在[|a |,+∞)上为增函数,故选D. 答案 D 二、填空题3.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,则实数a 的取值范围是________.解析 法一 任取2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2<0恒成立,即当2<x 1<x 2时,x 1x 2>a 恒成立,又x 1x 2>4,则0<a ≤4.法二 f (x )=x +a x ,f ′(x )=1-ax 2>0得f (x )的递增区间是(-∞,-a ),(a ,+∞),由已知条件得a ≤2,解得0<a ≤4. 答案 (0,4] 三、解答题4.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立. (1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围. 解 (1)∵f (-1)=0,∴a -b +1=0,∴b =a +1, ∴f (x )=ax 2+(a +1)x +1.∵对任意实数x 均有f (x )≥0恒成立, ∴⎩⎨⎧ a >0,Δ=(a +1)2-4a ≤0,∴⎩⎨⎧a >0,(a -1)2≤0. ∴a =1,从而b =2,∴f (x )=x 2+2x +1,∴F (x )=⎩⎨⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)g (x )=x 2+2x +1-kx =x 2+(2-k )x +1.∵g (x )在[-2,2]上是单调函数,∴k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.故k 的取值范围是(-∞,-2]∪[6,+∞).。
[B 组 因材施教·备选练习]1.设函数f (x )=x -1x,对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,则实数m 的取值范围是( )A.⎝⎛⎭⎫-∞,-12 B.⎝⎛⎭⎫-12,0 C.⎝⎛⎭⎫-12,12 D. ⎝⎛⎭⎫0,12 解析:对任意x ∈[1,+∞),f (2mx )+2mf (x )<0恒成立,即2mx -12mx+2m ⎝⎛⎭⎫x -1x <0在x ∈[1,+∞)上恒成立,即8m 2x 2-(1+4m 2)2mx<0在x ∈[1,+∞)上恒成立,故m <0,因为8m 2x 2-(1+4m 2)>0在x ∈[1,+∞)上恒成立,所以x 2>1+4m 28m 2在x ∈[1,+∞)上恒成立,所以1>1+4m 28m 2,解得m <-12或m >12(舍去),故m <-12. 答案:A2.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A 、B 两点(B 点在A 点右侧).由规定可知,在A 点左侧、B 点右侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A 、B 之间,|f (x )|<g (x ),故h (x )=-g (x ).因此h (x )有最小值-1,无最大值.答案:C3.(2014年济南模拟)已知二次函数f (x )=ax 2+bx +c 满足f (0)=f (1)=0,且f (x )的最小值是-14. (1)求f (x )的解析式;(2)设函数h (x )=ln x -2x +f (x ),若函数h (x )在区间⎣⎡⎦⎤12,m -1上是单调函数,求实数m 的取值范围.解析:(1)∵f (0)=0,∴c =0,∵f (1)=0,∴b =-a ,∴f (x )=ax 2-ax =a ⎝⎛⎭⎫x -122-a 4, 又f (x )的最小值为-14,∴-a 4=-14,∴a =1,b =-1. ∴f (x )=x 2-x .(2)由(1)得h (x )=ln x -2x +x 2-x =ln x +x 2-3x (x >0),∴h ′(x )=1x +2x -3=(2x -1)(x -1)x. 易知函数h (x )的单调递增区间为⎝⎛⎭⎫0,12,()1,+∞,单调递减区间为⎣⎡⎦⎤12,1. ∴⎩⎪⎨⎪⎧ m -1>12,m -1≤1,∴32<m ≤2.。
2015年高考数学理一轮复习精品资料【新课标版】一、课前小测摸底细1.【课本典型习题,P82第10题】已知幂函数()y f x =的图象过点2(2,),求此函数解析式,并作出图象,判断函数奇偶性、单调性.2. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .3. 【浙江省“六市六校”联盟2014届高考模拟考试数学(文科)试题卷】已知函数()||,f x x x a =-若对任意的[)12,2,x x ∈+∞,且12,x x ≠12()x x -12[()()]0f x f x ->恒成立,则实数a 的取值范围为 .4.【基础经典试题】已知函数的值域是,则实数的取值范围是( ) A .; B .; C .; D .5.【改编自2013年浙江卷】已知,,a b c R ∈,函数2()f x ax bx c =++,若(0)(2)(3)f f f =>,则( ) A 、0,40a a b >+= B 、0,40a a b <+= C 、0,20a a b >+= D 、0,20a a b <+=二、课中考点全掌握考点1 二次函数的解析式 【题组全面展示】【1-1】已知二次函数的图象经过三点01A (,),12B (,),21C -(,)那么这个二次函数的解析式为______. 【1-2】某抛物线的顶点为23-(,),并经过点15-(,),则抛物线的解析式为______. 【1-3】已知:抛物线与x 轴交于(-2,0),(4,0)两点,且过点为(1,-29),则函数解析式为______. 【综合点评】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.【基础知识重温】二次函数的解析式(1)一般式:()2()0f x ax bx c a ≠=++;(2)顶点式:若二次函数的顶点坐标为()h k ,,则其解析式为()2())0(f x a x h k a ≠=-+; (3)两根式:若相应一元二次方程的两根为12,x x ,则其解析式为()12()(0)()f x a x x x x a ≠=--.【方法规律技巧】根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下:【新题变式探究】【变式一】已知二次函数()f x 的图象经过点()4,3,它在x 轴上截得的线段长为2,并且对任意x R ∈,都有()2)2(f x f x -=+,求f (x )的解析式. 【变式二】已知二次函数f (x )同时满足以下条件:(1)()1)1(f x f x +=-; (2)()f x 的最大值为15;(3)()f x =0的两根的立方和等于17. 求()f x 的解析式.【综合点评】确定二次函数解析式需要三个独立条件,往往从对称轴、顶点坐标、与x 轴的交点以及函数图象经过的定点等方面挖掘等量关系.考点2 二次函数的图象和性质 【题组全面展示】【2-1】若0,0x y ≥≥,且21x y +=,则223x y +的最小值是( ) A .2 B .34 C .23D .0 【2-2】设二次函数()22f x ax ax c =-+在区间[]0,1上单调递减,且()()0f m f ≤,则实数m 的取值范围是 ( )( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]【2-3】一次函数y ax b =+与二次函数2y ax bx c =++在同一坐标系中的图象大致是()【2-4】已知函数()2f x x x c =++,若()()000f f p >,<,则必有( )A .1()0f p +>B .1()0f p +<C .1()0f p +=D .()1f p +的符号不能确定【2-5】若函数()221f x x mx =+-在区间[-1,+∞)上递增,则1()f -的取值范围是____________.(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减;在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增对称性函数的图象关于x =-b2a对称【变式1】求函数2()21f x x ax =--在区间[]0,2上的最大值和最小值.【变式2】已知函数()2f x x mx n =++的图象过点()1,3,且() 11() f x f x -+=--对任意实数都成立,函数()y g x =与()y f x =的图象关于原点对称. (1)求()y g x =与()y f x =的解析式;(2)若()()()F x g x f x λ=-在(]1,1-上是增函数,求实数λ的取值范围.【综合点评】二次函数在给定区间的最值问题是通过考虑对称轴和所给区间的位置关系,通过数形结合研究函数的最大值和最小值;当定义域落在对称轴一侧时,二次函数具有单调性.考点3 二次函数的综合应用 【题组全面展示】【3-1】已知函数⎩⎨⎧><≤+-=)1(log )10(44)(20132x xx x x x f ,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++的取值范围是( )A .)2014,2(B .)2015,2(C .)2014,3(D .)2015,3( 【3-2】.已知函数()2f x ax bx c =++,且,0a b c a b c >>++=,则( )(A)()0,1x ∀∈,都有()0f x > (B) ()0,1x ∀∈,都有()0f x < (C)()00,1x ∃∈,使得()00f x = (D) ()00,1x ∃∈,使得()00f x >【3-3】若函数2()|(21)(2)|f x mx m x m =-+++恰有四个单调区间,则实数m 的取值范围( ) A.14m <B. 14m < 且0m ≠C. 104m << D. 14m > 【3-4】已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,对任意实数x 都有(1)=(1+)f x f x -成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是( )A .10b -<<B .2b >C .1b <-或2b >D .不能确定 【3-5】设函数()f x x x bx c =++,给出下列四个命题:①0c =时,f (x )是奇函数;②00b c >=,时,方程()0f x =只有一个实根; ③()f x 的图象关于(0)c ,对称; ④方程()0f x =至多有两个实根. 其中正确的命题是A .①④B .①③C .①②③D .②④【综合点评】有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.【基础知识重温】1、二次函数与二次方程、二次不等式统称“三个二次”,它们常有机结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.2、二次函数、一元二次方程及一元二次不等式之间的关系当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔ 20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞。
[课堂练通考点]1.(2014·南昌质检)往外埠投寄平信,每封信不超过20 g ,付邮费0.80元,超过20 g 而不超过40 g ,付邮费1.60元,依此类推,每增加20 g 需增加邮费0.80元(信的质量在100 g 以内).如果某人所寄一封信的质量为72.5 g ,则他应付邮费( )A .3.20元B .2.90元C .2.80元D .2.40元解析:选A 由题意得20×3<72.5<20×4,则应付邮费0.80×4=3.20(元).故选A. 2.(2014·广州模拟)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意.故选D.3.一种产品的成本原为a 元,在今后的m 年内,计划使成本平均每年比上一年降低p %,成本y 是关于经过年数x (0<x ≤m )的函数,其关系式y =f (x )可写成____________________.解析:依题意有y =a (1-p %)x (0<x ≤m ). 答案:y =a (1-p %)x (0<x ≤m )4.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为yx (万元).则y x =x 5+8 000x-48≥2x 5·8 000x-48=32,当且仅当x 5=8 000x ,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元,则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数, ∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润,最大利润是1 660万元.[课下提升考能]第Ⅰ组:全员必做题1.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图像为( )解析:选D 注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 3.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )A .①B .①②C .①③D .①②③解析:选A 由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.4.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00解析:选C 当x ∈[0,4]时,设y =k 1x , 把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入得⎩⎪⎨⎪⎧4k 2+b =320,20k 2+b =0.解得⎩⎪⎨⎪⎧k 2=-20,b =400.∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20.由y ≥240,得⎩⎪⎨⎪⎧ 0≤x ≤4,80x ≥240,或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8, ∴3≤x ≤8.故第二次服药最迟应在当日下午4:00.故选C.5.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S .则S 最小时,电梯所停的楼层是( )A .7层B .8层C .9层D .10层解析:选C 设所停的楼层为n 层,则2≤n ≤12,由题意得:S =2+4+…+2(12-n )+1+2+3+…+(n -2)=(12-n )(26-2n )2+(n -2)[1+(n -2)]2=32n 2-532n +157,其对称轴为n =536∈(8,9),又n ∈N *且n 离9的距离较近,故选C.6.一高为H ,满缸水量为V 的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h )的大致图像可能是图中的________.解析:当h =0时,v =0可排除①、③;由于鱼缸中间粗两头细,∴当h 在H2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H2时,增加越来越慢.答案:②7.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析:设长为a cm ,宽为b cm ,则ab =600 cm ,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486 cm 2.答案:30 cm,20 cm8.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.解析:七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,则一月份到十月份的销售总额是3 860+500+2 [500(1+x %)+500(1+x %)2],根据题意有3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000, 即25(1+x %)+25(1+x %)2≥66, 令t =1+x %,则25t 2+25t -66≥0, 解得t ≥65或者t ≤-115(舍去),故1+x %≥65,解得x ≥20. 答案:209.(2013·昆明质检)某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系; (2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:请你计算该家庭去年支付水费的月平均费用(精确到1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:据此估计该地“节约用水家庭”的比例. 解:(1)y 关于x 的函数关系式为 y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x =3时,y =6; 当x =4时,y =8;当x =5时,y =12; 当x =6时,y =16;当x =7时,y =22. 所以该家庭去年支付水费的月平均费用为 112(6×1+8×3+12×3+16×3+22×2)≈13(元). (3)由(1)和题意知:当y ≤12时,x ≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.10.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t +21-t(t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围.解:(1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t =y ,则0<y ≤1, ∴m ≥2(y -y 2)恒成立, 由于y -y 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 第Ⅱ组:重点选做题1.(2014·威海高三期末)对于函数f (x ),如果存在锐角θ,使得f (x )的图像绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f (x )具备角θ的旋转性,下列函数具备角π4的旋转性的是( )A .y =xB .y =ln xC .y =⎝⎛⎭⎫12xD .y =x 2解析:选C 函数f (x )的图像绕坐标原点逆时针旋转角π4,相当于x 轴、y 轴绕坐标原点顺时针旋转角π4,问题转化为直线y =x +k 与函数f (x )的图像不能有两个交点,结合图像可知y =⎝⎛⎭⎫12x 与直线y =x +k 没有两个交点,故选C.2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资).解析:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案:y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *) 16。
方法强化练——函数与基本初等函数(建议用时:75分钟)一、选择题1.(2014·珠海模拟)函数y =(x +1)02x +1的定义域为( ).A .⎝ ⎛⎭⎪⎫-12,+∞B.⎝ ⎛⎭⎪⎫-12,-1∪(-1,+∞) C .⎣⎢⎡⎭⎪⎫12,+∞D.⎣⎢⎡⎭⎪⎫-12,-1∪(-1,+∞) 解析 由⎩⎨⎧x +1≠0,2x +1>0,得x ∈⎝ ⎛⎭⎪⎫-12,+∞.答案 A2.(2013·金华十校联考)下列函数中既不是奇函数也不是偶函数的是 ( ). A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析 根据奇偶性的定义易知A 、C 为偶函数,B 为奇函数,D 的定义域为{x |x >-1},不关于原点对称. 答案 D3.(2013·山东省实验中学诊断)已知幂函数f (x )的图象经过(9,3),则f (2)-f (1)=( ). A .3 B .1-2 C .2-1D .1解析 设幂函数为f (x )=x α,则f (9)=9α=3,即32α=3,所以2α=1,α=12,即f (x )=x 12=x ,所以f (2)-f (1)=2-1,选C. 答案 C4.(2013·郑州模拟)函数f (x )=ln(x +1)-2x 的零点所在的大致区间是 ( ).A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析 因为f (1)=ln 2-2<0,f (2)=ln 3-1>0,所以函数的零点所在的大致区间是(1,2),选B. 答案 B5.(2014·天水调研)函数f (x )=(x +1)ln x 的零点有 ( ).A .0个B .1个C .2个D .3个解析 函数的定义域为{x |x >0},由f (x )=(x +1)ln x =0得,x +1=0或ln x =0,即x =-1(舍去)或x =1,所以函数的零点只有一个,选B. 答案 B6.(2014·烟台月考)若a =log 20.9,b =3-13 ,c =⎝ ⎛⎭⎪⎫1312,则 ( ).A .a <b <cB .a <c <bC .c <a <bD .b <c <a解析 a =log 20.9<0,b =⎝ ⎛⎭⎪⎫1313 >⎝ ⎛⎭⎪⎫1312=c >0.答案 B7.(2013·潍坊二模)函数y =⎝ ⎛⎭⎪⎫12|x +1|的大致图象为( ).解析 因为y =⎝ ⎛⎭⎪⎫12|x +1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x +1,x ≥-1,2x +1,x <-1,所以图象为B.答案 B8.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则 f (-log 35)的值为( ). A .-4 B .4 C .-6D .6解析 由题意f (0)=0,即1+m =0, 所以m =-1,f (-log 35)=-f (log 35) =-(3-1)=-4.答案 A9.(2014·衡水模拟)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为 ( ).A .45.606B .45.6C .45.56D .45.51解析 设在甲地销售x 辆车,则在乙地销售15-x 辆车,获得的利润为 y =5.06x -0.15x 2+2×(15-x )=-0.15x 2+3.06x +30, 当x =-3.062×(-0.15)=10.2时,y 最大,但x ∈N ,所以当x =10时,y max =-15+30.6+30=45.6. 答案 B10.(2013·陕西卷)设[x ]表示不大于x 的最大整数,则对任意实数x ,y ,有( ).A .[-x ]=-[x ]B .⎣⎢⎡⎦⎥⎤x +12=[x ]C .[2x ]=2[x ]D .[x ]+⎣⎢⎡⎦⎥⎤x +12=[2x ]解析 特值法 对A ,设x =-1.8,则[-x ]=1,-[x ]=2,所以A 选项为假;对B ,设x =1.8,则⎣⎢⎡⎦⎥⎤x +12=2,[x ]=1,所以B 选项为假;对C ,设x =-1.4,[2x ]=[-2.8]=-3,2[x ]=-4,所以C 选项为假.故D 选项为真,所以选D. 答案 D 二、填空题11.(2013·湖南卷)函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为________.解析 因为g (x )=x 2-4x +4=(x -2)2,所以作出函数f (x )=ln x 与g (x )=x 2-4x +4=(x -2)2的图象,由图象可知两函数图象的交点个数有2个.答案 212.(2013·长沙期末考试)设f (x )=⎩⎨⎧x 2,x <0,2x ,x ≥0,则f [f (-1)]=________.解析 f (-1)=(-1)2=1,所以f [f (-1)]=f (1)=21=2. 答案 213.(2014·郑州模拟)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________. 解析 g (x )=|x -a |的增区间为[a ,+∞), ∴f (x )=e |x -a |的增区间为[a ,+∞). ∵f (x )在[1,+∞)上是增函数, ∴[1,+∞)⊆[a ,+∞),∴a ≤1. 答案 (-∞,1]14.(2013·滨州一模)定义在R 上的偶函数f (x ),且对任意实数x 都有f (x +2)=f (x ),当x ∈[0,1)时,f (x )=x 2,若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围是________.解析 由f (x +2)=f (x )得函数的周期为2.由g (x )=f (x )-kx -k =0,得f (x )=kx +k =k (x +1),分别作出函数y =f (x ),y =k (x +1)的图象,设A (3,1), B (-1,0),要使函数有4个零点,则直线y =k (x +1)的斜率0<k ≤k AB ,因为k AB =1-03-(-1)=14,所以0<k ≤14,即实数k 的取值范围是⎝ ⎛⎦⎥⎤0,14.答案 ⎝ ⎛⎦⎥⎤0,14 15.(2014·扬州质检)对于函数f (x )=x |x |+px +q ,现给出四个命题: ①q =0时,f (x )为奇函数; ②y =f (x )的图象关于(0,q )对称;③p =0,q >0时,方程f (x )=0有且只有一个实数根; ④方程f (x )=0至多有两个实数根. 其中正确命题的序号为________.解析 若q =0,则f (x )=x |x |+px =x (|x |+p )为奇函数,所以①正确;由①知,当q =0时,f (x )为奇函数,图象关于原点对称,f (x )=x |x |+px +q 的图象由函数f (x )=x |x |+px 向上或向下平移|q |个单位,所以图象关于(0,q )对称,所以②正确;当p =0,q >0时,f (x )=x |x |+q =⎩⎨⎧x 2+q ,x ≥0,-x 2+q ,x <0,当f (x )=0,得x =-q ,只有一解,所以③正确;取q =0,p =-1,f (x )=x |x |-x =⎩⎨⎧x 2-x ,x ≥0, -x 2-x ,x <0,由f (x )=0,可得x =0,x =±1有三个实根,所以④不正确.综上正确命题的序号为①②③. 答案 ①②③ 三、解答题16.(2013·贵阳诊断)函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和 (1,-1).(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值. 解 (1)由⎩⎨⎧ f (8)=2,f (1)=-1,得⎩⎨⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x . (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥ 2(x -1)·1x -1+2=4.当且仅当x -1=1x -1,即x =2时,等号成立.而函数y =log 2x 在(0,+∞)上单调递增,则log 2 x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.17.(2014·齐齐哈尔调研)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点,已知函数f (x )=ax 2+(b +1)x +b -1(a ≠0).(1)当a =1,b =-2时,求f (x )的不动点;(2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围. 解 (1)当a =1,b =-2时,f (x )=x 2-x -3,由题意可知x =x 2-x -3,得x 1=-1,x 2=3.故当a =1,b =-2时,f (x )的不动点是-1,3.(2)∵f (x )=ax 2+(b +1)x +b -1(a ≠0)恒有两个不动点,∴x =ax 2+(b +1)x +b -1,即ax 2+bx +b -1=0恒有两相异实根, ∴Δ=b 2-4ab +4a >0(b ∈R )恒成立.于是Δ′=(4a )2-16a <0解得0<a <1,故当b ∈R ,f (x )恒有两个相异的不动点时的a 的范围是(0,1).18.(2014·湖州调研)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这种商品的生产中所获利润最大? 解 (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得,当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250.当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x +1 450-250=1 200-⎝ ⎛⎭⎪⎫x +10 000x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250(0<x <80),1 200-⎝ ⎛⎭⎪⎫x +10 000x (x ≥80).(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元. 当x ≥80时,L (x )=1 200-⎝ ⎛⎭⎪⎫x +10 000x ≤1 200-2x ·10 000x =1 200-200=1 000.此时,当x =10 000x ,即x =100时,L (x )取得最大值1 000万元.因为950<1 000,所以,当年产量为100千件时,该厂在这种商品的生产中所获利润最大,最大利润为1 000万元.。
第11讲 导数的应用(一)基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=(x -3)e x 的单调递增区间是 ( ).A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析 f ′(x )=e x (x -2), 令f ′(x )>0得x >2.∴f (x )的单调增区间是(2,+∞). 答案 D2.(2013·浙江卷)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( ).解析 由y =f ′(x )的图象知,y =f (x )的图象为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B3.(2014·韶关模拟)函数y =x e x 的最小值是 ( ). A .-1 B .-e C .-1eD .不存在解析 y ′=e x +x e x =(1+x )e x ,令y ′=0,则x =-1,因为x <-1时,y ′<0,x >-1时,y ′>0,所以x =-1时,y min =-1e . 答案 C4.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则 ( ).A .a <-1B .a >-1C.a>-1e D.a<-1e解析∵y=e x+ax,∴y′=e x+a.∵函数y=e x+ax有大于零的极值点,则方程y′=e x+a=0有大于零的解,∵x>0时,-e x<-1,∴a=-e x<-1.答案 A5.(2013·福建卷)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是().A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析A错,因为极大值未必是最大值;B错,因为函数y=f(x)与函数y=f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点;C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的极小值点;D正确,函数y=f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的极小值点.答案 D二、填空题6.(2013·威海期末考试)函数y=ln x-x2的极值点为________.解析函数的定义域为(0,+∞),函数的导数为y′=1x-2x=1-2x2x,令y′=1-2x2x=0,解得x=22,当x>22时,y′<0,当0<x<22时,y′>0,所以当x=22时,函数取得极大值,故函数的极值点为22.答案2 27.已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.解析 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案 (0,1)∪(2,3)8.(2014·淄博模拟)已知f (x )=x 3+3ax 2+bx +a 2,在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则⎩⎨⎧ a 2+3a -b -1=0,b -6a +3=0,解得⎩⎨⎧ a =1,b =3或⎩⎨⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 答案 -7 三、解答题9.(2014·绍兴模拟)已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值. (1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0.① 当x =23时,y =f (x )有极值, 则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0.②由①②,解得a =2,b =-4.由于切点的横坐标为x =1,所以f (1)=4. 所以1+a +b +c =4,所以c =5. (2)由(1),可得f (x )=x 3+2x 2-4x +5, 所以f ′(x )=3x 2+4x -4. 令f ′(x )=0,解得x =-2或23.当x 变化时,f ′(x ),f (x )的变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.10.(2013·济南模拟)已知函数f (x )=(ax 2+x -1)e x ,其中e 是自然对数的底数,a ∈R .(1)若a =1,求曲线f (x )在点(1,f (1))处的切线方程; (2)若a <0,求f (x )的单调区间. 解 (1)当a =1时,f (x )=(x 2+x -1)e x ,所以f ′(x )=(2x +1)e x +(x 2+x -1)e x =(x 2+3x )e x ,所以曲线f (x )在点(1,f (1))处的切线斜率为k =f ′(1)=4e ,又因为f (1)=e ,所以所求切线方程为y -e =4e(x -1),即4e x -y -3e =0. (2)f ′(x )=(2ax +1)e x +(ax 2+x -1)e x =[ax 2+(2a +1)x ]e x ,①若-12<a <0,当x <0或x >-2a +1a 时,f ′(x )<0; 当0<x <-2a +1a 时,f ′(x )>0.所以f (x )的单调递减区间为(-∞,0],⎣⎢⎡⎭⎪⎫-2a +1a ,+∞;单调递增区间为⎣⎢⎡⎦⎥⎤0,-2a +1a .②若a =-12,f ′(x )=-12x 2e x ≤0,所以f (x )的单调递减区间为(-∞,+∞). ③若a <-12,当x <-2a +1a 或x >0时,f ′(x )<0; 当-2a +1a <x <0时,f ′(x )>0.所以f (x )的单调递减区间为⎝⎛⎦⎥⎤-∞,-2a +1a ,[0,+∞);单调递增区间为⎣⎢⎡⎦⎥⎤-2a +1a ,0. 能力提升题组 (建议用时:25分钟)一、选择题1.函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数解析 由函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,可得a <1,又g (x )=f (x )x =x +a x -2a ,则g ′(x )=1-ax 2,易知在x ∈(1,+∞)上g ′(x )>0,所以g (x )在(1,+∞)上为增函数. 答案 D2.(2013·临沂模拟)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ).A .2B .3C .6D .9解析 ∵f ′(x )=12x 2-2ax -2b , Δ=4a 2+96b >0,又x =1是极值点, ∴f ′(1)=12-2a -2b =0,即a +b =6,∴ab ≤(a +b )24=9,当且仅当a =b 时“=”成立,所以ab 的最大值为9. 答案 D 二、填空题3.(2014·宁波调研)设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________. 解析 f (x )的定义域为(0,+∞),f′(x)=1x-ax-b,由f′(1)=0,得b=1-a.∴f′(x)=1x-ax+a-1=-(ax+1)(x-1)x.①若a≥0,当0<x<1时,f′(x)>0,此时f(x)单调递增;当x>1时,f′(x)<0,此时f(x)单调递减;所以x=1是f(x)的极大值点.②若a<0,由f′(x)=0,得x=1或-1 a.因为x=1是f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②得a的取值范围是a>-1.答案(-1,+∞)三、解答题4.(2014·黄冈模拟)已知函数f(x)=13x3-ax+1.(1)当x=1时,f(x)取得极值,求a的值;(2)求f(x)在[0,1]上的最小值.解因为f′(x)=x2-a,(1)当x=1时,f(x)取得极值,所以f′(1)=1-a=0,a=1,又当x∈(-1,1)时,f′(x)<0;x∈(1,+∞)时,f′(x)>0,所以f(x)在x=1处取得极小值,即a=1时符合题意.(2)①当a≤0时,f′(x)>0对x∈(0,1)恒成立,所以f(x)在(0,1)上单调递增,f(x)在x=0处取得最小值f(0)=1.②当a>0时,令f′(x)=x2-a=0,解得x=-a或a.ⅰ.当0<a<1时,a<1,当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,1)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得最小值f(a)=1-2a a 3.ⅱ.当a≥1时,a≥1.x∈(0,1)时,f′(x)<0,f(x)单调递减,所以f(x)在x=1处取得最小值f(1)=43-a.综上所述,当a≤0时,f(x)在x=0处取得最小值f(0)=1,当0<a<1时,f(x)在x=a处取得最小值f(a)=1-2a a3,当a≥1时,f(x)在x=1处取得最小值f(1)=43-a.。
2015 届高考数学(文科)一轮总复习导数及其应用第三篇导数及其应用第 1 讲导数的观点及运算基础稳固题组( 建议用时: 40 分钟 )一、填空题1.(2014 ?深圳中学模拟 ) 曲线 y =x3 在原点处的切线方程为 ________.分析∵ y′= 3x2 ,∴= y′ |x = 0= 0,∴曲线 y= x3 在原点处的切线方程为y= 0.答案y= 02 .已知 f(x)=xlnx,若f′ (x0)=2,则x0=________.分析f(x)的定义域为(0,+∞ ),f′ (x)=lnx+1,由 f ′ (x0) = 2,即 lnx0 + 1= 2,解得 x0= e.答案 e3 .(2014 ?辽宁五校联考 ) 曲线 y= 3lnx +x+ 2 在点 P0 处的切线方程为 4x- y- 1= 0,则点 P0 的坐标是 ________.分析由题意知 y′= 3x+1= 4,解得 x= 1,此时 4× 1 -y- 1=0,解得 y= 3,∴点 P0 的坐标是 (1,3) .答案 (1,3)4 .(2014 ?烟台期末 ) 设函数 f(x)=xsinx+cosx的图象在点 (t ,f(t))处切线的斜率为,则函数=g(t)的部分图象为 ________.分析函数 f(x)的导函数为 f ′ (x) =(xsinx+cosx)′=xcosx ,即= g(t) = tcost ,则函数 g(t) 为奇函数,图象对于原点对称,清除①,③ . 当 0< t <π 2 时, g(t) > 0,因此清除④,选② .答案②5.曲线 y= sinxsinx + cosx - 12 在点π 4, 0 处的切线的斜率为 ________.分析y′= cos2x + sin2x sinx + cosx2= 11+sin2x ,故所求切线斜率==12.答案126.(2013 ?广东卷 ) 若曲线 y= ax2 - lnx 在点 (1 ,a) 处的切线平行于 x 轴,则 a= ________.分析y′= 2ax- 1x ,∴ y′ |x = 1=2a- 1= 0,∴a=12.7 答案12.已知 f(x)=x2+3xf′ (2),则f′ (2)=________. 分析由题意得 f ′ (x) = 2x+ 3f ′ (2) ,∴f ′ (2) = 2× 2+ 3f ′(2) ,∴ f ′ (2) =- 2.答案- 28 .(2013 ?江西卷 ) 若曲线 y=xα+ 1( α∈ R)在点 (1,2) 处的切线经过坐标原点,则α= ________.分析y′=α xα- 1,∴斜率= y ′ |x = 1=α= 2- 01-0= 2,∴α= 2.答案 2二、解答题9.求以下函数的导数:(1)y=ex?lnx;(2)y=xx2+1x+1x3;(3)y=x-sinx2cosx2;(4)y=(x+1)1x-1.解(1)y ′= (ex ?lnx) ′= exlnx + ex ?1x = exlnx +1x.(2)∵ y= x3 +1+ 1x2,∴ y ′= 3x2- 2x3.(3)先使用三角公式进行化简,得y =x- sinx2cosx2 = x- 12sinx ,∴ y′=x- 12sinx ′= x′-12(sinx) ′= 1- 12cosx.(4)先化简, y = x?1x-x+ 1x - 1=,∴y′= n=- 12x1+ 1x.10 .(2014 ?南通二模 )f(x)=ax-1x,g(x)=lnx,x>0,a∈ R 是常数.(1)求曲线 y = g(x) 在点 P(1 , g(1)) 处的切线 l.(2)能否存在常数 a,使 l 也是曲线 y= f(x) 的一条切线.若存在,求 a 的值;若不存在,简要说明原因.解 (1) 由题意知, g(1) = 0,又 g′(x) = 1x, g′ (1)=1,因此直线 l 的方程为 y= x- 1.(2)设 y=f(x) 在 x= x0 处的切线为 l ,则有ax0 - 1x0= x0- 1, a+1x20 = 1,解得 x0= 2,a= 34,此时 f(2)=1,即当 a=34 时, l 是曲线 y= f(x)在点Q(2,1)的切线.能力提高题组( 建议用时: 25 分钟 )一、填空题1.(2014 ?盐城一模 ) 设 P 为曲线 c :y= x2+ 2x+ 3 上的点,且曲线 c 在点 P 处切线倾斜角的取值范围是0,π 4,则点 P 横坐标的取值范围是________.分析设 P(x0 , y0) ,倾斜角为α,y′= 2x+2,则=tan α= 2x0+ 2∈ [0,1],解得x0∈-1,-12.答案- 1,- 122 .设f0(x)=sinx,f1(x)=f0′ (x),f2(x)=f1′(x) ,, fn(x)=f′ n-1(x),n∈ N*,则f2013(x)=________.分析f1(x) = f0 ′ (x) = cosx , f2(x) = f1 ′ (x) =-4 / 6sinx ,f3(x) =f2 ′(x) =-cosx ,f4(x) =f3 ′(x) =sinx ,,由规律知,这一系列函数式值的周期为4,故f2013(x)f1(x) = cosx.答案cosx3 .(2014 ?武汉中学月考) 已知曲线f(x) = xn+ 1(n ∈ N*)与直线 x= 1 交于点轴交点的横坐标为P,设曲线y= f(x)xn ,则log2013x1在点 P 处的切线与x+ log2013x2 ++log2013x2012 的值为________.分析 f ′ (x) = (n + 1)xn ,=f ′(1) = n+1,点 P(1,1) 处的切线方程为y- 1= (n + 1)(x - 1) ,令 y= 0,得 x = 1- 1n+ 1= nn+1,即 xn= nn+ 1,∴ x1 ?x2 ? ? x2012 = 12 × 23 × 34 × × 20112012 ×20122013 = 12013 ,则log2013x1+log2013x2++log2013x2012=log2013(x1x2x2012) =- 1.答案- 1二、解答题4 .设函数处的切线方程为f(x)=ax-bx,曲线7x- 4y- 12= 0.y= f(x) 在点(2 ,f(2))(1)求 f(x) 的分析式;(2)证明:曲线 y= f(x) 上任一点处的切线与直线x= 0和直线 y= x 所围成的三角形面积为定值,并求此定值.(1)解方程 7x-4y- 12=0 可化为 y= 74x-3,当 x= 2 时, y= 12. 又 f ′(x) = a+ bx2,于是 2a- b2=12, a+b4= 74,解得 a=1, b= 3. 故 f(x)=x-3x.(2)证明设P(x0,y0)为曲线上任一点,由 f ′ (x) = 1+ 3x2 知曲线在点 P(x0 ,y0) 处的切线方程为 y- y0= 1+ 3x20(x - x0) ,即 y- (x0 - 3x0) = 1+3x20(x - x0) .令 x=0,得 y=- 6x0,进而得切线与直线x= 0 交点坐标为0,- 6x0.令 y= x,得 y= x= 2x0,进而得切线与直线 y= x 的交点坐标为 (2x0,2x0) .因此点 P(x0 ,y0) 处的切线与直线x=0,y=x 所围成的三角形面积为12- 6x0|2x0| = 6.故曲线y= f(x) 上任一点处的切线与直线x= 0 和直线y = x 所围成的三角形面积为定值,此定值为 6.。
第6讲 幂函数与二次函数一、选择题1.已知幂函数y =f (x )的图像经过点⎝ ⎛⎭⎪⎫4,12,则f (2)=( ) A.14B .4 C.22 D. 2解析 设f (x )=x α,因为图像过点⎝ ⎛⎭⎪⎫4,12,代入解析式得:α=-12,∴f (2)=2-12=22. 答案 C2.若函数f (x )是幂函数,且满足f 4f 2=3,则f (12)的值为( ) A .-3B .-13C .3D.13 解析 设f (x )=x α,则由f 4f 2=3,得4α2α=3. ∴2α=3,∴f (12)=(12)α=12α=13. 答案 D3.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( ). A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)解析 f (a )=g (b )⇔e a -1=-b 2+4b -3⇔e a =-b 2+4b -2成立,故-b 2+4b -2>0,解得2-2<b <2+ 2.答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于 ( ). A .-3 B .-1 C .1 D .3解析 f (a )+f (1)=0⇔f (a )+2=0⇔⎩⎪⎨⎪⎧ a >0,2a +2=0或⎩⎪⎨⎪⎧a ≤0,a +1+2=0,解得a = -3.答案 A5 .函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b 2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ).A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}解析 设关于f (x )的方程m [f (x )]2+nf (x )+p =0有两根,即f (x )=t 1或f (x )=t 2. 而f (x )=ax 2+bx +c 的图象关于x =-b2a 对称,因而f (x )=t 1或f (x )=t 2的两根也关于x =-b 2a 对称.而选项D 中4+162≠1+642. 答案 D6.二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是( ). A .3 B .4 C .5 D .6解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a+b =0,a =-b ,-b 2a =12,又b 2-4ac >0,a (a -4)>0,a >4,由于a 为正整数,即a 的最小值为5.答案 C二、填空题7.对于函数y =x 2,y =x 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图像关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图像都是抛物线型.其中正确的有________.解析 从两个函数的定义域、奇偶性、单调性等性质去进行比较.答案 ①②⑤⑥8.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析 由已知得⎩⎪⎨⎪⎧ a >0,4ac -164a =0⇒⎩⎪⎨⎪⎧a >0,ac -4=0. 答案 a >0,ac =49.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.解析 ∵⎩⎪⎨⎪⎧ α+β=m ,α·β=1,∴m =β+1β. ∵β∈(1,2)且函数m =β+1β在(1,2)上是增函数, ∴1+1<m <2+12,即m ∈⎝ ⎛⎭⎪⎫2,52. 答案 ⎝ ⎛⎭⎪⎫2,52 10.已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.解析 当x <1时,g (x )<0,当x >1时,g (x )>0,当x =1时,g (x )=0,m =0不符合要求;当m >0时,根据函数f (x )和函数g (x )的单调性,一定存在区间[a ,+∞)使f (x )≥0且g (x )≥0,故m >0时不符合第①条的要求;当m <0时,如图所示,如果符合①的要求,则函数f (x )的两个零点都得小于1,如果符合第②条要求,则函数f (x )至少有一个零点小于-4,问题等价于函数f (x )有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f (x )的两个零点是2m ,-(m +3),故m 满足⎩⎪⎨⎪⎧ m <0,2m <-(m +3),2m <-4,-(m +3)<1或⎩⎪⎨⎪⎧ m <0,-(m +3)<2m ,2m <1,-(m +3)<-4,解第一个不等式组得-4<m <-2,第二个不等式组无解,故所求m 的取值范围是(-4,-2). 答案 (-4,-2)三、解答题11.设f (x )是定义在R 上以2为最小正周期的周期函数.当-1≤x <1时,y =f (x )的表达式是幂函数,且经过点⎝⎛⎭⎫12,18.求函数在[2k -1,2k +1)(k ∈Z )上的表达式.解 设在[-1,1)上,f (x )=x n ,由点⎝⎛⎭⎫12,18在函数图象上,求得n =3.令x ∈[2k -1,2k +1),则x -2k ∈[-1,1),∴f (x -2k )=(x -2k )3.又f (x )周期为2,∴f (x )=f (x -2k )=(x -2k )3.即f (x )=(x -2k )3(k ∈Z ).12.已知函数f (x )=x 2+2ax +3,x ∈[-4, 6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)[理]当a =1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图像开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6 或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧ x 2+2x +3,x ∈,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].13.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,求实数a 的取值范围.解 不等式ax 2-2x +2>0等价于a >2x -2x 2, 设g (x )=2x -2x 2,x ∈(1,4),则 g ′(x )=2x 2-x -x x 4=-2x 2+4x x 4=-2x x -x 4, 当1<x <2时,g ′(x )>0,当2<x <4时,g ′(x )<0,g (x )≤g (2)=12,由已知条件a >12, 因此实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 14.已知函数f (x )=x -k 2+k +2(k ∈Z )满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为⎣⎡⎦⎤-4,178?若存在,求出q ;若不存在,请说明理由. 解 (1)∵f (2)<f (3),∴f (x )在第一象限是增函数.故-k 2+k +2>0,解得-1<k <2.又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设,由(1)知g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝⎛⎭⎫2q -12q ,4q 2+14q 处取得.而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q ≥0,∴g (x )max =4q 2+14q =178, g (x )min =g (-1)=2-3q =-4.解得q =2,∴存在q =2满足题意.。
阶段性测试题二(函 数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13)D .(-∞,-13)[答案]B [解析]为使f (x )=3x 21-x+lg(3x +1)有意义,须⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,故选B.(理)(2014·某某省某某市期中)已知函数f (x )的定义域为(0,1),则函数f (2x +1)的定义域为( )A .(-1,1)B .(-12,0)C .(-1,0)D .(12,1)[答案]B[解析]要有f (2x +1)有意义,应有0<2x +1<1, ∴-12<x <0,故选B.2.(2014·某某三中期中)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) [答案]C[解析]∵f (0)·f (1)=(e 0-2)·(e -1)<0,∴选C.3.(文)(2014·枣庄市期中)函数y =16-3x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4) [答案]C[解析]要使函数有意义,应有16-3x ≥0,∴3x ≤16, 又3x >0,∴0<3x ≤16,∴0≤16-3x <16,∴0≤y <4,故选C.(理)(2014·海淀期中)下列函数中,值域为(0,+∞)的函数是( ) A .f (x )=x B .f (x )=ln x C .f (x )=2x D .f (x )=tan x [答案]C[解析]∵x ≥0,ln x ∈R,2x >0,tan x ∈R ,∴选C.4.(文)(2014·某某省金昌市二中期中)设a =0.32,b =20.3,c =log 0.34,则( ) A .b <a <c B .c <b <a C .b <c <a D .c <a <b [答案]D[解析]∵0<0.32<1,20.3>20=1,log 0.34<log 0.31=0,∴c <a <b . (理)(2014·某某区期中)若0<m <1,则( ) A .log m (1+m )>log m (1-m ) B .log m (1+m )>0 C .1-m >(1+m )2 D .(1-m )13>(1-m )12[答案]D[解析]∵0<m <1,∴1<m +1<2,0<1-m <1,∴y =log m x 为减函数,y =(1-m )x 为减函数,∴log m (1+m )<log m 1<log m (1-m ),A 、B 错;(1+m )2>1>1-m ,C 错;(1-m )13>(1-m )12,故正确答案为D.5.(2014·某某省某某市期中)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=3,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2 [答案]C[解析]∵f (1)=1,f (2)=3,f (x )为奇函数, ∴f (-1)=-1,f (-2)=-3,∵f (x )周期为5, ∴f (8)-f (4)=f (-2)-f (-1)=-2.6.(文)(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知函数f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0,则f [f (116)]=( )A .9B .-19C.19D .-9 [答案]C[解析]∵f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0∴f (116)=log 4116=-2,f [f (116)]=f (-2)=3-2=19,故选C.(理)(2014·某某某某十中期中)若f (x )=⎩⎪⎨⎪⎧2-x (x ≥3),f (x +3)(x <3),则f (-4)等于( )A .2 B.12C .32 D.132[答案]D[解析]∵f (x )=⎩⎪⎨⎪⎧2-x (x ≥3),f (x +3)(x <3),∴f (-4)=f (-1)=f (2)=f (5)=2-5=132.7.(文)(2014·某某省实验中学期中)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos2xB .y =log 2|x |C .y =e x -e -x 2D .y =x 3+1[答案]B[解析]y =x 3+1是非奇非偶函数;y =e x -e -x2为奇函数;y =cos2x 在(1,2)内不是单调增函数,故选B.(理)(2014·某某梅县东山中学期中)下列函数中,既是偶函数又在(0,+∞)上是单调递增的是()A.y=2|x+1|B.y=x2+2|x|+3C.y=cos x D.y=log0.5|x|[答案]B[解析]y=2|x+1|是非奇非偶函数;y=cos x在(0,+∞)上不是单调增函数,y=log0.5|x|在(0,+∞)上单调递减,故选B.8.(2014·某某省闽侯二中、永泰二中、连江侨中、长乐二中联考)定义在R上的函数f(x)满足f(x+3)=-f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2013)=()A.338 B.337C.1678 D.2013[答案]B[解析]∵定义在R上的函数f(x)满足f(x+3)=-f(x),∴f(x+6)=f[(x+3)+3]=-f(x+3)=f(x),∴f(x)是周期为6的周期函数.又当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,2013=6×335+3,故f(1)+f(2)+f(3)+…+f(2013)=335(1+2-1+0-1+0)+1+2-1=337,选B.9.(文)(2014·枣庄市期中)如图是X大爷离开家晨练过程中离家距离y与行走时间x之间函数关系的图象.若用黑点表示X大爷家的位置,则X大爷散步行走的路线可能是()[答案]D[解析]由图象知,X大爷散步时,离家的距离y随散步行走时间x的变化规律是,先均速增加,中间一段时间保持不变,然后匀速减小,故选D.(理)(2014·某某市一诊)函数f(x)=(1-1x2)sin x的图象大致为()[答案]A[解析]首先y =1-1x 2为偶函数,y =sin x 为奇函数,从而f (x )为奇函数,故排除C 、D ;其次,当x =0时,f (x )无意义,故排除B ,选A.10.(2014·某某程集中学期中)已知f (x )=⎩⎪⎨⎪⎧(3-a )x -a (x <1),log ax (x ≥1).是(-∞,+∞)上的增函数,那么实数a 的取值X 围是( )A .(1,+∞)B .(-∞,3)C .[32,3) D .(1,3)[答案]C[解析]∵f (x )在R 上为增函数,∴⎩⎪⎨⎪⎧3-a >0,a >1,3-2a ≤0,∴32≤a <3,故选C. 11.(文)(2014·某某九中一模)如果不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},那么函数y =f (-x )的大致图象是( )[答案]C[解析]由于不等式ax2-x-c>0的解集为{x|-2<x<1},∴a<0,且-2和1是方程ax2-x -c=0的两根,∴a=-1,c=-2,∴f(x)=-x2-x+2,∴y=f(-x)=-x2+x+2,故选C.(理)(2014·某某市六校联合体期中)函数f(x)=(1-cos x)sin x在[-π,π]的图象大致为()[答案]C[解析]f(x)=(1-cos x)sin x=4sin3x2cos x2,∵f(π2)=1,∴排除D;∵f(x)为奇函数,∴排除B;∵0<x<π时,f(x)>0,排除A,故选C.12.(2014·某某曲沃中学期中)如图,直角坐标平面内的正六边形ABCDEF ,中心在原点,边长为a ,AB 平行于x 轴,直线l :y =kx +t (k 为常数)与正六边形交于M 、N 两点,记△OMN 的面积为S ,则关于函数S =f (t )的奇偶性的判断正确的是( )A .一定是奇函数B .一定是偶函数C .既不是奇函数,也不是偶函数D .奇偶性与k 有关 [答案]B[解析]设直线OM 、ON 与正六边形的另一个交点分别为M ′、N ′,由于正六边形关于点O 成中心对称,∴OM ′=OM ,ON ′=ON ,从而△OM ′N ′与△OMN 成中心对称,设直线l 交y 轴于T ,直线M ′N ′交y 轴于T ′,则|OT |=|OT ′|,且S △OM ′N ′=S △OMN ,即当t <0时,有S =f (t )=f (-t ),∴S =f (t )为偶函数.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·某某三中期中)定义在R 上的偶函数f (x )满足f (x +1)=f (1-x ).若当0≤x <1时,f (x )=2x ,则f (log 26)=________.[答案]32[解析]∵f (x +1)=f (1-x ),∴函数f (x )的图象关于直线x =1对称,又f (x )为偶函数,∴f (-x )=f (x ),∴f (x +2)=f (x ),∴f (x )是周期为2的周期函数,∴f (log 26)=f (log 26-2)=f (log 232),∵0<log 232<1,14.(文)(2014·某某省实验中学期中)方程4x -2x +1-3=0的解是________. [答案]x =log 23[解析]令2x =t ,则t >0,∴原方程化为t 2-2t -3=0,∴t =3. 即2x =3,∴x =log 23. (理)(2014·长安一中质检)方程33x-1+13=3x -1的实数解为________. [答案]x =log 34[解析]令3x =t ,则t >0,∴原方程化为3t -1+13=t 3,∴t =4,即3x =4,∴x =log 34.15.(2014·海淀期中)已知a =log 25,2b =3,c =log 32,则a ,b ,c 的大小关系为________. [答案]a >b >c[解析]因为,a =log 25>log 24=2,c =log 32<log 33=1,由2b =3得,b =log 23,1=log 22<log 23<log 24=2,所以a >b >c .16.(文)(2014·某某区期中)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x , x ≥0,x 2-2x , x <0.若f (3-a 2)<f (2a ),则实数a 的取值X 围是________.[答案]-3<a <1[解析]根据所给分段函数,画图象如下:可知函数f (x )在整个定义域上是单调递减的, 由f (3-a 2)<f (2a )可知,3-a 2>2a ,解得-3<a <1. (理)(2014·某某省五市十校联考)下列命题:①函数y =sin(x -π2)在[0,π]上是减函数;②点A (1,1),B (2,7)在直线3x -y =0两侧;③数列{a n }为递减的等差数列,a 1+a 5=0,设数列{a n }的前n 项和为S n ,则当n =4时,S n 取得最大值;④定义运算⎪⎪⎪⎪⎪⎪a 1a 2b 1b 2=a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点(1,13)处的切线方程是6x -3y -5=0.其中正确命题的序号是________(把所有正确命题的序号都写上).[答案]②④[解析]y =sin(x -π2)=-cos x 在[0,π]上为增函数,∴①错;∵(3×1-1)(3×2-7)<0,∴②正确;∵{a n }为递减等差数列,∴d <0,∵a 1+a 5=0,∴a 1>0,a 5<0,且a 3=0,∴当n =2或3时,S n 取得最大值,故③错;由新定义知f (x )=13x 3+x 2-x ,∴f ′(x )=x 2+2x -1,∴f ′(1)=2,故f (x )在(1,13)处的切线方程为y -13=2(x -1),即6x -3y -5=0,∴④正确,故填②④.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·某某省金昌市二中期中)已知函数f (x )=2ax 2+4x -3-a ,a ∈R .(1)当a =1时,求函数f (x )在[-1,1]上的最大值;(2)如果函数f (x )在R 上有两个不同的零点,求a 的取值X 围. [解析](1)当a =1时,f (x )=2x 2+4x -4 =2(x 2+2x )-4=2(x +1)2-6.因为x ∈[-1,1],所以x =1时,f (x )取最大值f (1)=2.(2)∵⎩⎪⎨⎪⎧ Δ>0,a ≠0,∴⎩⎪⎨⎪⎧a 2+3a +2>0,a ≠0,∴a <-2或-1<a <0或a >0,∴a 的取值X 围是(-∞,-2)∪(-1,0)∪(0,+∞). (理)(2014·某某区期中)已知函数f (x )=x 2-4x +a +3,a ∈R . (1)若函数y =f (x )的图象与x 轴无交点,求a 的取值X 围; (2)若函数y =f (x )在[-1,1]上存在零点,求a 的取值X 围;(3)设函数g (x )=bx +5-2b ,b ∈R .当a =0时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使得f (x 1)=g (x 2),求b 的取值X 围.[解析](1)∵f (x )的图象与x 轴无交点,∴Δ=16-4(a +3)<0,∴a >1.(2)∵f (x )的对称轴为x =2,∴f (x )在[-1,1]上单调递减,欲使f (x )在[-1,1]上存在零点,应有⎩⎪⎨⎪⎧ f (1)≤0,f (-1)≥0.即⎩⎪⎨⎪⎧a ≤0,8+a ≥0,∴-8≤a ≤0. (3)若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2),只需函数y =f (x )的值域为函数y =g (x )值域的子集即可.∵函数y =f (x )在区间[1,4]上的值域是[-1,3],当b >0时,g (x )在[1,4]上的值域为[5-b,2b +5],只需⎩⎪⎨⎪⎧5-b ≤-1,2b +5≥3,∴b ≥6;当b =0时,g (x )=5不合题意,当b <0时,g (x )在[1,4]上的值域为[2b +5,5-b ],只需⎩⎪⎨⎪⎧2b +5≤-1,5-b ≥3,∴b ≤-3.综上知b 的取值X 围是b ≥6或b ≤-3.18.(本小题满分12分)(文)(2014·某某市曲江一中月考)已知二次函数f (x )满足条件:①在x =1处导数为0;②图象过点P (0,-3);③在点P 处的切线与直线2x +y =0平行. (1)求函数f (x )的解析式;(2)求在点Q (2,f (2))处的切线方程.[解析](1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 由题意有⎩⎪⎨⎪⎧f ′(1)=0,f (0)=-3,f ′(0)=-2,即⎩⎪⎨⎪⎧2a +b =0,c =-3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴f (x )=x 2-2x -3.(2)由(1)知f (x )=x 2-2x -3,f ′(x )=2x -2,∴切点Q (2,-3),在Q 点处切线斜率k =f ′(2)=2, 因此切线方程为y +3=2(x -2),即2x -y -7=0.(理)(2014·某某淇县一中模拟)已知函数f (x )=e x -ln(x +m ).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)证明当m≤2时,f(x)>0.[解析](1)f′(x)=e x-1x+m,由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),f′(x)=e x-1x+1.函数f′(x)=e x-1x+1在(-1,+∞)上单调递增,且f′(0)=0,因此,当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需要证明当m=2时,f(x)>0.当m=2时,函数f′(x)=e x-1x+2在(-2,+∞)上单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得e x0=1x0+2,所以ln(x0+2)=-x0,故f(x)≥f(x0)>0,综上,当m≤2时,f(x)>0.19.(本小题满分12分)(文)(2014·枣庄市期中)已知函数f(x)=a-22x-1(a∈R).(1)用单调函数的定义探索函数f(x)的单调性;(2)某某数a使函数f(x)为奇函数.[解析](1)f(x)的定义域为(-∞,0)∪(0,+∞).任取非零实数x1,x2,且x1<x2,从而f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2). 所以f (x )在(-∞,0)上单调递增. 同理可证,f (x )在(0,+∞)上单调递增.(2)解法一:对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=a -22x -1+a -22-x -1=2a -22x -1-2·2x1-2x =2a +2·2x -22x -1=2a +2. 若函数f (x )为奇函数,则有2a +2=0,解得a =-1, 此时f (-x )=-f (x ). 所以a =-1为所求.解法二:若函数f (x )为奇函数,则f (-1)=-f (1),即a -22-1-1=-(a -221-1).解得a =-1.当a =-1时,对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=-1-22x -1-1-22-x -1=-2-22x -1-2·2x1-2x =0,所以f (-x )=-f (x ),即函数f (x )为奇函数. 所以a =-1为所求.(理)(2014·某某实验中学期中)已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)已知f (x )是减函数,若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值X 围.[解析](1)∵f (x )是奇函数,定义域为R , ∴f (0)=0,即b -1a +2=0⇒b =1,∴f (x )=1-2xa +2x +1,又由f (1)=-f (-1)知,1-2a +4=-1-12a +1,∴a =2.(2)由(1)知f (x )=1-2x2+2x +1=-12+12x +1,易知f (x )在(-∞,+∞)上为减函数,∵f (x )是奇函数,∴不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (k -2t 2),∵f (x )为减函数,∴t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,∴判别式Δ=4+12k <0,∴k <-13.20.(本小题满分12分)(文)(2014·某某市八县联考)函数f (x )=2ax -x 2+ln x ,a 为常数. (1)当a =12时,求f (x )的最大值;(2)若函数f (x )在区间[1,2]上为单调函数,求a 的取值X 围. [解析](1)当a =12时,f (x )=x -x 2+ln x ,则f (x )的定义域为(0,+∞),∴f ′(x )=1-2x +1x =-(2x +1)(x -1)x .由f ′(x )>0,得0<x <1;由f ′(x )<0,得x >1; ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )的最大值为f (1)=0. (2)∵f ′(x )=2a -2x +1x.若函数f (x )在区间[1,2]上为单调函数,则f ′(x )≥0,或f ′(x )≤0在区间[1,2]上恒成立. ∴2a -2x +1x ≥0,或2a -2x +1x ≤0在区间[1,2]上恒成立.即2a ≥2x -1x ,或2a ≤2x -1x 在区间[1,2]上恒成立.设h (x )=2x -1x ,∵h ′(x )=2+1x2>0,∴h (x )=2x -1x 在区间[1,2]上为增函数.∴h (x )max =h (2)=72,h (x )min =h (1)=1,∴只需2a ≥72,或2a ≤1,∴a ≥74,或a ≤12.(理)(2014·某某市曲江一中月考)如图是函数f (x )=a 3x 3-2x 2+3a 2x 的导函数y =f ′(x )的简图,它与x 轴的交点是(1,0)和(3,0).(1)求函数f (x )的极小值点和单调递减区间; (2)某某数a 的值.[解析](1)由图象可知:当x <1时,f ′(x )>0,f (x )在(-∞,1)上为增函数; 当1<x <3时,f ′(x )<0,f (x )在(1,3)上为减函数; 当x >3时,f ′(x )>0,f (x )在(3,+∞)为增函数;∴x =3是函数f (x )的极小值点,函数f (x )的单调减区间是(1,3).(2)f ′(x )=ax 2-4x +3a 2,由图知a >0且⎩⎪⎨⎪⎧f ′(1)=0,f ′(3)=0,∴⎩⎪⎨⎪⎧a >0,a -4+3a 2=0,9a -12+3a 2=0.∴a =1.21.(本小题满分12分)(文)(2014·某某省五市十校联考)已知A ,B ,C 是直线l 上的不同三点,O 是l 外一点,向量OA →,OB →,OC →满足OA →=(32x 2+1)OB →+(ln x -y )OC →,记y =f (x ).(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调区间.[解析](1)∵OA →=(32x 2+1)OB →+(ln x -y )OC →,且A ,B ,C 是直线l 上的不同三点,∴(32x 2+1)+(ln x -y )=1,∴y =32x 2+ln x . (2)∵f (x )=32x 2+ln x ,∴f ′(x )=3x +1x =3x 2+1x,∵f (x )=32x 2+ln x 的定义域为(0,+∞),∴f ′(x )=3x 2+1x 在(0,+∞)上恒正,∴y =f (x )在(0,+∞)上为增函数, 即y =f (x )的单调增区间为(0,+∞).(理)(2014·某某冀州中学期中)已知函数f (x )=ax 3+bx 2+cx +a 2(a >0)的单调递减区间是(1,2)且满足f (0)=1.(1)求f (x )的解析式;(2)对任意m ∈(0,2],关于x 的不等式f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,某某数t 的取值X 围.[解析](1)由f (0)=a 2=1,且a >0,可得a =1. 由已知,得f ′(x )=3ax 2+2bx +c =3x 2+2bx +c , ∵函数f (x )=ax 3+bx 2+cx +a 2的单调递减区是(1,2), ∴f ′(x )<0的解是1<x <2.所以方程3x 2+2bx +c =0的两个根分别是1和2, ∴⎩⎪⎨⎪⎧3+2b +c =0,12+4b +c =0,得⎩⎪⎨⎪⎧b =-92,c =6.∴f (x )=x 3-92x 2+6x +1.(2)由(1),得f ′(x )=3x 2-9x +6=3(x -1)(x -2),∵当x >2时,f ′(x )>0,∴f (x )在[2,+∞)上单调递增,x ∈[2,+∞)时,f (x )min =f (2)=3,要使f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,应有12m 3-m ln m -mt +3>f (x )min ,∴12m 3-m ln m -mt +3>3, mt <12m 3-m ln m 对任意m ∈(0,2]恒成立,即t <12m 2-ln m 对任意m ∈(0,2]恒成立.设h (m )=12m 2-ln m ,m ∈(0,2],则t <h (m )min ,h ′(m )=m -1m =m 2-1m =(m -1)(m +1)m,令h ′(m )=0得m =1或m =-1, 由m ∈(0,2],列表如下:∴当m =1时,h (m )min =h (m )极小值=12,∴t <12.22.(本小题满分14分)(文)(2013·泗阳县模拟)某生产旅游纪念品的工厂,拟在2013年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2013年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x 与t 所满足的关系式;(2)请把该工厂2013年的年利润y 万元表示成促销费t 万元的函数; (3)试问:当2013年的促销费投入多少万元时,该工厂的年利润最大? [解析](1)设比例系数为k (k ≠0).由题意知,3-x =kt +1.又t =0时,x =1.∴3-1=k 0+1.∴k =2,∴x 与t 的关系是x =3-2t +1(t ≥0).(2)依据题意,可知工厂生产x 万件纪念品的生产成本为(3+32x )万元,促销费用为t 万元,则每件纪念品的定价为:(3+32x x ·150%+t2x)元/件.于是,y =x ·(3+32x x ·150%+t2x )-(3+32x )-t ,化简得,y =992-32t +1-t2(t ≥0).因此,工厂2013年的年利润y =992-32t +1-t2(t ≥0)万元.(3)由(2)知,y =992-32t +1-t2(t ≥0)=50-(32t +1+t +12)≤50-232t +1·t +12=42(当t +12=32t +1,即t =7时,等号成立).所以,当2013年的促销费用投入7万元时,工厂的年利润最大,最大利润为42万元. (理)(2014·某某屯溪一中质检)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p .(以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5].其中x =0表示8月1日,x =1表示9月1日,…,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.[分析] (1)利用价格呈现前几次与后几次均连续上升,中间几次连续下降的趋势,故可从三个函数的单调上考虑,前面两个函数没有出现两个递增区间和一个递减区间,应选f (x )=x (x -q )2-p 为其模拟函数;(2)由题中条件:f (0)=4,f (2)=6,得方程组,求出p ,q 即可得到f (x )的解析式;(3)确定函数解析式,利用导数小于0,即可预测该海鲜产品在哪几个月份内价格下跌.[解析](1)根据题意,应选模拟函数f (x )=x (x -q )2+p .(2)∵f (0)=4,f (2)=6,∴⎩⎪⎨⎪⎧ p =4,(2-q )2=1,∴⎩⎪⎨⎪⎧p =4,q =3,所以f(x)=x3-6x2+9x+4(0≤x≤5).(3)f(x)=x3-6x2+9x+4,f′(x)=3x2-12x+9,令f′(x)<0得,1<x<3,又∵x∈[0,5],∴f(x)在(0,1),(3,5)上单调递增,在(1,3)上单调递减.所以可以预测这种海鲜将在9月,10月两个月内价格下跌.。
第8讲 函数与方程基础巩固题组 (建议用时:40分钟)一、选择题1.(2014·兰州调研)函数f (x )=e x +3x 的零点个数是 ( ).A .0B .1C .2D .3解析 由已知得f ′(x )=e x +3>0,所以f (x )在R 上单调递增,又f (-1)=e -1-3<0,f (1)=e +3>0,所以f (x )的零点个数是1,选B. 答案 B2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为 ( ).A .⎝ ⎛⎭⎪⎫-14,0B .⎝ ⎛⎭⎪⎫0,14C .⎝ ⎛⎭⎪⎫14,12D .⎝ ⎛⎭⎪⎫12,34解析 ∵f (x )=e x +4x -3,∴f ′(x )=e x +4>0. ∴f (x )在其定义域上是单调递增函数.∵f ⎝ ⎛⎭⎪⎫-14=e -14-4<0,f (0)=e 0+4×0-3=-2<0, f ⎝ ⎛⎭⎪⎫14=e 14-2<0,f ⎝ ⎛⎭⎪⎫12=e 12-1>0, ∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,故选C. 答案 C3.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为 ( ).A .0B .-14 C .0或-14D .2解析 当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点;当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根. ∴Δ=1+4a =0,解得a =-14.综上,当a =0或a =-14时,函数仅有一个零点. 答案 C4.(2013·朝阳区期末)函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是 ( ).A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有⎩⎨⎧f (1)<0,f (2)>0,,所以0<a <3.答案 C5.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( ).A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1解析 依据零点的意义,转化为函数y =x 分别和y =-2x ,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图,易得x 1<0<x 2<1<x 3. 答案 B 二、填空题6.若函数f (x )=ax +b (a ≠0)有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.解析 由已知条件2a +b =0,即b =-2a , g (x )=-2ax 2-ax =-2ax ⎝ ⎛⎭⎪⎫x +12,则g (x )的零点是x =0,x =-12. 答案 0,-127.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 解析 求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2. 答案 28.已知函数f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图. 由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1) 三、解答题9.函数f (x )=x 3-3x +2. (1)求f (x )的零点;(2)求分别满足f (x )<0,f (x )=0,f (x )>0的x 的取值范围. 解 f (x )=x 3-3x +2=x (x -1)(x +1)-2(x -1)= (x -1)(x 2+x -2)=(x -1)2(x +2).(1)令f (x )=0,函数f (x )的零点为x =1或x =-2. (2)令f (x )<0,得x <-2;所以满足f (x )<0的x 的取值范围是(-∞,-2); 满足f (x )=0的x 的取值集合是{1,-2};令f (x )>0,得-2<x <1或x >1,满足f (x )>0的x 的取值范围是(-2,1)∪(1,+∞).10.若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.解 设f (x )=3x 2-5x +a ,则f (x )为开口向上的抛物线(如图所示). ∵f (x )=0的两根分别在区间(-2,0),(1,3)内,∴⎩⎨⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0,即⎩⎨⎧3×(-2)2-5×(-2)+a >0,a <0,3-5+a <0,3×9-5×3+a >0,解得-12<a <0. ∴所求a 的取值范围是(-12,0).能力提升题组 (建议用时:25分钟)一、选择题1.(2014·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是 ( ). A .⎝ ⎛⎭⎪⎫14,12B .(1,2)C .⎝ ⎛⎭⎪⎫12,1D .(2,3)解析 由f (x )的图象知0<b <1,f (1)=0,从而-2<a <-1,g (x )=ln x +2x +a ,g (x )在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=2+a >0,g ⎝ ⎛⎭⎪⎫12·g (1)<0,故选C. 答案 C2.(2013·天津卷)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( ).A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析 由f ′(x )=e x +1>0知f (x )在R 上单调递增, 且f (0)=1-2<0,f (1)=e -1>0, 所以f (a )=0时,a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增, 且g (1)=-2<0,所以g (a )<0,由g (2)=ln 2+1>0,g (b )=0,得b ∈(1,2). 又f (1)=e -1>0,∴f (b )>0.故g (a )<0<f (b ). 答案 A 二、填空题3.(2013·哈尔滨四校检测)已知函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且当x ∈ [-1,1]时,f (x )=|x |,函数g (x )=⎩⎪⎨⎪⎧sin (πx ),x >0,-1x ,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为________.解析 函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),故f (x +2)=-f (x +1)= -[-f (x )]=f (x ),即函数f (x )的周期为2,作出x ∈[-1,1]时,f (x )=|x |的图象,并利用周期性作出函数f (x )在[-5,5]上的图象,在同一坐标系内再作出g (x )在[-5,5]上的图象,由图象可知,函数f (x )与g (x )的图象有9个交点,所以函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为9.答案 9三、解答题4.(2014·深圳调研)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.解 (1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x∈R},∴f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a=1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)∵g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2(x>0),∴g′(x)=1+3x2-4x=(x-1)(x-3)x2.当x变化时,g′(x),g(x)的取值变化情况如下:又因为g(x)在(3,+∞)单调递增,因而g(x)在(3,+∞)上只有1个零点.故g(x)在(0,+∞)只有1个零点.。
[课堂练通考点]1.(2014·深圳第一次调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=( )A .-1B .-3C .1D .3解析:选A 由题意得,f (-2)=-f (2)=-log 3(1+2)=-1. 2.(2013·广东高考)函数y =lg (x +1)x -1的定义域是( ) A .(-1,+∞) B .[-1,+∞) C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧ x +1>0,x -1≠0,∴⎩⎪⎨⎪⎧x >-1,x ≠1,故选C. 3.函数y =ln1|2x -3|的图像为( )解析:选A 易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数,当x <32时,函数为增函数,所以选A.4.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析:选D f (x )≤2⇔⎩⎪⎨⎪⎧ x ≤1,21-x ≤2,或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2,⇔0≤x ≤1或x >1. 5.(2013·南京模拟)若log 2a 1+a 21+a<0,则a 的取值范围是________.解析:当2a >1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a 21+a <0=log 2a 1,∴1+a 21+a>1. ∵1+a >0,∴1+a 2>1+a .∴a 2-a >0,∴a <0或a >1,此时不合题意. 综上所述,a ∈⎝⎛⎭⎫12,1. 答案:⎝⎛⎭⎫12,16.(2013·北京高考)函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x ≥1时,log 12x ≤0,当x <1时,0<2x <2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)[课下提升考能]第Ⅰ组:全员必做题1.函数y =1-lg (x +2)的定义域为( ) A .(0,8] B .(2,8] C .(-2,8]D .[8,+∞)解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-lg (x +2)的定义域为(-2,8].2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -2解析:选A f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2. ∴f (x )=log 2x .3.(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c解析:选D a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a >b >c ,故选D.4.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以m 的取值范围是(-1,0)∪(1,+∞).5.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝⎛⎭⎫-12<f (0)<f (3) B .f (0)<f ⎝⎛⎭⎫-12<f (3) C .f (3)<f ⎝⎛⎭⎫-12<f (0) D .f (3)<f (0)<f ⎝⎛⎭⎫-12 解析:选C 依题意得f (3)=log 122=-1<0,log 122<f ⎝⎛⎭⎫-12=log 1232<log 121,即-1<f ⎝⎛⎭⎫-12<0,又f (0)=log 121=0,因此有f (3)<f ⎝⎛⎭⎫-12<f (0). 6.计算:(log 29)·(log 34)=________.解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.答案:47.函数y =log 12(x 2-6x +17)的值域是________.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log 12t 为减函数,所以有log 12t ≤log 128=-3.答案:(-∞,-3]8.设2a =5b =m ,且1a +1b=2,则m =________.解析:由2a =5b =m ,得a =log 2m ,b =log 5m , 又1a +1b =2,即1log 2m +1log 5m =2, ∴1lg m=2,即m =10. 答案:109.(2014·长春模拟)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域. (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为 (-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.解:当a >1时,f (x )=log a x 在⎣⎡⎦⎤13,2上单调递增,要使x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,则有⎩⎪⎨⎪⎧ log a 13≥-1,log a 2≤1,解得a ≥3. ∴此时a 的取值范围是a ≥3.当0<a <1时,f (x )=log a x 在⎣⎡⎦⎤13,2 上单调递减, 要使x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,则有 ⎩⎪⎨⎪⎧log a 13≤1,log a 2≥-1,解得0<a ≤13.∴此时,a 的取值范围是0<a ≤13.综上可知,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). 第Ⅱ组:重点选做题1.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎡⎦⎤-1,43 C.⎣⎡⎭⎫0,32 D .[1,2)解析:选D 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D.2.(2013·无锡模拟)若f (x )=lg x ,g (x )=f (|x |),则g (lg x )>g (1),x 的取值范围是________. 解析:因为g (lg x )>g (1),所以f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1.解得0<x <110或x >10.答案:⎝⎛⎭⎫0,110∪(10,+∞)。
[A 组 基础演练·能力提升]一、选择题1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:因为函数 f (x )的图象是连续不断的一条曲线,又f (-1)=2-1-3<0,f (0)=1>0,所以f (-1)·f (0)<0,故函数零点所在一个区间是(-1,0)故选B.答案:B2.(2014年福建六校联考)函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点D .有无穷多个零点解析:原函数f (x )=x -cos x 可理解为幂函数x 12与余弦函数cos x 的差,其中幂函数在区间[0,+∞)上单调递增且余弦函数的最大值为1,在同一坐标系内构建两个函数的图象,注意到余弦从左到右的第2个最高点是x =2π,且2π >1=cos 2π,不难发现交点仅有一个.正确选项为B.答案:B3.函数f (x )=log 2x +1x -1的零点的个数为( )A .0B .1C .2D .3解析:可将函数f (x )=log 2x +1x -1的零点的个数看作函数y =log 2x 与y =-1x +1的图象的交点个数,作出函数图象可得到交点有2个.答案:C4.(2014年福州模拟)若函数f (x )=⎩⎪⎨⎪⎧x x -1-kx 2,x ≤0ln x ,x >0有且只有2个不同的零点,则实数k 的取值范围是( )A .(-4,0)B .(-∞,0]C .(-4,0]D .(-∞,0)解析:取k =0,可知函数f (x )的2个零点是x =0或x =1,故可排除A 、D ;取k =-4,可知函数f (x )的2个零点是x =0或x =1,故可排除C ,选B.答案:B5.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( ) A .[-4,-2]B .[-2,0]C .[0,2]D .[2,4]解析:f (0)=4sin 1>0,f (2)=4sin 5-2,由于π<5<2π,所以sin 5<0,故f (2)<0,故函数f (x )在[0,2]上存在零点;由于f (-1)=4sin(-1)+1<0,故函数f (x )在[-1,0]上存在零点,在[-2,0]上也存在零点;令x =5π-24∈[2,4],则f ⎝⎛⎭⎫5π-24=4sin 5π2-5π-24>0,而f (2)<0,所以函数在[2,4]上存在零点.综合各选项可知选A.答案:A6.设函数f (x )的零点为x 1,函数g (x )=4x +2x -2的零点为x 2,若|x 1-x 2|>14,则f (x )可以是( )A .f (x )=2x -12B .f (x )=-x 2+x -14C .f (x )=1-10xD .f (x )=ln(8x -2)解析:依题意得g ⎝⎛⎭⎫14=2+12-2<0, g ⎝⎛⎭⎫12=1>0,∴x 2∈⎝⎛⎭⎫14,12.若f (x )=1-10x , 则有x 1=0,此时|x 1-x 2|>14,因此选C.答案:C 二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________.解析:画出函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,因此m 的取值范围是(0,1).答案:(0,1)8.已知f (x )=|2x -1|,f 1(x )=f (x ),f 2(x )=f (f 1(x )),…,f n (x )=f (f n -1(x )),则函数y =f 4(x )的零点个数为________.解析:f 4(x )=|2f 3(x )-1|的零点,即f 3(x )=12的零点,即|2f 2(x )-1|=12的零点,即f 2(x )=14,34的零点,即|2f (x )-1|=14,34的零点,即f (x )=38,58,18,78的零点,显然对上述每个数值各有两个零点,故共有8个零点.答案:89.用二分法求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点c =2.5,那么下一个有根的区间是________.解析:令f (x )=x 3-2x -5,f (2)=-1<0,f (3)=16>0,f (2.5)=5.625>0,由于f (2)f (2.5)<0,故下一个有根的区间是[2,2.5].答案:[2,2.5] 三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0x 2-3ax +a ,x >0有三个不同的零点,求实数a 的取值范围.解析:依题意,要使函数f (x )有三个不同的零点,则当x ≤0时,方程2x -a =0即2x =a 必有一个根,此时0<a ≤1;当x >0时,方程x 2-3ax +a =0有两个不等的实根,即方程x 2-3ax +a =0有两个不等的正实根,于是有⎩⎪⎨⎪⎧Δ=9a 2-4a >03a >0a >0,由此解得a >49.因此,满足题意的实数a 需满足⎩⎪⎨⎪⎧0<a ≤1a >49,即49<a ≤1.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求实数m 的取值范围.解析:令f (x )=mx 2+2(m +3)x +2m +14,依题意得⎩⎪⎨⎪⎧m >0,f (4)<0或⎩⎪⎨⎪⎧m <0,f (4)>0,即⎩⎪⎨⎪⎧m >0,26m +38<0或⎩⎪⎨⎪⎧m <0,26m +38>0.解得-1913<m <0,即实数m 的取值范围是⎝⎛⎭⎫-1913,0. 12.(能力提升)(2014年浏阳一中高三阶段考试)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数.解析:(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∵a >0,f (x )=a [(x -1)2-4]≥-4,又f (1)=-4a ,∴f (x )min =-4a =-4,∴a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x=x -3x -4ln x -2(x >0),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.∴x ,g ′(x ),g (x )的取值变化情况如下:g (x )在(3,+∞)上单调递增,g (3)=-4ln 3<0,取x =e 5>3,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0.故函数g (x )只有1个零点,且零点x 0∈(3,e 5).。
质量检测(二)测试内容:函数、导数及其应用 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012年青岛质检)已知函数f (x )=⎩⎨⎧-x 3,x ≤0,2x , x >0,则f [f (-1)]= ( )A.12 B .2 C .1D .-1解析:分段函数中,f (-1)=1,f (1)=2.故选B. 答案:B 2.若f (x )=2lg (1-x ),则f (x )的定义域是( )A .(1,+∞)B .(0,1)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(-∞,0)∪(0,1)解析:要使函数有意义,则⎩⎨⎧1-x >0,1-x ≠1,解得x <1且x ≠0,故函数定义域是(-∞,0)∪(0,1).答案:D3.(2012年东北四校模拟)若⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则实数a =( )A .2B .3C .4D .6解析:⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x ) =a 2+ln a -1=3+ln 2,又a >1,所以a =2.答案:A4.(2012年福州质检)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞) B.⎣⎢⎡⎭⎪⎫1,32 C .[1,2)D.⎣⎢⎡⎭⎪⎫32,2 解析:因为f (x )的定义域为(0,+∞),f ′(x )=4x -1x ,由f ′(x )=0得x =12.据题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.故选B.答案:B5.(2012年济南质检)已知a >b ,函数f (x )=(x -a )(x -b )的图象如下图所示,则函数g (x )=log a (x +b )的图象可能为( )解析:由图知a >1,排除A ,D ;又0<b <1,排除C ,故选B. 答案:B6.(2012年昆明模拟)函数f (x )=x 2+(1-a 2)x -a x 是奇函数,且在(0,+∞)上单调递增,则实数a =( )A .0B .-1C .1D .±1解析:解法一:由函数f (x )是奇函数,得f (-x )=(-x )2+(1-a 2)(-x )-a -x =-f (x )=-x 2+(1-a 2)x -a x 对一切实数R 恒成立,即x 2-(1-a 2)x -a -x =x 2+(1-a 2)x -a-x 对一切实数R 恒成立,所以-(1-a 2)x =(1-a 2)x 对一切实数R 恒成立,故1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.解法二:f (x )=x -ax +(1-a 2),若函数f (x )是奇函数,则1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.答案:C7.(2012年天津六校联考)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x,c =e ln x ,则( )A .c >b >aB .b >a >cC .a >b >cD .b >c >a解析:因为x ∈(e -1,1),所以-1<a <0,1<b <2,1e <c <1,故b >c >a .答案:D8.(2013年武汉调研测试)某汽车销售公司在A 、B 两地销售同一种品牌的车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆这种品牌车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:依题意,设在A 地销售x 辆汽车,则在B 地销售(16-x )辆汽车, ∴总利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝ ⎛⎭⎪⎫x -2122+0.1×2124+32,∵x ∈[0,16]且x ∈N ,∴当x =10辆或11辆时,总利润y max =43万元,故选C.答案:C9.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( )A .b <1B .b >1C .0<b <1D .b <12解析:f (x )在(0,1)内有极小值,则f ′(x )=2x -2b =0在(0,1)内有解.∴b ∈(0,1). 答案:C10.(2012年石家庄质量检测)已知函数f (x )=⎝ ⎛⎭⎪⎫12x -sin x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:画出y =sin x 和y =⎝ ⎛⎭⎪⎫12x 在同一坐标系下[0,2π)区间内的图象,可知有两个交点,故选B.答案:B11.(2012年合肥模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:由f (2-x )=f (x )得f (1-x )=f (x +1),即函数f (x )的对称轴为x =1,结合图形可知f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (0)=f (2),故选C.答案:C12.(2013年福建六校联考)设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 012)>e 2 012f (0)B .f (2)<e 2f (0),f (2 012)<e 2 012f (0)C .f (2)<e 2f (0),f (2 012)>e 2 012f (0)D .f (2)>e 2f (0),f (2 012)<e 2 012f (0)解析:解法一 令f (x )=|x |+2,所以f (2)=4,f (0)=2,f (2 012)=2 014,所以f (2)<e 2f (0),f (2 012)<e 2 012f (0).解法二 因为f ′(x )<f (x ),所以f ′(x )e x <f (x )e x ,即f ′(x )·e x <f (x )·e x ,F ′(x )=f ′(x )·e x -f (x )·e xe 2x<0,所以F (x )=f (x )e x 在R 上为减函数,所以f (2 012)e 2 012<f (2)e 2<f (0)e 0,所以选择B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =______.解析:由3x -a >0得x >a 3.因此,函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫a 3,+∞,所以a 3=23,a =2.答案:214.(2013年福建六校联考)已知奇函数f (x )满足f (x +2)=-f (x ),且当x ∈(0,1)时,f (x )=2x ,则f ⎝ ⎛⎭⎪⎫72的值为________.解析:因为f (x +2)=-f (x ),所以f (x )的周期为4,所以f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=- 2.答案:- 215.函数y =4x -1+23-x 单调递减区间为________.解析:易知x ∈⎣⎢⎡⎦⎥⎤14,3,y >0.∵y 与y 2有相同的单调区间,而y 2=11+4-4x 2+13x -3,∴原函数递减区间为⎣⎢⎡⎦⎥⎤138,3.答案:⎣⎢⎡⎦⎥⎤138,316.若函数f (x )=⎩⎨⎧ax+1, x ≥1,x 2-1x 3-1,x <1在点x =1处连续,则实数a =________.解析:x 2-1x 3-1=x +1x 2+x +1,则有f (1)=a +1=1+11+1+1,因此a =-13.答案:-13三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )上点P (1,f (1))处的切线方程为y =3x +1.(1)若y =f (x )在x =-2时有极值,求函数y =f (x )的解析式; (2)求函数y =f (x )在区间[-3,1]上的最大值.解:(1)由f (x )=x 3+ax 2+bx +c 求导数,得f ′(x )=3x 2+2ax +b ,过y =f (x )上点P (1,f (1))的切线方程为:y -f (1)=f ′(1)(x -1),即y -(a +b +c +1)=(3+2a +b )(x -1).而过y =f (x )上P (1,f (1))的切线方程为y =3x +1, 故⎩⎨⎧ 3+2a +b =3,a +b +c -2=1,即⎩⎨⎧2a +b =0, ①a +b +c =3. ② ∵y =f (x )在x =-2时有极值,故f ′(-2)=0, ∴-4a +b =-12. ③由①②③联立,解得a =2,b =-4,c =5, ∴f (x )=x 3+2x 2-4x +5.(2)f ′(x )=3x 2+2ax +b =3x 2+4x -4=(3x -2)(x +2).f (x )极大值f (1)=13+2×1-4×1+5=4,∴f (x )在[-3,1]上最大值为13. 18.已知函数f (x )=a -1|2x -b |是偶函数,a 为实常数.(1)求b 的值;(2)当a =1时,是否存在n >m >0,使得函数y =f (x )在区间[m ,n ]上的函数值组成的集合也是[m ,n ],若存在,求出m ,n 的值,否则,说明理由.解:(1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠b 2. ∵f (x )是偶函数,其定义域关于原点对称, ∴b =0.(2)a =1时,f (x )=1-12|x |, x >0时,f (x )=1-12x ,∵f (x )=1-12x 在[m ,n ](m >0)上是增函数, ∴f (x )在[m ,n ]上的值域为⎣⎢⎡⎦⎥⎤1-12m ,1-12n .又f (x )在[m ,n ]上的值域为[m ,n ], ∴⎩⎪⎨⎪⎧1-12m =m ,1-12n =n ,即⎩⎨⎧2m 2-2m +1=0,2n 2-2n +1=0.∴m ,n 为方程2x 2-2x +1=0的两正根,而方程2x 2-2x +1=0无实数根, ∴满足条件的m ,n 不存在.19.(2012年北京海淀期末)已知函数f (x )=e x (x 2+ax -a ),其中a 是常数. (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若存在实数k ,使得关于x 的方程f (x )=k 在[0,+∞)上有两个不相等的实数根,求k 的取值范围.解:(1)由f (x )=e x (x 2+ax -a )可得f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )是[0,+∞)上的增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根;当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如下:由上表可知函数f (x )在[0,+∞)上的极小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥e -a (-a )>-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围必须是⎝ ⎛⎦⎥⎤a +4e a +2,-a .20.定义在D 上的函数f (x ),如果满足:对于任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x; (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 解:(1)a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x ,x ∈(-∞,0).令t =⎝ ⎛⎭⎪⎫12x,则t ∈(1,+∞).∵g (t )=1+t +t 2在(1,+∞)上为增函数, ∴g (t )>g (1)=3.∴f (x )在(-∞,0)上的值域为(3,+∞),故对于任意x ∈(-∞,0),不存在常数M >0,都有|f (x )|≤M 成立,即函数f (x )在(-∞,0)上不是有界函数.(2)若f (x )在[0,+∞)上是以3为上界的有界函数,则|f (x )|≤3在[0,+∞)上恒成立,令t =⎝ ⎛⎭⎪⎫12x,则t ∈(0,1].∴|1+at +t 2|≤3,即-4≤at +t 2≤2在(0,1]上恒成立, ∴-⎝ ⎛⎭⎪⎫t +4t ≤a ≤2t -t 在(0,1]上恒成立.又0<t ≤1时,-⎝ ⎛⎭⎪⎫t +4t ≤-5,2t -t ≥1,∴-5≤a ≤1,即a 的取值范围是[-5,1].21.已知函数f (x )=12x 2+a ln x ,a ∈R . (1)若a =-1,求函数f (x )的单调递增区间; (2)当x >1时,f (x )>ln x 恒成立,求a 的取值范围. 解:(1)若a =-1,f ′(x )=x -1x (x >0), 由f ′(x )>0得x 2-1x >0,又x >0,解得x >1,所以函数f (x )的单调递增区间为(1,+∞). (2)依题意得f (x )-ln x >0,即12x 2+a ln x -ln x >0, ∴(a -1)ln x >-12x 2,∵x >1,∴ln x >0,∴a -1>-12x2ln x , ∴a -1>⎝ ⎛⎭⎪⎪⎫-12x 2ln x max ,设g (x )=-12x 2ln x ,g ′(x )=-x ln x +12x(ln x )2,令g ′(x )=0,解得x =e 12,当1<x <e 12时,g ′(x )>0,g (x )在⎝ ⎛⎭⎪⎫1,e 12上单调递增;当x >e 12时,g ′(x )<0,g (x )在⎝ ⎛⎭⎪⎫e 12,+∞上单调递减;∴g (x )max =g ⎝ ⎛⎭⎪⎫e 12=-e ,∴a -1>-e ,即a >1-e.22.已知a ∈R ,函数f (x )=ln (x +1)-x 2+ax +2.(1)若函数f (x )在[1,+∞)上为减函数,求实数a 的取值范围;(2)令a =-1,b ∈R ,已知函数g (x )=b +2bx -x 2.若对任意x 1∈(-1,+∞),总存在x 2∈[-1,+∞),使得f (x 1)=g (x 2)成立,求实数b 的取值范围.解:(1)函数f(x)在[1,+∞)上为减函数⇒f′(x)=1x+1-2x+a≤0在[1,+∞)上恒成立⇒a≤2x-1x+1在[1,+∞)上恒成立,令h(x)=2x-1x+1,由h′(x)>0⇒h(x)在[1,+∞)上为增函数⇒h(x)min=h(1)=32,所以a≤32;(2)若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,则函数f(x)在(-1,+∞)上的值域是函数g(x)在[-1,+∞)上的值域的子集.对于函数f(x),因为a=-1,所以f(x)=ln (x+1)-x2-x+2,定义域(-1,+∞).f′(x)=1x+1-2x-1=-2x2-3xx+1.令f′(x)=0得x3=0,x4=-32(舍去).当x变化时,f(x)与f′(x)的变化情况如下表:所以f(x)max对于函数g(x)=-x2+2bx+b=-(x-b)2+b+b2,①当b≤-1时,g(x)的最大值为g(-1)=-1-b⇒g(x)值域为(-∞,-1-b],由-1-b≥2⇒b≤-3;②当b>-1时,g(x)的最大值为g(b)=b2+b⇒g(x)值域为(-∞,b2+b];由b2+b≥2⇒b≥1或b≤-2(舍去),综上所述,b的取值范围是(-∞,-3]∪[1,+∞).。
第6节二次函数与幂函数
【选题明细表】
一、选择题
1.(2013河南南阳模拟)设α∈-1,1,,3,则使函数y=xα的定义域为R且为奇函数的所有α值为( A )
(A)1,3 (B)-1,1 (C)-1,3 (D)-1,1,3
解析:α=-1,1,3时幂函数为奇函数,
当α=-1时定义域不是R,
所以α=1,3.
故选A.
2.已知函数y=ax2+bx+c,如果a>b>c且a+b+c=0,则它的图象可能是( D )
解析:∵a>b>c且a+b+c=0,
∴a>0,c<0.
∴图象可能是D.
故选D.
3.已知a=20.2,b=0.40.2,c=0.40.6,则( A )
(A)a>b>c (B)a>c>b
(C)c>a>b (D)b>c>a
解析:∵函数y=0.4x在R上是减函数,
且0.2<0.6,
∴0.40.2>0.40.6,
即b>c.
又函数y=x0.2在(0,+∞)上是增函数,且2>0.4,
∴20.2>0.40.2,
即a>b,
∴a>b>c.
故选A.
4.如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么( A )
(A)f(2)<f(1)<f(4) (B)f(1)<f(2)<f(4)
(C)f(2)<f(4)<f(1) (D)f(4)<f(2)<f(1)
解析:∵f(2+t)=f(2-t),
∴f(x)关于x=2对称,
又开口向上.
∴f(x)在[2,+∞)上单调递增,且f(1)=f(3).
∴f(2)<f(3)<f(4),
即f(2)<f(1)<f(4),
故选A.
5.如图给出4个幂函数的图象,则图象与函数的大致对应是( B )
(A)①y=,②y=x2,③y=,④y=x-1
(B)①y=x3,②y=x2,③y=,④y=x-1
(C)①y=x2,②y=x3,③y=,④y=x-1
(D)①y=,②y=,③y=x2,④y=x-1
解析:结合幂函数性质,对解析式和图象逐一对照知B项正确.故选B.
6.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则( B )
(A)f(x1)=f(x2)
(B)f(x1)<f(x2)
(C)f(x1)>f(x2)
(D)f(x1)与f(x2)的大小不能确定
解析:函数的对称轴为x=-1,
设x0=,
由0<a<3得到-1<<,
又x1<x2,用单调性和离对称轴的远近作判断,
故选B.
7.设f(x)=|2-x2|,若0<a<b且f(a)=f(b),则a+b的取值范围是
( D )
(A)(0,2) (B)(0,)
(C)(0,4) (D)(0,2)
解析:∵f(a)=f(b),0<a<b,
∴a<<b,
∴2-a2=b2-2,
即a2+b2=4,
则(a+b)2=a2+b2+2ab≤2(a2+b2)=8,0<a+b<2,
故选D.
二、填空题
8.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是.
解析:x2-ax+2a>0在R上恒成立⇔Δ=a2-8a<0⇔0<a<8.
答案:(0,8)
9.若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .
解析:f(x)=bx2+(2a+ab)x+2a2,
∵f(x)是偶函数,
∴2a+ab=0.①
又f(x)的值域为(-∞,4].
∴b<0.②
=4.③
联立①②③解得a2=2,b=-2,
∴f(x)=-2x2+4.
答案:-2x2+4
10.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是.
解析:令f(x)=x2+(k-2)x+2k-1,
由题意得
即
解得<k<.
答案:,
11.(2013年高考江苏卷)在平面直角坐标系xOy中,设定点A(a,a),P 是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.
解析:设P x,(x>0),
则|PA|2=(x-a)2+-a2
=x2+-2a x++2a2
令x+=t(t≥2),
则|PA|2=t2-2at+2a2-2
=(t-a)2+a2-2
若a≥2,当t=a时,|PA=a2-2=8,
解得a=.
若a<2,当t=2时,|PA=2a2-4a+2=8,
解得a=-1.
答案:-1,
三、解答题
12.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求
F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.
解:(1)由已知c=1,a-b+c=0,
且-=-1,
解得a=1,b=2.
∴f(x)=(x+1)2.
∴F(x)=
∴F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.
(2)f(x)=x2+bx,原命题等价于-1≤x2+bx≤1在(0,1]上恒成立,
即b≤-x且b≥--x在(0,1]上恒成立.
又x∈(0,1]时,-x的最小值为0,--x的最大值为-2,
∴-2≤b≤0.
即b的取值范围是[-2,0].
13.已知函数f(x)=x m-且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并给予证明.
解:(1)∵f(4)=,
∴4m-=,∴m=1.
(2)由(1)知f(x)=x-,
∴函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.
又f(-x)=-x+=-=-f(x).
所以函数f(x)是奇函数.
(3)函数f(x)在(0,+∞)上是单调增函数,证明如下:
设x1>x2>0,
则f(x1)-f(x2)=x1--
=(x1-x2),
因为x1>x2>0,
所以x1-x2>0,1+>0.
所以f(x1)>f(x2).
所以函数f(x)在(0,+∞)上为单调增函数.
14.已知函数f(x)=ax2+bx+1(a,b为常数),x∈R,
F(x)=
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m·n<0,m+n>0,a>0且f(x)为偶函数,证明F(m)+F(n)>0. (1)解:∵f(-1)=0,
∴a-b+1=0,a=b-1.
又x∈R,f(x)的值域为[0,+∞),
∴
∴b2-4(b-1)=0,b=2,a=1,
∴f(x)=x2+2x+1=(x+1)2.
∴F(x)=
(2)解:g(x)=f(x)-kx=x2+2x+1-kx
=x2+(2-k)x+1,
当≥2或≤-2时,
即k≥6或k≤-2时,g(x)在[-2,2]上是单调函数.
(3)证明:∵f(x)是偶函数,
∴f(x)=ax2+1,F(x)=
∵m·n<0,不妨设m>n,
则n<0,
又m+n>0,m>-n>0,
∴|m|>|-n|,
又a>0,
∴F(m)+F(n)=(am2+1)-an2-1=a(m2-n2)>0.。