《概率论与数理统计》学习指导
- 格式:doc
- 大小:65.05 KB
- 文档页数:10
怎样学好《概率论与数理统计》(1):预备知识怎样学好《概率论与数理统计》(1):预备知识《概率论与数理统计》是研究和揭示随机现象的统计规律性的数学学科,是理工、经管、文各专业本科生必修的公共基础课,是考研数学的重要组成部分。
该课程需要《高等数学》(或称为《微积分》)的基础,又为高年级的有关专业课和硕士、博士阶段的数学课做知识准备,一般在第三学期开设。
以盛骤等编著的《概率论与数理统计》(高教出版社,第四版)为例,考研的基本要求是前七章及第八章中关于参数的假设检验这部分。
不同学校、专业因学时多少的不同而对教学内容各有侧重或延伸。
如果你《高等数学》(或称为《微积分》)的基础不是很扎实,最好开课前做好相关复习(如果来不及,至少把复习分散到学习各章之前),否则微积分会成为你学习概率统计的拦路虎。
其实,用到的都是微积分中非常基本的知识和运算。
下面是《概率统计》各章所需要的预备知识,供大家参考。
第一章“概率论的基本概念”用到集合的关系与运算,以及排列、组合的知识。
第二章“随机变量及其分布”用到定积分(包括无穷区间上的广义积分)的基本运算,定积分对积分区间的可加性,特别要熟悉被积函数是分段函数时的定积分运算。
第三章“多维随机变量及其分布”用到二重积分的基本运算,二重积分对积分区域的可加性,特别要熟悉化二重积分为二次积分时如何确定积分上、下限。
第四章“随机变量的数字特征” 用到数项级数求和,定积分(包括无穷区间上的广义积分)、二重积分的基本运算。
讲到n维随机变量时会用到《线性代数》中矩阵运算的记号,但只是稍稍提及,是为日后深入学习做准备的,一般不作为考试重点。
第五章“大数定律及中心极限定理”用到极限的概念,是借助于数列极限来定义随机变量序列的收敛、以及函数序列的收敛。
第六章“样本及抽样分布”基本用不到《高等数学》(或称为《微积分》)的知识。
第七章“参数估计”中矩估计部分用到数项级数求和,定积分(包括无穷区间上的广义积分),最大似然估计部分用到对数运算的性质、求导(包括求偏导)、求极值点的基本运算。
概率论与数理统计教学方法的几点改进1.引入应用场景:将教学内容与实际应用场景结合起来,引入一些实际案例和实际问题。
例如,可以讲解概率分布时,引入一些实际的概率分布的例子,如正态分布在身高和体重数据分析中的应用等。
这样可以帮助学生更好地理解和掌握概率论与数理统计的理论知识。
2.强调思维方法:概率论与数理统计的学习不仅仅是记住公式和定理,更重要的是培养学生的思维方法和解决问题的能力。
在教学中,应强调培养学生的逻辑思维、分析问题的能力和解决问题的方法。
可以引导学生通过实际问题来思考,激发他们的思维活跃性,培养他们的问题解决能力。
3.实践操作与案例分析:除了理论知识的讲解,可以增加实践操作和案例分析的环节。
教师可以设计一些实际的数据分析案例,引导学生运用所学的概率论与数理统计知识进行实际问题的解决。
这样可以提高学生的动手能力和实际运用能力,让他们更好地理解和掌握概率论与数理统计的知识。
4.讲解策略与技巧:在教学中,可以通过一些讲解策略和技巧来提高学生的学习效果。
例如,可以采用图表、案例、对比等方式来讲解概念、定理和公式,使抽象的概念变得具体易懂。
还可以使用多媒体技术,如动画、视频等,来生动地展示概率论与数理统计的概念和原理,提高学生的学习兴趣和参与度。
5.独立思考和团队合作:概率论与数理统计的学习需要学生进行大量的独立思考和问题解决。
在教学中,应该给予学生足够的自主学习的机会,鼓励他们独立进行思考和研究。
同时,也应该提倡学生之间的合作学习,让他们通过合作、讨论和交流来解决问题,互相学习和促进思维的碰撞。
6.及时反馈和评价:在教学过程中,要给予学生及时的反馈和评价。
及时的反馈可以帮助学生及时发现和解决问题,及时纠正错误。
评价可以督促学生对所学知识进行总结和归纳,提高他们的学习效果和学习动力。
总之,概率论与数理统计的教学方法可以通过引入应用场景、强调思维方法、实践操作与案例分析、讲解策略与技巧、独立思考和团队合作以及及时反馈和评价等方面的改进来提高学生的学习效果和兴趣。
2021年《概率论与数理统计》考研复习笔记与辅导讲义第1章随机事件和概率一、考研辅导讲义1.随机现象与样本空间(1)随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.(2)样本空间随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点.(3)随机事件样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注:①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件.②随机事件既然由样本点组成,因此,随机事件是由基本事件组成.③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生.④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件.⑤把不包含任何样本点的空集看成一个事件,称为不可能事件.(4)随机变量表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系(1)包含关系如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或.(2)事件相等若与同时成立,则称事件A与事件B相等,记作A=B.(3)互斥事件(互不相容事件)若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点.注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形:①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容.②如果可数无穷多个事件…中任意两个事件均互斥,即,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容.【例】对任意两个互不相容的事件A与B,必有().A.如果P(A)=0,则P(B)=0B.如果P(A)=0,则P(B)=1C.如果P(A)=1,则P(B)=0D.如果P(A)=1,则P(B)=1【答案】C查看答案【解析】.(4)对立事件如果事件A与事件B有且仅有一个发生,则称事件A与事件B为对立事件或互逆事件,记为或.注:①如果A与B为对立事件,则A,B不能同时发生,且必有一个发生,即A、B满足A∪B=Ω且.②在样本空间中,集合是由所有不属于事件A的样本点构成的集合.【例】设随机事件A和B满足条件,则().A.B.C.D.【答案】A查看答案【解析】,所以即而,故,也就有即A∪B=Ω.3.事件间的运算(1)事件的交(积)如果事件A与事件B同时发生,则称这样的一个事件为事件A与事件B的交或积,记为A∩B或AB,即集合A∩B是由同时属于A与B的所有公共样本点构成.注:事件的交可以推广到有限多个事件或可数无穷多个事件的情形:(2)事件的并如果事件A与事件B至少有一个发生,则称这样一个事件为事件A与事件B的并或和,记为A∪B,即集合A ∪B是由属于A与B的所有样本点构成.注:事件的并可推广到有限多个事件或可数无穷多个事件的情形:(3)完备事件组如果有限个事件满,且,则称为Ω的一个完备事件组或完全事件组.注:可以推广完备事件组到可数无穷多个事件的情形:且.(4)事件的差事件A发生而事件B不发生的事件称为事件A与事件B的差,记为A-B.即在样本空间中集合A-B是由属于事件A而不属于事件B的所有样本点构成的集合.显然.(5)事件的运算规律交换律结合律分配律对偶律【例】A,B,C为任意三随机事件,则事件(A-B)∪(B-C)等于事件().A.A-CB.A∪(B-C)C.(A∪B)-CD.(A∪B)-BC【答案】D查看答案【解析】因,故.而图1-14.概率的概念及基本性质(1)概率的公理化定义设为一个样本空间,F为的某些子集组成的一个事件域.如果对任一事件F,定义在F上的一个实值函数满足:①非负性公理:若F,则,②正则性公理:③可列可加性公理:若互不相容,则,则称为事件A的概率,称三元素F为概率空间.(2)概率性质①;②若两两互斥,则有③;④,则P(A)≤P(B);⑤0≤P(A)≤1【例】若A,B为任意两个随机事件,则().【2015数一、数三】A.B.C.D.【答案】C查看答案【解析】由于,按概率的基本性质,有且,从而.(3)事件独立性设A,B两事件满足等式P(AB)=P(A)P(B),则称A与B相互独立.注:对n个事件,如果对任意k(1<k≤n),任意满足等式则称为相互独立的事件.事实上,n个事件相互独立需要个等式成立.(4)相互独立的性质①A与B相互独立A与或与B或与相互独立.将相互独立的n个事件中任何几个事件换成它们相应的对立事件,则新组成的n个事件也相互独立.【例】设,,为三个随机事件,且与相互独立,与相互独立,则与相互独立的充分必要条件是().[数三2017研]A.与相互独立B.与互不相容C.与相互独立 D.与互不相容【答案】C查看答案【考点】相互独立【解析】由,得.【例】已知随机事件A,B,C中,满足P(AB)=1.则事件().A.相互独立B.两两独立,但不一定相互独立C.不一定两两独立D.一定不两两独立【答案】A查看答案【解析】讨论事件的独立性,可等价的考虑A,B,C的独立性.因为P(AB)=1.可知P(A)=P(B)=1,而概率等于1的事件与所有的事件相互独立.所以成立:P(AB)=P(A)P(B);P(AC)=P(A)P(C);P (BC)=P(B)P(C).又因P(AB)=1.所以事件AB与C也相互独立,P(ABC)=P(AB)P(C)=P(A)P(B)P(C).总之A,B,C相互独立.②当0<P(A)<1时,A与B独立P(B|A)=P(B)或成立.③若相互独立,则必两两独立,反之,若两两独立,则不一定相互独立.④当相互独立时,它们的部分事件也是相互独立的.【例】设随机事件A与B相互独立,且,则().A.0.1B.0.2C.0.3D.0.4【答案】B查看答案【解析】因为事件A,B相互独立,则.故于是,则.(5)概率的运算公式①加法公式P(A∪B)=P(A)+P(B)-P(AB);P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P (ABC).②减法公式P(A-B)=P(A)-P(AB);③乘法公式当P(A)>0时,P(AB)=P(A)P(B|A);当>0时,有④全概率公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,有【例】甲袋中有2个白球3个黑球,乙袋中一半白球一半黑球.现从甲袋中任取2球与从乙袋中任取一球混合后,再从中任取一球为白球的概率为().A.B.C.D.【答案】C查看答案【解析】设事件A为最后取出的球为白球,事件B为球来自甲袋,显然,为球来自乙袋.且B,构成一个Ω的完备事件组,由全概率公式,因为最后三个球中二个球是从甲袋中来.所以取出的球来自甲袋概率为,当然.,这是因为已知取出的球来自甲袋的条件下,取出的为白球的概率,就相当于从甲中取出一白球的概率,甲中5个球2个为白,故,同理.因为乙中半白半黑,总之⑤贝叶斯公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,且P (A)>0有【例】设A、B为随机概率,若,则的充分必要条件是().[数一2017研]A.B.C.D.【答案】A查看答案【考点】概率公式计算【解析】因为,得,化简得.A项,,因为,所以.5.古典概型、几何概型、条件概率及伯努利试验(1)古典型概率当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,称这种有限等可能试验为古典概型.此时如果事件A由个样本点组成,则事件A的概率称P(A)为事件A的古典型概率.【例】袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.求P{X =1︱Z=0};解:由于本题是有放回地取球,则基本事件总数为.(2)几何型概率当试验的样本空间是某区域(该区域可以是一维,二维或三维等等),以L(Ω)表示样本空间Ω的几何度量(长度、面积、体积等等).L(Ω)为有限,且试验结果出现在Ω中任何区域的可能性只与该区域几何度量成正比.称这种拓广至几何度量上有限等可能试验为几何概型.此时如果事件A的样本点表示的区域为,则事件A的概率称这种P(A)为事件A的几何型概率.【例】在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______.【答案】【解析】本题是几何型概率.不妨假定随机地取出两个数分别为X和Y.显然X与Y是两个相互独立的随机变量.如果把(X,Y)看成平面上的一个点的坐标,则由于0<X<1,0<Y<1,所以(X,Y)为平面上正方形0<X<1,0<Y<1中的一个点.而X与Y两个数之差的绝对值小于的点(X,Y)对应于正方形中的区域.图1-2在区间(0,1)中随机选取的所有可能的两个数X和Y.这些(X,Y)点刚好是图1-3单位正方形中满足的点的区域,就是图中阴影标出的区域D.根据几何型概率(3)条件概率设A,B为两事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.【例】设A、B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则().【2016数三】【答案】A查看答案【解析】根据条件得P(AB)=P(B),则【例】设A,B,C是随机事件,A与C互不相容,P(AB)=,P=,则P(AB|)=______.【答案】【解析】由条件概率的定义知,P(AB︱)=,其中P()=1-P (C)=1-=,P(AB)=P(AB)-P(ABC)=-P(ABC),由于A,C互不相容,即AC=Ø,ABC AC,得P(ABC)=0,代入得P(AB)=,故将P()=和P(AB)=,代入公式,得P(AB)==.(4)伯努利试验如果试验E只有两个可能的结果:A及,并且P(A)=p,(其中0<p<1),把E独立地重复n次的试验就构成了一个试验,这个试验称作n重伯努利试验,又称n次独立重复试验,并记作B.一个伯努利试验的结果可以记作ω=(ω1,ω2,…,ωn)其中的ωi(1≤i≤n)的全体就是这个伯努利试验的样本空间Ω,对于ω=(ω1,ω2,…,ωn)∈Ω,如果ωi(1≤i≤n)中有k个为A,则必有n-k个为,于是由独立性即得如果要求“n重伯努利试验中事件B出现k次”这一事件的概率为【例】设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为.【2016数三】【答案】【解析】根据题意,取球次数恰好为4,则前三次恰好取到三种颜色中的两种,第四次取到剩下一种颜色的球.故前三次中取到的两种颜色取到的次数分别为1次和2次.综上,取球次数恰好为4的概率为【例】在伯努利试验中,每次试验成功的概率为p,则在第n次成功之前恰失败了m次的概率为______.图1-3【答案】【解析】为了分析试验的结构,可以作图形分析:“第n次成功之前失败了m次”这事件意味着第n次成功前有(n-1)次成功和m次失败.总共做了(n +m)次试验.最后一次是成功,前n+m-1次试验中有m次失败和(n-1)次成功,故事件的概率应为。
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................... 错误!未定义书签。
第二章随机变量及其分布.................... 错误!未定义书签。
第三章多维随机变量及其分布................ 错误!未定义书签。
第四章随机变量的数字特征.................. 错误!未定义书签。
第五章大数定律和中心极限定理.............. 错误!未定义书签。
第六章数理统计的基本概念.................. 错误!未定义书签。
第七章参数估计............................ 错误!未定义书签。
第八章假设检验............................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1(Λ=i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设ΛΛ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2Λ=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设ΛΛ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2Λ=≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1(Λ=n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用的概率确信在1000次试验中A 发生的次数在200到300之间分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX 而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用的概率确信在1000次试验中A 发生的次数在200到300之间. 解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在~之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥ 令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP.95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(,Λ=i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V Λ是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)(Λ=====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21Λ是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21Λ独立同分布,从而其函数22221,,,n X X X Λ也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n ΛΛΛΛ111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim . 4.设随机变量ΛΛ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(lim 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -,Λ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1Λ=.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设ΛΛ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列ΛΛ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数. (1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用13.设5021,,,X X X Λ是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21Λ称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21Λ是随机变量n X X X ,,,21Λ的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21Λ是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f Λ称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩 2、经验分布函数设n x x x ,,,21Λ是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤Λ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F ΛΛ为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21Λ是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且YX ,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21Λ是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X Λ是X 的一个样本, 2,,,21n Y Y Y Λ是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S n Sn S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
自测练习题参考答案第一章 自测练习题A1. (1)∅ (2)互逆事件 (3)0.7 (4)0.88 (5)132. (1)D (2)C (3) D (4) B (5) A3. 解 因为()()()()P A B P A P B P AB =+- ,故()()()()0.40.30.60.1P AB P A P B P A B =+-=+-= ,从而()()()()()0.40.10.3P AB P A B P A AB P A P AB =-=-=-=-=。
4. 解 设i A 表示事件“第i 次取到的卡片上标有奇数”,1,2i =。
则 (1)13()5P A =, (2)2121232233()()()54545P A P A A P A A ⨯⨯=+=+=⨯⨯, (3)12121323()()(|)5410P A A P A P A A ==⋅=。
5. 解 设 A 表示“该种动物由出生活到10岁”,B 表示“该动物由出生活到12岁”,显然有B A ⊂,从而()()0.56(|)0.7()()0.8P AB P B P B A P A P A ====。
6. 设,,A B C 分别表甲、乙、丙独立地破译密码,E 表示密码被译出,则E A B C = 。
由,,A B C 的独立性,有()()1()1()P E P A B C P A B C P ABC ==-=-1()()()1[1()][1()][1()]P A P B P C P A P B P C =-=----423315345=-⨯⨯=。
7. 解 设i B 表示“第一次任取的3个球中有i 个新球”,0,1,2,3i =,A 表示“第二次取出的3个球全是新球”,由题意可得393312(), 0,1,2,3i i i C C P B i C -⋅==,39312(|), 0,1,2,3ii C P A B i C -==。
由全概率公式可得31842756108358420441()()(|)2202202202202202202202203025i i i P A P B P A B ===⋅+⋅+⋅+⋅=∑自测练习题B1. (1) B (2) C (3) C (4) C (5) A2. (1)1p - (2)925 (3) 0.75 (4) 1(1)n p -- (5) 17253. 解 由已知,()()0P AB P AC ==,又A B C A B ⊂,故()0P A B C =。
《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第一章随机事件及其概率.................................. 错误!未定义书签。
第二章随机变量及其分布.................................. 错误!未定义书签。
第三章多维随机变量及其分布........................... 错误!未定义书签。
第四章随机变量的数字特征 .............................. 错误!未定义书签。
第五章大数定律和中心极限定理 .. (2)第六章数理统计的基本概念 (9)第七章参数估计 ................................................ 错误!未定义书签。
第八章假设检验 ................................................ 错误!未定义书签。
第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22{}P X σμεε-≥≤或22{}1P X σμεε-<>-成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<∑-=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y ni i ni i n ∑-=∑-===11)(的分布函数)(x F n 满足⎰=≤=∞--∞→∞→xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ .记 ∑==ni i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→∑-=++ni ii nX E B δδμ, 则随机变量nni in i i ni i ni i n i i n B X X D X E X Z ∑-∑=∑∑-∑======11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤∑-∑=∞--==∞→∞→x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ. 当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞--∞→x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析例1.设X 为连续型随机变量,c 为常数,0>ε,求证εε||}|{|c X E c X P -≤≥-分析 此类概率不等式的证明,一般考虑用切比雪夫不等式或直接从定义用类似切比雪夫不等式的方法来证.证 设X 的密度函数为)(x f ,则⎰=≥-≥-εε||)(}|{|c x dx x f c X P||1)(||1)(||)(||||c X E dx x f c x dxx f c x dx x f c x c x -=⎰-=⎰-≤⎰-≤∞∞-∞∞-≥-εεεεε例2.设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为0.5,则根据切比雪夫不等式有≤≥-}6{Y X P .解121. 由于 ,0)(=-Y X E ,32)(=-+=-DXDY DY DX Y X D XY ρ 故≤≥-}6{Y X P 12/136/3=.例3.设在独立重复试验中,每次试验中事件A 发生的概率为1/4.问是否用0.925的概率确信在1000次试验中A 发生的次数在200到300之间?分析 在1000次试验中事件A 发生的次数)4/1,1000(~B X ,且2/375)4/11(4/11000,2504/11000=-⨯⨯==⨯=DX EX而 }50250{}300200{≤-=≤≤X P X P 利用Chebychev 不等式得}50250{}300200{≤-=≤≤X P X P 925.050)(12=-≥X D所以可用0.925的概率确信在1000次试验中A 发生的次数在200到300之间.解 如分析所述,由Chebychev 不等式即可得例4.分布用切比雪夫不等式与隶美弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次,才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解 设X 为n 次掷硬币正面出现的次数,则),(~p n B X ,其中21=p (1)由切比雪夫不等式知{}n n X P n X P n X P 1.0|5.0|1.0|5.0|6.04.0≤-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧≤≤n n n n X D 25101.0411)1.0()(122-=⋅⨯-=-≥令 %.90251≥-n则得250≥n . (2) 由隶美弗-拉普拉斯的中心极限定理,得:}6.04.0{≤≤nXP .95.0)5(%901)5(21)5.01.0(225.05.06.025.05.025.05.04.0{}6.04.0{≥Φ⇒≥-Φ=-Φ≈-≤-≤-=≤≤=n n n n nn n nn X n n n P n X n P查表知:6.15≥n. 6864.67≥⇒≥n n例5. (1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度;(2)上述系统假如由n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使整个系统正常运行,问n 至少为多大时才能保证系统的可靠度不小于0.95.解 (1)设⎩⎨⎧=个元件损坏第个元件没有损坏第i i X i ,0,1,S 为系统正常运行时完好的元件个数,于是∑==1001i i X S 服从)9.0,100(b ,因而.91.09.0100,909.0100=⨯⨯===⨯=npq DS ES 故所求的概率为.952.0351990859901)85(1)85(=⎪⎭⎫⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤-==≤-=>S P S P S P(2)此时)9.0,(~n b S ,要求95.0)8.0(≥≥n S P ,而.3313.09.08.03.09.01)8.0(⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-=⎭⎬⎫⎩⎨⎧-≤--=≥n n n n n n n S P n S P 故95.03≥⎪⎪⎭⎫⎝⎛Φn ,查表得,5.24,65.13≥⇒≥n n 取n =25 例6. 一加法器同时收到20个噪声电压)20,,2,1(, =i V i ,设它们是相互独立且都服从区间(0,10)上的均匀分布,求总和噪声电压超过计划105(伏)的概率.解 记∑==201i i V V ,因2021,,,V V V 是相互独立且都服从(0,10)上的均匀分布,且20,,2,1,12100)(,5)( =====i V D V E i i i σμ 由独立同分布中心极限定理知),3500,100()1210020,520(201N N V V n i i =⨯⨯−−→−∑=∞→= 故.3483.0)39.0(1)3/500100105(1)105(1)105(=Φ-=-Φ-=≤-≈>V P V P例7.假设n X X X ,.,21 是来自总体X 的简单随机样本;已知),4,3,2,1(==k EX k k α证明当n 充分大时,随机变量∑==n i i n X n Z 121 近似服从正态分布,并指出其分布参数.分析 此题主要考查对中心极限定理的理解与运用.解 依题意知n X X X ,,,21 独立同分布,从而其函数22221,,,n X X X 也是独立同分布,且)(11)1(,1,)(,224122122122242242222αααααα-=∑=∑==∑=-=-======n DX n X n D DZ EX n EZ EX EX DX EX EX n i i n i i n n i i n i i i i由中心极限定理nZ U n n /)(2242ααα--=的极限分布为标准正态分布,即当n 充分大时,n Z 近似地服从参数为),(2242nααα-的正态分布.例8.设随机变量,1,n i X i ≤≤独立同分布,且分布密度为)(x f ,记}{1x X P p n i i ≤∑==,当n 充分大时,则有A. p 可以根据)(x f 计算; B . p 不可以根据f (x)计算;C. p 一定可以用中心极限定理近似计算;D. p 一定不可以用中心极限定理近似计算解 由于,1,n i X i ≤≤独立同分布,它们的联合概率密度等于各边缘密度的乘积.因此p 可以如下计算:⎰⎰=≤++n n n xxx dx dx x f x f p n 111)()(1由于不知道.1,n i X i ≤≤的期望和方差是否存在,故无法判断能否用中心极限定理. 综上所述,选A.测 试 题一、填空题1.随机变量X 的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(X E X P .2.设随机变量X 和Y 的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|Y X P .3.设n X 是n 重贝努里试验中事件A 出现的次数,又A 在每次实验中出现的概率为)10(<<p p ,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εp n X P n n lim .4.设随机变量 ,,,1n X X 相互独立同分布,且具有有限的均值与方差,0)(,)(2≠==σμi i X D X E ,随机变量σμn n X Y ni i n -∑==1的分布函数)(x F n ,对任意的x ,满足P x F n n =∞→)(lim { }= .5.设随机变量序列 ,,,,21n X X X 相互独立同分布,且0)(=n X E ,则=∑<=∞→)(l i m 1ni i n n X P .二、选择题6.设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.7.设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ).(A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律; (C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律.8.设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n 次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. 9.设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→; (C) )(lim 1x x n n X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. 10.设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P ; (D) 01lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσn i i n X n P . 三、解答题11.某年的统计资料表示,在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X 的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值. 12.某单位设置一电话总机,共有200架分机.设每个电话分机是否使用外线通话是相互独立的.设每时刻每个分机有5%的概率要使用外线通话.问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?13.设5021,,,X X X 是相互独立的随机变量,且都服从参数为03.0=λ的泊松分布,记∑==501i i X Y ,试计算}3{≥Y P .14.一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.10,又知为使系统正常运行,至少必须有85个元件工作,求系统的可靠度.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体.从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值(2)样本方差(3)样本标准差(4)样本k 阶原点矩(5)样本k 阶中心矩2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(n k k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X,n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ(2)样本方差(3)统计量设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量(2)当21σσ=时,统计量2)1()1(21222211-+-+-=n n S nS n S w ;(3)统计量(4)统计量疑难分析1、数理统计的研究对象和目的是什么?“数理统计学”是数学的一个分支,它的任务是研究怎样用有效的方法去收集和使用带随机性影响的数据,它的具体含义包括以下几层意思:1)能否假定数据有随机性,是区别数理统计方法与其他数据处理方法的根本点。
《概率论与数理统计》自学指导书一、课程名称:槪率论与数理统讣二、自学学时:120三、课件学时:四、教材名称:《概率论与数理统讣》,袁荫棠编,中国人民大学出版社。
五、参考资料:六、考核方式:章节同步习题(10%) +笔试(90%)七、课程简介本课程主要讲解概率统汁的基本概念、理论与方法。
内容主要包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、几种常见的分布、大数泄律与中心极限立理、样本分布、参数估计、假设检验以及回归分析等。
八、自学内容指导第一章随机事件及其概率(一)本章内容概述本章主要讲授随机试验、样本空间、古典概型、概率的立义和性质,加法及乘法公式、条件概率公式、全概率公式及贝叶斯公式,事件的独立性及独立试验概型等。
(二)自学课时安排(三)知识点1、随机事件(1)随机试验是指具有下列特点的试验:•在相同条件下可重复进行;•每次试验的结果不唯一,且试验前可确知所有可能结果;•每次试验前不可准确预知该次试验会岀现哪一种结果。
(2)随机事件在每次试验中,可能发生也可能不发生,而在大量试验中具有某种规律性的事件。
必然事件一一每次试验中一泄发生的事件,记不可能事何一每次试验中一定不发生的事件,记①。
基本事件与样本空间。
(3)事件的关系和运算①熟悉两个事件的和事件、积事件、差事件的含义及符号表示,并熟悉推广到多个事件的情形。
②此外,还有互斥事件、对立事件以及完备事件组的槪念。
互斥事件:如果事件A与B不能同时发生,即= ©,称事件A与B互不相容(也称互斥)。
对立事件:事件“非A”称为A的对立事件(或逆事件),记作7。
注意:AA=^,A + A = Q.,A = Q.-A,A = A O③事件的运算规律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律、对偶律,特别要注意对偶律:2、概率注意:三种概率的泄义(概率三种定义:统计泄义、古典定义、公理化左义),但重点是概率的古典左义,它是我们计算事件概率的主要依据。
《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
【关键字】学习《概率论与数理统计》学习指导·内容提要·疑难分析·例题解析·自测试题安徽工业大学应用数学系编目录第三章多维随机变量及其分布内容提要1、二维随机变量及其联合分布函数设,为随机变量,则称它们的有序数组()为二维随机变量.设()为二维随机变量,对于任意实数、,称二元函数为()的联合分布函数.联合分布函数具有以下基本性质:(1)是变量或的非减函数;(2)且;(3)关于右连续,关于也右连续;(4)对任意点,若,则.上式表示随机点落在区域内的概率为:.2、二维离散型随机变量及其联合分布律如果二维随机变量所有可能取值是有限对或可列对,则称为二维离散型随机变量.设为二维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布律.表3.1联合分布律具有下列性质:(1);(2).3、二维连续型随机变量及其概率密度函数如果存在一个非负函数,使得二维随机变量的分布函数对任意实数有,则称是二维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)对一切实数,有;(2);(3)在任意平面域上,取值的概率;(4)如果在处连续,则.4、二维随机变量的边缘分布设为二维随机变量,则称,分别为关于和关于的边缘分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布律.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、二维随机变量的条件分布(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布律分别为),2,1,(}{,}{,},{.. ========j i p y Y P p x X P p y Y x X P j j i i ij j i ,则当j 固定,且0}{.>==j j p y Y P 时,称,2,1,}{},{}|{.========i p p y Y P y Y x X P y Y x X P jij j j i j i 为j y Y =条件下随机变量X 的条件分布律.同理,有 ,2,1,}|{.====j p p x X y Y P i ij i j(2)连续型随机变量的条件分布设),(Y X 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:)(),(),,(y p x p y x p Y X .则当0)(>y p Y 时,在),(y x p 和)(x p X 的连续点处,),(Y X 在条件y Y =下,X 的条件概率密度函数为:)(),()|(|y p y x p y x p Y Y X =.同理,有)(),()|(|x p y x p y x p X X Y =. 6、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij . 设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对任何实数y x ,,有)()(),(y p x p y x p Y X =.7、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdy y x p z F zy x Z ⎰⎰=≤),(),()(ϕ.(1)Y X Z +=的分布若),(Y X 为离散型随机变量,联合分布律为ij p ,则Z 的概率函数为: ∑-=ii k i k Z x z x p z P ),()(或∑-=jj k j k Z y z y p z P ),()(.若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:dy y y z p dx x z x p z p Z ⎰-=⎰-=+∞∞-+∞∞-),(),()(.(2)YXZ =的分布 若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰=+∞∞-dy y yz p y z p Z ),()(.疑 难 分 析1、事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?如同仅当事件B A 、相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、二维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由)|()(),(|x y p x p y x p X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果Y X 、相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=.说明当Y X 、独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布. 3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量Y X 、相互独立,是指组成二维随机变量),(Y X 的两个分量Y X 、中一个分量的取值不受另一个分量取值的影响,满足}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有)()()(B P A P AB P ⋅=.两者可以说不是一个问题.但是,组成二维随机变量),(Y X 的两个分量Y X 、是同一试验E 的样本空间上的两个一维随机变量,而B A 、也是一个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.例 题 解 析例 1 设某班车起点站上的乘客数X 服从参数为)0(>λλ的泊松分布,每位乘客中途下车的概率为)10(<<p p ,且中途下车与否相互独立,以Y 表示中途下车的人数,求二维随机变量),(Y X 的分布律.解例2 设随机变量),(Y X 的概率密度为 试求(1)系数c ;(2)),(Y X 落在圆)0(222R r r y x <<≤+内的概率.解 所以 33Rc π=(2) 设{},:,222r y x y)(x D ≤+=注: 利用分布函数的基本性质可以确定待定系数,从而可以计算二维随机变量落在某一区域内的概率,值得注意的是计算过程中,由于),(y x f 通常是分区域函数,故积分区域要特别小心,以免出错.例3 考虑一元二次方程02=++C Bx x ,其中C B ,分别是将一枚骰子接连掷两次先后出现的点数,求该方程有实根的概率p 和有重根的概率q .解 方程02=++C Bx x 有实根的充要条件是判别式042≥-=∆C B 或4/2B C ≤,由条件知,0+1+2+4+6+6=19所以36/19=p ,使方程有重根的充要条件是C B 42=,满足此条件的基本事件个数为0+1+0+1+0+0=2因此 18/136/2==q例4 设随机变量),(Y X 均匀分布于以)1,0(),0,1(),1,0(),0,1(--四项点所构成的正方形中,求X 与Y 的边缘密度函数.解1º当01<<x -时,⎰+==⎰=+--∞∞-11121),()(x x X x dy dy y x f x f当10<≤x 时,121),()(11+-=⎰=⎰=+--∞∞-x dy dy y x f x f x x X 所以2º类似1º可得例5 随机变量),(Y X 的密度函数为⎪⎩⎪⎨⎧>>++= 其它,00,0,)1/(2),(3y x y x y x p ,求1=X 条件下Y 的条件分布密度.分析:通过),(Y X 的联合密度和边缘密度函数,来求在1=X 条件下Y 条件分布密度.解:当0>x 时,有203)1/(1)1/(2)(x dy y x x p X +=⎰++=∞,故 .例6 在),0(a 线段上任意抛两个点(抛掷二点的位置在),0(a 上独立地服从均匀分布),试求两点间距离的分布函数.解 设抛掷两点的坐标分别为X 和Y ,则X 与Y 相互独立,且都服从)(a ,0上的均匀分布,故),(Y X 的联合概率密度为记两点距离为Z ,则||Y X Z -=的分布函数为 )|(|)(z Y X P z F Z ≤-=当0<z 时,显然0)(=z F Z ; 当a z <≤0时,当a z ≥时,1)(=z F Z 故两点距离Z 的分布函数为例7 假设一电路装有三个同种电气元件,其工作状态相互独立,且无故障时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T 的概率分布.解 设)3,2,1(=i X i 为第i 个电子元件无故障工作的时间,则321,,X X X 是独立同分布的随机变量,其分布函数为记)(t G 为了T 的分布函数,则 当0<t ,0)(=t G ; 当0≥t 时,所以 ⎪⎩⎪⎨⎧<≥-=λ-0,00,1)(3t t e t G t即电路正常工作时间T 服从参数为λ3的指数分布.例8 设随机变量X 与Y 独立同分布,其概率密度为 求随机变量22Y X Z +=的概率密度.解 由于X 与Y 独立同分布,故),(Y X 的联合概率密度为当0≤z 时,显然0)(=z F Z 当0>z 时,故22Y X Z +=的概率密度为例9.已知随机变量1}2/1{,4/34/110~=-=⎥⎦⎤⎢⎣⎡Y P X ,又n 维向量123,,a a a 线性无关。
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
《概率论与数理统计》教案一、教学目标1. 了解概率论与数理统计的基本概念,理解随机现象的统计规律性。
2. 掌握概率论的基本计算方法,包括组合、排列、概率公式等。
3. 熟悉数理统计的基本方法,包括描述性统计、推断性统计、假设检验等。
4. 能够运用概率论与数理统计的方法解决实际问题。
二、教学内容1. 概率论的基本概念:随机试验、样本空间、事件、概率等。
2. 概率计算方法:组合、排列、概率公式、条件概率、独立性等。
3. 数理统计的基本概念:总体、样本、描述性统计、推断性统计等。
4. 假设检验:卡方检验、t检验、F检验等。
5. 实际问题应用:概率论与数理统计在实际问题中的举例分析。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过具体案例,让学生了解概率论与数理统计在实际问题中的应用。
3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的思考能力。
4. 实践操作法:引导学生利用统计软件进行数据分析和处理,提高学生的实际操作能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括投影仪、计算机等。
2. 教材和辅导资料:选用合适的教材和辅导资料,为学生提供丰富的学习资源。
3. 统计软件:安装统计分析软件,如Excel、SPSS等,方便学生进行实践操作。
五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。
2. 期中考试:设置期中考试,检验学生对概率论与数理统计知识的掌握程度。
3. 课程设计:布置课程设计项目,让学生运用概率论与数理统计的方法解决实际问题。
4. 期末考试:全面考察学生对概率论与数理统计知识的掌握程度。
六、教学资源1. 教材:选用权威、适合教学的的概率论与数理统计教材。
2. 辅导资料:提供习题集、案例分析集等辅导资料,帮助学生巩固知识。
3. 在线资源:推荐优秀的在线课程、教学视频、学术文章等,方便学生自主学习。
4. 软件工具:介绍和使用统计软件工具,如R、Python等,提高学生数据分析能力。
《概率论与数理统计》教学
《概率论与数理统计》是一门介绍概率论和数理统计基本原理和工具的课程。
该课程旨在培养学生对随机事件和数据的分析能力,使他们能够运用统计学方法进行实际问题的解决。
在《概率论与数理统计》课程中,学生将学习以下内容:
1. 概率论基础:包括概率的定义、基本性质、概率分布、随机变量和概率密度函数等。
2. 随机变量及其分布:介绍离散型和连续型随机变量及其概率分布,如二项分布、泊松分布、正态分布等。
3. 多维随机变量和联合分布:学习多维随机变量的概率函数、分布函数和边缘分布,以及相关系数和协方差的概念。
4. 数理统计基础:包括样本与总体、统计量、参数估计、假设检验等内容。
5. 统计推断:介绍点估计和区间估计的方法,以及假设检验的原理和步骤。
6. 回归与相关分析:学习线性回归和相关系数的定义和计算方法,并了解其应用领域。
在教学过程中,教师一般会通过理论讲解、示例分析和实际问题求解等方法,帮助学生理解和掌握相关知识和技巧。
同时,
还会引导学生进行数理统计的实际应用和实验设计,培养他们的数据分析和解决实际问题的能力。
通过学习《概率论与数理统计》,学生可以掌握基本的概率论和数理统计知识,具备分析和解决实际问题的能力,为其在统计学、经济学、金融学等领域的学习和工作打下坚实的基础。
《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。
掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。
1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。
学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。
第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。
学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。
2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。
掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。
第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。
学习如何列出联合随机变量的可能取值,以及如何计算联合概率。
3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。
学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。
第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。
学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。
4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。
学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。
第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。
学习如何计算样本均值、样本方差等基本统计量。
5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。
学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。
怎么学好概率论与数理统计学习怎么学好概率论与数理统计学习1:做题技巧如何掌握做题技巧?俗话说“孰能生巧”,对于数学这门课,用另一个成语更贴切——“见多识广”。
对于我们自考生而言,学习时间短,想利用“孰能生巧”不太现实,但是“见多识广”确实在短时间内可以做到。
这就是说,在平时不能一味的多做题,关键是多做一些类型题,不要看量,更重要的是看多接触题目类型。
同一个知识点,可以从多个角度进行考察。
有些学员由于选择辅导书的问题,同类型的题目做了很多,但是题目类型却没有接触多少。
在考试的时候感觉一落千丈。
那么应该如何掌握题目类型呢?我想历年的真题是我们最好的选择。
怎么学好概率论与数理统计学习2:做题练习平时该如何练习?提出这个问题可能很多人会感到不可思议。
有一句话说得好“习惯形成性格”。
这句话应用到我们的学习上也成立。
这么多年以来,有些人有很好的学习习惯,尽管他的学习基础也不好,学习时间也有限,但是他们能按照自己知道的学习规律坚持学习,能够按照老师说得去思考、前进。
我们大多数人都有惰性,一个题目一眼看完不会,就赶紧找答案。
看了答案之后,也就那么回事,感觉明白了,就放下了。
就这样“掰了很多玉米,最后却只剩下一个玉米”。
我们很清楚,最好的方法是摘一个,留一个。
哪怕一路你只摘了2个,也比匆匆忙忙摘了一路,却不知道保留的人得到的多。
平时做题要先多思考,多总结,做一个会一个,而且对于做过的题目要经常地回顾,这样才能掌握住知识。
就我的辅导经验而言,绝大多数人还是在这个问题上出现了问题。
学好概率论与数理统计的注意事项第一,我要说的是同学们在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。
概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。
一般同学都会处于后一种状态。
那么怎么办呢?请转阅第二条。
第一章随机事件及其概率一、基本要求1、了解基本事件空间(样本空间)的概念,理解随机事件的概念,掌握事件的关系和运算及其基本性质;2、理解事件概率、条件概率的概念和独立性的概念;掌握概率的基本性质和基本运算公式;掌握与条件概率有关的三个基本公式(乘法公式、全概率公式和贝叶斯公式).3、掌握计算事件概率的基本计算方法:(1) 概率的直接计算:古典型概率和几何型概率;(2) 概率的推算:利用概率的基本性质、基本公式和事件的独立性,由较简单事件的概率推算较复杂事件的概率.(3) 利用概率分布:利用随机变量的概率分布计算有关事件的概率.二、概念网络图第二章随机变量及其分布一、基本要求1、理解概率分布的概念,掌握其三种基本形式:离散型概率分布,连续型概率密度,分布函数;掌握概率分布的特点、性质,会根据概率分布计算有关事件的概率;2、掌握常用的概率分布:0-1分布、二项分布、超几何分布和泊松分布等离散型概率分布,以及均匀分布、指数分布和正态分布等连续型概率分布,包括分布的表达式、特点、性质、数字特征和典型应用,以及与其他分布的关系;3、理解0-1分布、二项分布、超几何分布和泊松分布等离散型概率分布之间的关系;4、会根据随机自变量的分布,求其函数的分布的方法.二、概念网络图第三章多维随机变量及其分布一、基本要求1、理解二维随机变量的联合分布函数的基本概念和性质;离散型随机变量联合分布律、边缘分布律和条件分布律;连续型随机变量联合概率密度、边缘密度和条件密度;会利用二维概率分布求有关事件的概率.2、理解随机变量的独立性的概念,掌握随机变量独立的条件;3、掌握二维均匀分布;了解二维正态分布的概率密度,理解其中参数的概率意义;4、掌握根据两个随机变量的联合分布的基本方法,熟练掌握两个随机变量和、商、以及最大值和最小值的分布的求解;会根据两个或多个独立随机变量的分布求其较简单函数的分布.二、概念网络图第四章随机变量的数字特征一、基本要求1、理解随机变量的数字特征(数学期望、方差,标准差、矩、协方差、相关系数)的概念,并会运用数字特征定义和基本性质计算具体分布的数字特征;掌握常用分布(二项分布、超几何分布、泊松分布、一维和二维均匀分布、指数分布、一维和二维正态分布)的数字特征.2、会根据随机变量的概率分布求其函数的数学期望;会根据二维随机变量的概率分布求其函数的数学期望.3、理解两个随机变量相关性的概率含义,以及与独立性的联系和区别.4、理解有关数字特征的概率意义.二、概念网络图第五章大数定律与中心极限定理一、基本要求1、理解大数定律的概率含义,掌握切比雪夫大数定律、伯努利大数定律和辛钦大数定律成立的条件及结论.大数定律多用于进行理论的论证,一般不便于处理具体问题.会证明切比雪夫大数定律和伯努利大数定律.2、理解中心极限定理的定义,掌握棣莫弗-拉普拉斯中心极限定理以及独立同分布中心极限定理的结论和应用条件,并会应用这两个定理进行近似计算.二、概念网络图第六章 数理统计的基本概念一、基本要求1、理解总体、简单随机样本和统计量的概念,掌握常用统计量和样本数字特征——样本均值、样本方差和样本矩的概念及其基本性质,其中样本方差定义为 ∑=--=n i i X Xn S 122)(11.2、了解统计推断常用的2χ分布、t 分布、F 分布,理解服从2χ分布、t 分布、F 分布的随机变量的定义含义,会用相应的分位数;3、了解正态总体的常用抽样分布:正态分布、2χ分布、t 分布、F 分布.4、掌握与常见统计量相关的分布定理结论.二、概念网络图第七章参数估计一、基本要求1、理解参数的点估计、估计量与估计值的概念,了解评选估计量的基本标准——无偏性、有效性与相合性(一致性)的概念,并会证明估计量的无偏性;会比较两个无偏估计量的方差;会利用大数定律证明估计量的相合性.2、掌握求估计量的方法——矩估计法和最大似然估计法;矩估计法一般只涉及一阶和二阶矩.3、掌握建立未知参数的(单侧或双侧)置信区间的一般方法,掌握正态总体的均值、方差、标准差和矩,以及与其相联系的特征的置信区间的求法.4、掌握建立两个正态总体的均值差和方差比,以及与其相联系的特征的置信区间的一般求法.二、概念网络图第八章假设检验一、基本要求1、理解“假设检验”的概念及其类型,理解显著性检验的基本思想,掌握假设检验的基本步骤,会构造简单假设的显著性检验;2、理解假设检验的两类错误;3、熟练掌握正态总体参数的假设检验;4、熟练掌握分布的卡尔方拟合检验以及随机变量独立性的拟合检验.二、概念网络图第九章方差分析与线性回归一、基本要求1、理解单因子方差分析的概念及其类型,熟练掌握检验多正态总体均值是否相等的方法;2、熟练掌握线性回归模型的参数估计,以及正态线性回归模型参数估计量的性质.二、概念网络图。
《概率论与数理统计》学习指导课程名称:概率论与数理统计英文名称:Probability and Statistics开课院系:远程教育学院开课学时:36学分:3授课对象:远程教育学院高起本计算机科学与技术、金融学专业学生一、教学目的与课程性质、任务。
教学目的:本课程为学生讲授概率论与数理统计的基本概念、基本方法、基本技巧和基本理论。
主要培养学生对随机数学理论的掌握和实际问题的分析与理解能力,尽量引导学生针对实际随机现象进行科学的分析,从而达到增强学生动手能力和提高学生数学思维能力。
二、教学要求概率论与数理统计是在理论基础上实践性很强的课程,它主要讲授随机现象统计规律性的一门数学科学。
要求学生能够奠定较扎实的概率论理论基础,同时也能利用随机变量及其分布有关理论知识讨论数理统计中的有关统计推断问题.要求学生能对现实中的工程实际问题、保险问题、金融问题、可靠性问题等方面利用合理的概率论和数理统计有关理念予以解释和分析.在教学环节上,对学生的学习提出“掌握”和“了解”两个层次上要求,所谓“掌握”,是指学生在课后,必须能将所学内容用自己理解后的数学术语复述出来,这是将所学知识熟练应用到实践中的基础。
所谓“了解”,是要求学生对所学内容有初步的认知,不要求完全复述出来,但在遇到相关问题时要求能够辨识。
教学以课堂讲授为主,辅之以课堂具体的事例分析等方式。
三、教学进度表讲课顺序讲课时数授课内容第一次课 2 I、概率论研究的对象、简史、应用的范围以及发展缓慢的原因;学习概率论方法第二次课 2 随机事件与样本空间、随机事件的关系与运算第三次课 2 古典概率的定义、古典概率的性质第四次课 2 几何概率统计概率,概率的公理化定义,习题第五次课 2 II、条件概率、乘法定理、全概率公式第六次课 2 贝叶斯公式、事件的独立性、二项概率公式第七次课 2 泊松近似公式的应用、习题、III随机变量概念第八次课 2 离散型随机变量,分布函数,连续型随机变量第九次课 2 正态分布,随机变量函数的分布第十次课 2 随机变量函数的分布、习题第十一次课 2 IV 多维随机变量、分布函数,边缘分布函数,二维离散型与连续型随机变量第十二次课 2 二维均匀分布,随机变量的独立性,n维随机变量。
第十三次课 2 两个随机变量和的分布,习题V、离散型随机变量的数学期望第十四次课 2 连续型随机变量的数学期望,随机变量函数的数学期望,数学期望的性质第十五次课 2 方差的概念及其性质、协方差和相关系数,第十六次课 2 相关系数的性质、矩的概念、习题,第十七次课 2 VI 切比晓夫不等式与大数定律、中心极限定理简介,第十八次课 2 复习课:总结、概率论和数理统计典型例题讲解。
四、教学内容与讲授方法讲课顺序教学内容授课方法第一讲导论:学习概率论与数理统计的重要性;概率论与数理统计的主要内容;如何来学习概率论与数理统计。
引导式:首先介绍概率论与数理统计研究的对象、简史;然后根据具体的各方面事例来讨论其应用的范围、重要性以及发展缓慢的原因;从而利于激发学生学习的积极性.第二讲随机事件与样本空间、事件的关系与运算案例教学:通过具体的例子来引入随机试验、样本空间、随机事件等概念,说明用集合语言来描述随机现象的重要性.第三讲古典概率的定义、古典概率的性质讲述和引导式:通过现实中的公平赌博现象引入古典概率的定义并讲述几个经典习题以及讲述利用古典概率性质解题的便利性.第四讲几何概率、统计概率、概率的公理化定义、习题数与形结合教学:通过历史上的经典试验引入几何概率、统计概率的定义并介绍其局限性,从而说明建立概率的公理化定义的必要性,教学中注意数与形相结合的模式.讲课顺序教学内容授课方法第五讲条件概率、乘法定理、全概率公式讲述教学:首先应讲清条件概率的思想含义以及满足的基本性质,然后讲述三公式的作用及意义并通过具体的例题予以说明.第六讲贝叶斯公式、事件的独立性、二项概率公式启发式教学:通过故障诊断、医疗专家系统等问题来引出贝叶斯公式,也通过大量独立的现象和重复独立的试验来介绍独立性和二项概率公式.第七讲泊松近似公式的应用、习题、III随机变量概念启发式教学:通过介绍二项概率公式在成功事件是稀有事件且试验重数较大时泊松近似公式的应用(保险问题等),使学生加深对概率的理解.而随机变量概念第八讲离散型随机变量,分布函数,连续型随机变量讲述式:首先介绍两类随机变量概念及其概率分布,然后讨论一般随机变量概率分布—分布函数及其性质.讲课顺序教学内容授课方法第九讲正态分布,随机变量函数的分布引导式与启发式教学:从正态分布在概率论中的历史地位以及正态分布的直观特征、广泛应用来研究.同时也应研究随机变量函数的分布引入的物理与计算机科学中的意义.第十讲随机变量函数的分布、习题讲述教学.第十一讲IV 多维随机变量、分布函数,边缘分布函数,二维离散型与连续型随机变量类比教学:通过将多维随机变量与随机变量相类比,不难引出多维随机变量的新概念.第十二讲二维均匀分布,随机变量的独立性,n维随机变量。
启发式教学:与一维均匀分布类比; 随机变量的独立性来源于随机事件的独立性.第十三讲两个随机变量和的分布,习题V、离散型随机变量的数学期望启发式教学:举例说明两个随机变量和的分布(离散与连续型),并用事例说明数学期望的实际含义与重要性.第十四讲连续型随机变量的数学期望,随机变量函数的数学期望,数学期望的性质讲述教学。
第十五讲方差的概念及其性质、协方差和相关系数,启发式:回顾数学期望的概念;讲清方差、协方差和相关系数的概念、性质及数学含义;讲课顺序教学内容授课方法第十六讲相关系数的性质、矩的概念、习题,启发式:相关系数性质的证明过程可看出其思想含义.第十七讲VI 切比晓夫不等式与大数定律、中心极限定理简介,启发式教学+讲述教学:通过具体工程事例与概率概念的精确解释,以及二项概率的一般近似出发,来掌握大数定律、中心极限定理基本内容.第十八讲复习课:总结;概率论和数理统计典型例题讲解。
通过具体的习题将学习内容复习一遍并将整个内容串讲一次.五、课程的重点内容及习题(一) 课程的重点内容序号讲授的重点内容及考察的主要知识点1 导论2 §1.1 随机事件,§1.2 事件的关系与运算3 §1.3 古典概率4 §1.4 几何概率5 §2.1 条件概率,乘法定理§2.2 全概率公式6 §2.3 贝叶斯公式§2.4 事件的独立性7 §2.5 重复独立试验,二项概率公式8 §3.1 随机变量的概念9 §3.2 离散型随机变量§3.3 随机变量的分布函量10 §3.4 连续性随机变量§3.5 正态分布11 §3.6 随机变量函数的分布12 §4.1 多维随机变量及其分布函数、边缘分布函数§4.2 二维离散型随机变量§4.3 二维连续型随机变量 4.3.1 概率密度及边缘概率密度13 4.3.2 二维均匀分布§4.5 随机变量的独立性14 §4.6 二维随机变量函数的分布4.6.1和的分布4.6.2 瑞利分布4.6.3极大极小分布15 §5.1 数学期望5.1.1 离散型随机变量的数学期望5.1.2 连续型随机为量的数学期望16 5.1.3 随机变量函数的数学期望5.1.4 数学期望的性质17 §5.2 方差5.2.1方差的概念 5.2.2方差的性质;18 §5.3协方差和相关系数 6.1.1切比晓夫不等式;总复习(二) 课程的习题(71道题)[2]第一章随机事件与概率P28—31 2、6、10、11、13、14、15、16、18、20第二章条件概率与独立性P53—56 2、4、6、7、10、12、13、17、18、23、25第三章随机变量及其分布P88—92 3、5、7、9、10、15、16、17、24、27、30第四章多维随机变量及其分布P124—128 1、3、5、7、13、15、20、26第五章随机变量的数字特征P155—159 2、5、11、13、15、1720、21、23、25、28、29第七章数理统计的基本概念P200—203 6、8、9、10、12、13、15第八章参数估计P224—227 1、2、4、5、8、19、20第九章假设检验P254—257 1、3、5、7、8六、本课程的几点说明1. 本课程的板书为中英文目的是了解概率论与数理统计常用词汇、为将来外文文献的阅读与相关问题研究打下扎实的基本功。
2. 关于学习概率论与数理统计应该具备的基础概率论与数理统计是属于现代数学的一个重要分支,其研究和学习必须具备良好的高等数学和线性代数理论基础。
3. 关于概率论与数理统计的研究对象是一门研究随机现象统计规律性的、理论与实际相结合的、应用性很强的数学学科。
4. 关于先行和后续课程先行课程:《高等数学》、《线性代数》等;后续课程:《数理统计》、《随机过程》、《随机分析》、《时间序列分析》、《应用概率统计》等。
5. 本课程的教学计划本课程分概率论(随机事件与概率、条件概率与独立性、随机变量及其分布、多位随机变量及其分布、随机变量的数字特征、大数定理及中心极限定理)和数理统计(数理统计的基本概念、参数估计、假设检验、一元线性回归)两大部分.6. 使用教材:[1]许承德王勇,概率论与数理统计,科学出版社,2001年[2]曹彬许承德主编,概率论与数理统计,哈尔滨工业大学出版社,1997年[3]哈工大数学系概率与复变教研室编,概率论与数理统计习题解答,哈工大出版社,2003年7. 对学生的修课建议建议学生温习高等数学和线代的内容,并要求预先掌握排列与组合基本内容和主要结论。
七、学习主要参考书[1]许承德王勇,概率论与数理统计,科学出版社,2001年[2]曹彬许承德主编,概率论与数理统计,哈尔滨工业大学出版社,1997年[3]哈工大数学系概率与复变教研室编,概率论与数理统计习题解答,哈工大出版社,2003年[4]浙江大学数学系高等数学教研组编,工程数学概率论与数理统计,人民教育出版社,1980年[5]袁荫棠编,经济应用数学基础(三):概率论与数理统计,中国人民大学出版社,1989年[6]陆璇编著,数理统计基础,清华大学出版社,2001年[7]M i c h a e l A.B e a n,P r o b a b i l i t y:T h e S c i e n c e o f U n c e r t a i n t y w i t h A p p l i c a t i o n st o I n v e s t m e n t s,I n s u r a n c e,a n d E n g i n e e r i n g,B r o o k s/C o l e,2003[8]J o h n A.R i c e,M a t h e m a t i c a l S t a t i s t i c s a n d D a t a A n a l y s i s,2E,T h o m s o n,2003八、成绩考核办法1.平时作业10—20分2.期中考试(或课程论文)10—20分3.期末结业考试60---80分。