GYJ-0117_八路输入输出场效应管控制板原理图
- 格式:pdf
- 大小:84.35 KB
- 文档页数:1
1.4 场效应三极管前面介绍的半导体三极管称为双极型三极管(英文缩写为BJT),这是因为在这一类三极管中,参与导电的有两种极性的载流子:既有多数载流子又有少数载流子。
现在将要讨论另一种类型的三极管。
它们依靠一种极性的载流子(多数载流子)参与导电,所以称为单极型三极管。
又因为这种管子是利用电场效应来控制电流的,所以也称为场效应管。
场效应管分为两大类:一类称为结型场效应管,另一类称为绝缘栅场效应管。
1.4.1 结型场效应管本节主要介绍结型场效应管的结构、工作原理和特性曲线。
一、结构图1.4.1中示出了N沟道结型场效应管的结构示意图以及它在电路中的符号。
图1.4.1 N沟道结型场效应管的结构和符合(a)结构示意图 (b)符号在一块N型硅棒的两侧,利用合金法、扩散法或其他工艺做成掺杂程度比较高的P型区(用符号表示),则在型区和N型区的交界处将形成一个PN结,或称耗尽层。
将两侧的型区连接在一起,引出一个电极,称为栅极(G),再在N型硅棒的一端引出源极(S),另一端引出漏极(D),见图1.4.1(a)。
如果在漏极和源极之间加上一个正向电压,即漏极接电源正端,源极接电源负端,则因为N型半导体中存在多数载流子电子,因而可以导电。
这外场效应管的导电沟道是N型的,所以称为N沟道结型场效应管,其电路符号见图1.4.1(b)。
注意电路符号中,栅极上的箭头指向内部,即由区指向N区。
另—种结型场效应管的导电沟道是P型的,即在P型硅棒的两侧做成高掺杂的N型区(用符号表示),并连在一起引出栅极,然后从P型硅棒的两端分别引出源极和漏极,见图1.4.2(a)。
这就是P沟道结型场效应管,其电路符号见图1.4.2(b)所示。
此处栅极上的箭头指向外侧,即由P区指向区。
图1.4.2 P沟道结型场效应管的结构和符号(a)结构示意图 (b)符号上述两种场效应管的工作原理是类似的,下面以N沟道结型场效应管为例,介绍它们的工作原理和特性曲线。
二、工作原理从结型场效应管的结构已经看出,在栅极和导电沟道之间存在一个PN结。
MOS管MOS管结构原理图解mos管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。
在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。
这样的器件被认为是对称的。
双极型晶体管把输入端电流的微小变化放大后,在输出端输出一个大的电流变化。
双极型晶体管的增益就定义为输出输入电流之比(beta)。
另一种晶体管,叫做场效应管(FET),把输入电压的变化转化为输出电流的变化。
FET的增益等于它的transconductance,定义为输出电流的变化和输入电压变化之比。
市面上常有的一般为N 沟道和P沟道,详情参考右侧图片(N沟道耗尽型MOS管)。
而P沟道常见的为低压mos管。
场效应管通过投影一个电场在一个绝缘层上来影响流过晶体管的电流。
事实上没有电流流过这个绝缘体,所以FET管的GATE电流非常小。
最普通的FET用一薄层二氧化硅来作为GATE极下的绝缘体。
这种晶体管称为金属氧化物半导体(MOS)晶体管,或,金属氧化物半导体场效应管(MOSFET)。
因为MOS管更小更省电,所以他们已经在很多应用场合取代了双极型晶体管。
mos管优势1.可应用于放大。
由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2.很高的输入阻抗非常适合作阻抗变换。
常用于多级放大器的输入级作阻抗变换。
3.可以用作可变电阻。
4.可以方便地用作恒流源。
5.可以用作电子开关。
6.在电路设计上的灵活性大。
栅偏压可正可负可零,三极管只能在正向偏置下工作,电子管只能在负偏压下工作。
另外输入阻抗高,可以减轻信号源负载,易于跟前级匹配。
MOS管结构原理图解1、结构和符号(以N沟道增强型为例)在一块浓度较低的P型硅上扩散两个浓度较高的N型区作为漏极和源极,半导体表面覆盖二氧化硅绝缘层并引出一个电极作为栅极。
[讲解]场效应管工作原理场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN 型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
1/11页对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
学号:XXXXXXX 《电子技术课程设计》报告题目:八路电压表学院(系):机械与电子工程学院专业年级:XXXXXX学生姓名: XXXXX指导教师: XXXXX完成日期:2016年1月20日目录1.设计任务及要求 ..................................................................................................................... - 1 -1. 1课题要求设计............................................................................................................. - 1 -1.2具体设计要求............................................................................................................... - 1 -2.设计方案 ................................................................................................................................. - 1 -2.1电压通道选择和通道号显示部分方案....................................................................... - 1 -2.2电压转换和显示方案................................................................................................... - 1 -3.设计原理与电路 ..................................................................................................................... - 2 -3.1八路电压表的原理框图............................................................................................... - 2 -3.2电压通道选择和通道数显示电路............................................................................... - 2 -3.3电压转换和显示方案................................................................................................... - 3 -3.4主要元器件介绍........................................................................................................... - 3 -3.4.1 CD4051.............................................................................................................. - 3 -3.4.2 ICL7107............................................................................................................ - 5 -3.4.3 NE555................................................................................................................ - 6 -3.4.4 74LS160............................................................................................................ - 7 -3.4.5七段显示器....................................................................................................... - 8 -4.电路的组装与调试 ................................................................................................................. - 9 -4.1整体电路在proteus上的仿真实现.............................................................................. - 9 -4.2电压通道选择和通道号显示部分的仿真实现.......................................................... - 10 -4.3电压转换和显示电路仿真实现.................................................................................. - 11 -4.3.1量程非自动选择模式..................................................................................... - 12 -4.3.2量程自动选择模式......................................................................................... - 12 -5.设计总结 ............................................................................................................................... - 14 -附录 ........................................................................................................................................... - 15 -参考文献 ................................................................................................................................... - 16 -1.设计任务及要求1.1课题要求设计对8路电压信号进行采集,并将其通过3位半电压转换芯片转换成数字信号后进行显示,显示通道号和当前通道的电压值1.2具体设计要求(1)能够对八路电压进行采集。
目录1 八入八出场效应管工控开发板功能介绍 (2)1.1八入八出场效应管工控开发板简介 (2)1.2硬件连接标注说明 (2)1.3 STC12C5A60S2系列1T单片机简介 (3)1.4 N沟道Irf1205场效应管简介 ................... 错误!未定义书签。
2 开发板编程入门教学 ......................................... 错误!未定义书签。
2.1 Keil uVision4简介 ...................................... 错误!未定义书签。
2.2 用keil软件建一个简单工程 .................... 错误!未定义书签。
2.3 下载程序方法 ............................................ 错误!未定义书签。
3 开发板应用实例 ................................................. 错误!未定义书签。
3.1控制某一路延时通断实例 ......................... 错误!未定义书签。
3.2随机输出控制使用实例 ............................. 错误!未定义书签。
3.5、八路输出流水灯实例 (8)3.4一对一输入输出点动控制程序 (10)3.5一对一输入输出自锁控制实例 (12)3.6一对一输入输出互锁控制实例 (14)3.7上位机串口控制测试 (16)3.8上位机485接口控制测试 (20)3.9上位机232或485接口控制测试 (25)3.10加密设定开机次数记忆 (30)3.11掉电记忆测试程序 (34)3.12 PWM控制直流电机................................. 错误!未定义书签。
附录:原理图 ......................................................... 错误!未定义书签。
光电耦合器的管脚图及工作原理光电耦合器的作用及工作原理光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
GYJ-0136_8路输入输出产品使用说明书【简要说明】一、尺寸:长143mmX宽110mmX高20mm二、主要芯片:单片机STC89C52RC 继电器光耦三、工作电压:有直流12V及24V可选。
四、特点:电路结构简单,稳定可靠,采用最新款STC单片机,运行速度快,单片机预留扩展接口。
1、具有八路输入信号指示灯,八路继电器吸合指示灯,电源指示灯。
2、板子功耗小于8W3、额定切换电流10A以内,切换电压250V以内4、单路最大切换功率500W 额定功率300W5、继电器寿命1000000次以上。
6、电器绝缘电阻100M7、触电耐压1000V8、继电器最大吸合时间15mS 毫秒9、继电器最大释放时间5mS 毫秒10、工作温度-40度至+70度11、工作湿度40% ~ 80%RH12、8路光电隔离输入,8路光电隔离输出13、8输入低电平有效(即:NPN输入)14、8路输出开关量输出(即:干接点输出)15、具有MAX232通讯和RS485通讯两种模式可选。
16、单片机所有IO口都引出,客户可以自己编程扩展功能17、可以选择使用外部EEPROM 作为存储单元18、电路具有,防反接保护、过流保护、续流保护、压敏保护等19、单片机可以自行更换,可以选择替换型的STC系列单片机20、我们提供电路相关的,原理图、例程、开发环境、下载软件等相关资料适用场合:工业控制、产品开发、项目设计,自动化改造等【标注说明】【接线说明】【输入控制设备】【输出控制设备】【输出举例说明】【输出举例说明】(开关量输出、干接点输出)【专业下载线接线说明】【串口通信说明】也可以通过串口下载【485通信说明】【MAX232与485通信切换说明】【扩展接口说明】(我们会在陆续增加、模拟量输入模块、电流模块、电压模块、无线模块、数码管显示模块、液晶模块、按键模块、PWM模块、模拟量输出模块、wifi模块、CAN模块、IP 模块等等。
)【原理图】(提供PDF格式的原理图及PCB图)更清晰免费提供与此工控板有关的:资料、例程、原理图芯片资料、软件。
详解场效应管管脚图接线图、引脚、检测⽅法、注意事项等mos管三个引脚怎么区分G极,不⽤说⽐较好认。
S极,不论是p沟道还是N沟道,两根线相交的就是;D极,不论是p沟道还是N沟道,是单独引线的那边。
判定栅极G:场效应管管脚图接线图将万⽤表拨⾄R&TImes;1k档,⽤万⽤表的负极任意接⼀电极,另⼀只表笔依次去接触其余的两个极,测其电阻。
若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极。
漏极和源极互换,若两次测出的电阻都很⼤,则为N沟道;若两次测得的阻值都很⼩,则为P沟道。
判定源极S、漏极D:在源-漏之间有⼀个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。
⽤交换表笔法测两次电阻,其中电阻值较低(⼀般为⼏千欧⾄⼗⼏千欧)的⼀次为正向电阻,此时⿊表笔的是S极,红表笔接D极。
MOS管脚测定⽅法①栅极G的测定:⽤万⽤表R×100 档,测任意两脚之间正反向电阻,若其中某次测得电阻为数百Ω),该两脚是D、S,第三脚为G。
②漏极D、源极S及类型判定:⽤万⽤表 R ×10kΩ档测 D、S问正反向电阻,正向电阻约为0.2×10kΩ,反向电阻(5⼀∞)X100kΩ。
在测反向电阻时,红表笔不动,⿊表笔脱离引脚后,与G碰⼀下,然后回去再接原引脚,出现两种情况:a.若读数由原来较⼤值变为0(0×10kΩ),则红表笔所接为S,⿊表笔为D。
⽤⿊表笔接触G有效,使MOS管D、S间正反向电阻值均为0Ω,还可证明该管为N沟道。
b.若读数仍为较⼤值,⿊表笔不动,改⽤红表笔接触G,碰⼀下之后⽴即回到原脚,此时若读数为0Ω,则⿊表笔接的是S极、红表笔为D极,⽤红表笔接触G极有效,该MOS管为P沟道。
场效应管的检测和使⽤⼀、⽤指针式万⽤表对场效应管进⾏判别(1)⽤测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不⼀样的现象,可以判别出结型场效应管的三个电极。
结型场效应管的工作原理N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。
N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。
在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。
i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。
因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。
转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。
()|D gs ds u i f u ==常数在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为2()(1)GSD DDS GS off u i I u =-2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。
()|D s gs d u i f u ==常数GS 0123451.v GS对沟道电阻及i D的控制作用图2所示电路说明了v GS对沟道电阻的控制作用。
为便于讨论,先假设漏-源极间所加的电压v DS=0。
当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。
当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。
由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。
当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。
场效应管工作原理MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field EffectTransistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS场效应管,其内部结构见图5。
它可分为NPN型PNP 型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。
我们知道一般三极管是由输入的电流控制输出的电流。
但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。
如图6所示,我们知道在二极管加上正向电压(P 端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P 型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。
当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。
如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。
场效应管的结构场效应管是电压控制器件,功耗比较低。
而三极管是电流控制器件,功耗比较高。
但场效应管制作工艺比三极管复杂,不过可以做得很小,至恸米级大小。
所以在大规模集成电路小信号处理方面得到广泛的应用。
对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。
场效应管具有很多比三极管优越的性能。
结型场效应管的结构结型场效应管又叫JFET,只有耗尽型。
这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。
图为N沟道结型场效应管的结构示意图。
在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。
在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。
这样在沟道和栅极间便形成了两个PN结。
当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。
如果在漏极及源极之间加上电压U DS,就有电流流过,I D将随U DS的增大而增大。
如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。
其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。
这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。
注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。
而且是PN结工作在反向偏置的状态。
刚开机时,如果负偏置没有加上,此时I D是最大的。
特点:1 , GS和GD有二极管特性,正向导通,反向电阻很大2: DS也是导通特性,阻抗比较大3: GS工作在反向偏置的状态。
4: DS极完全对称,可以反用,即D当做S , S当做D。