高三基础知识天天练 数学11-1人教版
- 格式:doc
- 大小:52.00 KB
- 文档页数:4
第11模块 第6节[知能演练]一、选择题1.如右图,向圆内投镖,如果每次都投入圆内,那么投中正方形区域的概率为( )A.2π B.1π C.23D.13解析:投中正方形区域的概率为正方形的面积与圆的面积之比,设正方形的边长为1,则其面积为1,圆的半径为22,面积为π(22)2=π2,故投中正方形区域的概率为1π2=2π,故选A.答案:A2.在500 mL 的水中有一个细菌,现从中随机取出2 mL 水样放到显微镜下观察,则发现这个细菌的概率是( )A .0.004B .0.002C .0.04D .0.02解析:由于取水样的随机性,所求事件A “在取出的2 mL 水样中有细菌”的概率等于水样的体积与总体积之比,即P =2500=0.004.故选A.答案:A3.已知Ω={(x ,y )|x ≥0,y ≥0,x +y ≤6},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13B.23C.19D.29解析:由于点P 落在区域Ω内的位置的随机性,所求事件A 的概率等于区域A 的面积与区域Ω的面积之比,即P =12×4×212×6×6=29.故选D.答案:D4.如下图所示,ABCD 是正方形,E 、F 、G 、H 分别是AD 、BC 、AB 、CD 的中点,三只麻雀分别落在这三个正方形木板上休息,它们落在所在木板的任何地方是等可能的,麻雀落在甲、乙、丙三块木板中阴影部分的概率分别是P 1、P 2、P 3,则()A .P 1<P 2=P 3B .P 1<P 2<P 3C .P 1=P 2=P 3D .P 1>P 2=P 3解析:因为每一个图形中阴影部分的面积均是正方形面积的一半,所以麻雀落在甲、乙、丙三块木板中阴影部分的概率都是12.故选C.答案:C 二、填空题5.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.解析:在75秒内,每一时刻到达路口是等可能的,属于几何概型. (1)P =亮红灯的时间全部时间=3030+40+5=25;(2)P =亮黄灯的时间全部时间=575=115;(3)P =不是亮红灯的时间全部时间=亮黄灯或绿灯的时间全部时间=4575=35.故填25、115、35.答案:25 115 356.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]内任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如右图,A (1,0),B (4,0),C (4,3),S ΔABC =92,P =S ΔABC S 矩=924×4=932.故填932.答案:932三、解答题7.在1万平方千米的大陆架海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?解:石油在1万平方千米的大陆架海域中的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型的概率公式可以求得概率.记“钻到油层面”为事件A ,则P (A )=储藏石油的大陆架面积大陆架海域的面积=4010000=0.004.答:钻到油层面的概率是0.004.8.已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}. (1)若a ,b ∈N ,求A ∩B ≠Ø的概率; (2)若a ,b ∈R ,求A ∩B =Ø的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0],则f ′(x )=a +b ln2·2x . 因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b 2-1.要使A ∩B ≠Ø,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共7组. 所以A ∩B ≠Ø的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如右图),面积为4.由(1)可知,要使A ∩B =Ø,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =Ø的(a ,b )对应的区域是图中的阴影部分,所以S 阴影=12×1×12=14,所以A ∩B =Ø的概率为P =144=116.[高考·模拟·预测]1.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A的距离小于等于a 的概率为( )A.22B.22π C.16D.16π 解析:P =18×43πa 3a 3=π6. 答案:D2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A.14 B.13 C.12D.23解析:如下图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为13.答案:133.已知如右图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.答案:364.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.解析:如右图所示,可设=1,=1,根据题意只要点B在优弧上,劣弧的长度就小于1,由于点B 在圆周上的任意性,故这个概率是优弧的长度与圆的周长之比,即这个概率是23.故填23. 答案:235.设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ) 若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },所以所求的概率为P (A )=3×2-12×223×2=23.[备选精题]6.一条直线型街道的A ,B 两盏路灯之间的距离为120 m ,由于光线较暗,想在中间再随意安装两盏路灯C ,D ,路灯次序依次为A ,C ,D ,B ,求A 与C ,B 与D 之间的距离都不小于40 m 的概率.解:设AC 长为x ,DB 长为y ,则CD 长为120-(x +y )且满足⎩⎪⎨⎪⎧0≤x ≤1200≤y ≤120120-(x +y )≥0设AC ,BD 之间都不小于40的事件为M , 则⎩⎪⎨⎪⎧40≤x ≤12040≤y ≤120x +y ≤120满足条件的点P (x ,y )构成如右图所示的阴影区域,∴P (M )=S △阴影S △OEF =19.。
⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。
单元质量检测(11)一、选择题1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲、乙捆绑后与第5种商品排列有A 22种,产生的三个空排丙、丁,有A 23种,再排甲、乙有A 22种,共有A 22A 23A 22=24种.答案:C2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个解析:从构成矩形的四条边入手,可以从6条竖着的直线中任取两条,共有C 26种选法;再从6条横着的直线中任取两条直线,共有C 26种选法,所以可构成矩形C 26·C 26=225(个). 答案:D3.(1+3x )6⎝⎛⎭⎪⎫1+14x 10的展开式中的常数项为( )A .1B .46C .4245D .4246 解析:(1+3x )6的通项公式为C r 6x r3,⎝⎛⎭⎪⎫1+14x 10的通项公式为C k10x -k 4,由r 3+(-k 4)=0,得⎩⎪⎨⎪⎧ r =0k =0,⎩⎪⎨⎪⎧ r =3k =4,⎩⎪⎨⎪⎧r =6k =8共三项,所以常数项为C 06C 010+C 36C 410+C 66C 810=4246. 答案:D4.在一底面半径和高都是2 cm 的圆柱形容器中盛满小麦种子,但有一粒带麦锈病的种子混入了其中.现从中随机取出2 cm 3的种子,则取出带麦锈病的种子的概率是( )A.14B.18πC.14πD .1-14π解析:可用体积作为几何度量,易知取出带有麦锈病的种子的概率为P =2π ·22·2=14π.答案:C5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12 C.34D.23解析:如右图,在AB 边取点P ′,使AP ′AB =34,则P 只能在AP ′内运动,则概率为AP ′AB =34.答案:C6.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57(13)2(23)5B .C 27(23)2(13)5C .C 57(13)2(13)5D .C 37(13)2(23)5 解析:由题意得,在7次摸球中,摸得红球的次数恰为2次,则有S 7=3. 又因为每次摸球,摸得红球的概率为23,设X 为摸得红球的次数,则X ~B (7,23),在7次摸球中,恰有2次摸得红球的概率 P (X =2)=C 27(23)2(13)5. 答案:B7.集合A ={(x ,y )|y ≥|x -1|,x ∈N *},集合B ={(x ,y )|y ≤-x +5,x ∈N *}. 先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b )∈A ∩B 的概率等于( )A.14B.29C.736 D.536解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B对应如下图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B 的概率为836=29,故选B.答案:B8.设随机变量的概率分布为:则X ( )A.12B .0C .2D .随p 的变化而变化 解析:EX =0×p 3+1×p 3+2×(1-2p3)=2-p ,又∵p 3≥0,1-23p ≥0,∴0≤p ≤32,∴当p =32时,EX 的值最小,最小值为2-32=12.答案:A9.利用计算机在区间(0,1)上产生两个随机数a 和b ,则方程x =-2a -bx 有实根的概率为( )A.12B.13C.16D.23解析:方程x =-2a -bx ,即x 2+2ax +b =0,若方程有实根,则有Δ=4a 2-4b ≥0即b ≤a 2,其所求概率可转化为几何概型,如右图,其概率等于阴影面积与正方形面积之比,S 阴影=⎠⎛01a 2d a =13a 3| 10=13,所以所求概率P =13.答案:B10.在区间[0,1]上任意两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为( )A.18B.14C.34D.78解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(12+a -b )(-12-a -b )<0,则(12+a -b )(12+a +b )>0,可化为:⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤10≤b ≤112+a -b <012+a +b <0,由线性规划知识在直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为:可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:D11.若k 为实数,且k ∈[-2,2],则k 的值使得过点A (1,1)的两条直线与圆x 2+y 2+kx -2y -54k =0相切的概率为( )A.14B.12C.34D .不确定解析:由题意知点A (1,1)在圆x 2+y 2+kx -2y -54k =0,即(x +k 2)2+(y -1)2=k 24+1+54k的外部,所以⎩⎨⎧k 24+1+54k >012+12+k -2-54k >0,即⎩⎪⎨⎪⎧k >-1或k <-4k <0.又k ∈[-2,2],所以-1<k <0.故由几何概型概率公式得所求概率为P =14.答案:A12.已知0≤a <2,0≤b <4,为估计在a >1的条件下,函数f (x )=x 2+2ax +b 有两相异零点的概率为P ,用计算机产生了[0,1)内的两组随机数a 1,b 1各2400个,并组成了2400个有序数对(a 1,b 1),统计这2400个有序数对后得到2×2列联表的部分数据如下表:( )A.1348B.1124C.1324D.712解析:本题先对产生的随机数对(a 1,b 1)进行a =2a 1,b =4b 1的变换后可转化为满足题中条件的数对(a ,b ),而当4a 2-4b >0时,原函数f (x )有两个相异零点.所以先将表格补全,知当a >1即a 1>12时,满足a 21-b 1>0时,有两个相异零点,于是P =6501200=1324. 答案:C 二、填空题13.已知(1+kx 2)6(k 是正整数)的展开式中x 8的系数小于120,则k =________.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r 6(kx 2)r =C r 6k r ·x 2r. 令2r =8,得r =4,∴x 8的系数为C 46·k 4,即15k 4<120,∴k 4<8.而k 是正整数,故k 只能取1. 答案:114.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(有数字作答)解析:由题意可知有一个工厂安排2个班,另外三个工厂每厂安排1个班,共有C 14·C 25·A 33=240种安排方法.答案:24015.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得 P (ξ>2)=12[1-2P (0<ξ<1)]=12(1-0.8)=0.1. 答案:0.116.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=________.解析:因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B (4,35),从而有Eξ=np =4×35=125.答案:125三、解答题17.在一个盒中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,求 (1)从中任取1支,得到一等品或二等品的概率; (2)从中任取2支,没有三等品的概率.解:(1)从6支笔中任取1支得一等品或二等品共有3+2=5种, 不同的取法,任取一支笔共有6种取法, ∴任取1支,得到一等品或二等品的概率为56.(2)从中任取2支,有三等品的取法,有5种,而任取2支共有C 26=15种取法. ∴任取2支,有三等品的概率为515=13,∴任取2支,没有三等品的概率为1-13=23.18.为了调查某野生动物保护区内某种野生动物的数量,调查员某天逮住这种动物600只做好标记后放回,经过一星期后,又逮到这种动物500只,其中做过标记的有50只,根据上述数据,估算保护区内有多少只动物?解:设保护区内这种野生动物有x 只,每只动物被逮到的可能性是相同的,那么第一次逮到的600只占所有这种动物的概率为600x ,第二次逮到的500只中,有50只是第一次逮到的,即事件发生的频数为50,说明第一次逮到的在总的动物中的频率为110,由概率的定义知600x =110,解得x =6000,即按此方法计算,估计保护区内有6000只这种野生动物.19.一个口袋中装有大小相同的2个白球和3个黑球. (1)从中摸出两个球,求两球颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:(1)记“摸出两个球,两球恰好颜色不同”为A ,摸出两个球共有方法C 25=10种,其中,两球一白一黑有C 12·C 13=6种.∴P (A )=C 12C 13C 25=35.(2)解法一:记“摸出一球,放回后再摸出一个球两球恰好颜色不同”为B ,摸出一球得白球的概率为25=0.4,摸出一球得黑球的概率为35=0.6,“有放回摸两次,颜色不同”指“先白再黑”或“先黑后白”,∴P (B )=2×3+3×25×5=0.4×0.6+0.6×0.4=0.48.解法二:有放回地摸两次,互相独立,摸一次得白球的概率为25,∴“有放回摸两次,颜色不同”的概率为 P (B )=C 12·25·(1-25)=0.48. 20.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0x >0y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-2,-1; 若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2; ∴所求事件包含基本事件的个数是 2+3+3+4+4=16. ∴所求事件的概率为1636=49.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0a >0b >0,构成所求事件的区域为如右图阴影部分. 由⎩⎪⎨⎪⎧a +b -8=0b =a 2得交点坐标为(163,83),∴所求事件的概率为 P =12×8×8312×8×8=13.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f (x )=x 2+ξ·x 在R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z . 依题意得⎩⎪⎨⎪⎧x (1-y )(1-z )=0.08xy (1-z )=0.12.1-(1-x )(1-y )(1-z )=0.88,解得⎩⎪⎨⎪⎧x =0.4y =0.6z =0.5.(1)若函数f (x )=x 2+ξ·x 为R 上的偶函数,则ξ=0. 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z ) =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24. ∴事件A 的概率为0.24.(2)依题意知ξ的取值为0和2,由(1)所求可知P(ξ=0)=0.24,P(ξ=2)=1-P(ξ=0)=0.76.则ξ的分布列为∴ξ的数学期望为Eξ=022.在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)由题设可知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知p(ξ=0)=(1-q1)(1-q2)2=0.03,解得q2=0.8(2)根据题意p1=P(ξ=2)=(1-q1)C12(1-q2)q2=0.75×2×0.2×0.8=0.24,p2=P(ξ=3)=q1(1-q2)2=0.25×(1-0.8)2=0.01,p3=P(ξ=4)=(1-q1)q22=0.75×0.82=0.48,p4=P(ξ=5)=q1q2+q1(1-q2)=0.25×0.8+0.25×0.2×0.8=0.24,因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=p3+p4=0.48+0.24=0.72,P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率.。
11-1分类加法计数原理与分步乘法计数原理A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有().A.8种B.12种C.16种D.20种解析修筑方案可分为两类,一类是“折线型”,用三条公路把四个村庄连在一条曲线上(如图(1),A-B-C-D),有12A44种方法;另一类是“星型”,以某一个村庄为中心,用三条公路发散状连接其他三个村庄(如图(2),A-B,A-C,A-D),有4种方法.共有12+4=16种方法.图(1)图(2)答案 C2.(2012·汕头模拟)如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有().A.400种B.460种C.480种D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A 不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有().A.20种B.30种C.40种D.60种解析分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.答案 A4.(2011·西安模拟)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有().A.6种B.8种C.10种D.16种解析如下图,甲第一次传给乙时有5种方法,同理,甲传给丙也可以推出5种情况,综上有10种传法,故选C.答案 C5.(2012·杭州五校联考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是().A.60 B.48 C.36 D.24解析长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B.答案 B二、填空题(每小题4分,共12分)6.(2012·泉州模拟)将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.答案2407.(2012·马鞍山质检)数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案128.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类计数原理共有2C24+4=16场比赛.答案16三、解答题(共23分)9.(11分)(2012·深圳模拟)如右图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.10.(12分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有多少种?解先涂A、D、E三个点,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一类是B与E或D不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264(种).B级综合创新备选(时间:30分钟满分:40分)一、选择题(每小题5分,共10分)1.(2012·福州模拟)高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有().A.16种B.18种C.37种D.48种解析三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).答案 C2.(2011·全国高考)4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().A.12种B.24种C.30种D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).答案 B二、填空题(每小题4分,共8分)3.(2010·上海理)从集合U={a,b,c,d}的子集中选出4个不同的子集,需同时满足以下两个条件:(1)∅,U都要选出;(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有________种不同的选法.解析将选法分成两类.第一类:其中一个是单元素集合,则另一集合为两个或三个元素且含有单元素集合中的元素,有C14×6=24(种).第二类:其中一个是两个元素集合,则另一个是含有这两个元素的三元素集合,有C24×2=12(种).综上共有24+12=36(种).答案364.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.解析报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种).答案4554三、解答题(共22分)5.(10分)现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.6.(12分)(2012·太原月考)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.所以不同的f共有1+12+6+12=31(个).。
第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。
09届高三数学天天练11一、填空题1.命题“2,0x R x x ∃∈+≤”的否定是 . 2.(1)(12)i i -+= .3.函数()sin 23cos 2f x x x =+的最小正周期是 .4.长方体1111ABCD A B C D -中,12,1AB BC AA ===,则1BD 与平面1111A B C D 所成的角的大小为 .5.已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =+的最小值是 .6.已知抛物线22y px =的准线与双曲线222x y -=的左准线重合,则抛物线的焦点坐标为 .7. 执行右边的程序框图,若4p =,则S = .8.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 . 9.若直线1ax by +=过点(),A b a ,则以坐标原点O 为圆心,半径的圆的面积的最小值是 . 10.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则事件“x A B ∈⋂”的概率是 .11.已知1F 、2F 是椭圆22x k ++21y k +=1的左右焦点,弦AB 过F 1,若2ABF ∆的周长为8,则椭圆的离心率为 .12.等边三角形ABC 中,P 在线段AB 上,且AP AB λ=,若CP AB PA PB ⋅=⋅,则实数λ的值是 .13.数列{}n a 的前n 项和是n S ,若数列{}n a 的各项按如下规则排列:11212312341, , , , , , , , , , , 23344455556,若存在整数k ,使10k S <,110k S +≥,则k a = . 14.若函数()3213f x x a x =-满足:对于任意的[]12,0,1x x ∈都有()()12||1f x f x -≤恒成立,则a 的取值范围是 .AB CD A 1B 1C 1D 1二、解答题:(文科班只做15题,30分,理科班两题都做,每题15分)15、 已知圆22:8O x y +=交x 轴于,A B 两点,曲线C 是以AB 为长轴,直线:l 4x =-为准线的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M 是直线l 上的任意一点,以OM 为直径的圆K 与圆O 相交于,P Q 两点,求证:直线PQ 必过定点E ,并求出点E 的坐标;(Ⅲ)如图所示,若直线PQ 与椭圆C 交于,G H 两点,且3EG HE =,试求此时弦PQ 的长.16、如图矩形OABC 在变换T 的作用下变成了平行四边形OA B C ''',求变换T 所对应的矩阵M .09届高三数学天天练11答案1.2,0x R x x ∀∈+>2.3i + 3.π4.6π5.16.()1,07.1516 8.33π 9.π 10.16 11.1212.222-13.5714.223,333⎡⎢⎣ 15.解:(Ⅰ)设椭圆的标准方程为()222210x y a b a b+=>>,则:2224a ac⎧=⎪⎨=⎪⎩,从而:222a c ⎧=⎪⎨=⎪⎩,故2b =,所以椭圆的标准方程为22184x y +=。
单元质量检测(四)一、选择题1.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值是( )A .1B .3C .1或3D .-1解析:由题意知⎩⎪⎨⎪⎧a 2-4a +3=0a -1≠0,解得a =3.答案:B2.复数1-2+i +11-2i的虚部是( )A.15i B.15 C .-15iD .-15解析:∵1-2+i +11-2i=-2-i (-2+i )(-2-i )+1+2i(1-2i )(1+2i )=-2-i 5+1+2i 5=-15+15i , ∴虚部为15.答案:B3.平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0解析:A 中,a ,b 同向则a ,b 共线;但a ,b 共线则a ,b 不一定同向,因此A 不是充要条件.若a ,b 两向量中至少有一个为零向量,则a ,b 共线;但a ,b 共线时,a ,b 不一定是零向量,如a =(1,2),b =(2,4),从而B 不是充要条件.当b =λa 时,a ,b 一定共线;但a ,b 共线时,若b ≠0,a =0,则b =λa 就不成立,从而C 也不是充要条件.对于D ,假设λ1≠0,则a =-λ2λ1b ,因此a ,b 共线;反之,若a ,b 共线,则a =nm b ,即m a -n b =0.令λ1=m ,λ2=-n ,则λ1a +λ2b =0. 答案:D4.如下图所示,已知梯形ABCD 中,AB ∥CD ,且AB =3CD ,M ,N 分别是AB ,CD 的中点,设AB →=e 1,AD →=e 2,MN →可表示为( )A .e 2+16e 1B .e 2-12e 1C .e 2-13e 1D .e 2+131解析:MN →=12(MD →+MC →)=12(MD →+MD →+DC →)=12[2(MA →+AD →)+DC →]=12[2(-12e 1+e 2)+131]=-12e 1+e 2+16e 1=e 2-13e 1. 答案:C5.向量a ,b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( )A .45°B .60°C .90°D .120°解析:由(a +b )⊥(2a -b )得(a +b )·(2a -b )=0, 即2|a |2+|a |·|b |cos α-|b |2=0,把|a |=1,|b |=2代入得cos α=0,∴α=90°(其中α为两向量的夹角). 答案:C6.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:∵DC →=2BD →,∴BC →-BD →=2BD →,∴BD →=13→.∵CE →=2EA →,∴BE →-BC →=2BA →-2BE →, ∴BE →=23BA →+13BC →.∵AF →=2FB →,∴BF →-BA →=-2BF →,∴BF →=13BA →.∴AD →+BE →+CF →=BD →-BA →+BE →+BF →-BC → =13BC →-BA →+23BA →+13BC →+13BA →-BC → =-13BC →.∴AD →+BE →+CF →与BC →反向平行. 答案:A7.已知非零向量a ,b ,若a ·b =0,则|a -2b ||a +2b |等于( )A.14 B .2 C.12D .1解析:|a -2b ||a +2b |=(a -2b )2(a +2b )2=a 2+4b 2a 2+4b 2=1.答案:D8.在△ABC 中,若BC →2=AB →·BC →+CB →·CA →+BC →·BA →,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形解析:因为AB →·BC →+CB →·CA →+BC →·BA → =BC →·(AB →-CA →+BA →)=BC →·AC →,故BC →2-BC →·AC →=BC →·(BC →-AC →)=BC →·BA →=0, 即∠B =π2.答案:B9.一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为( )A .6B .2C .2 5D .27解析:如图,F 3的大小等于F 1、F 2的合力的大小.由平面向量加法的三角形法则知,在△OAB 中OB 的长就是F 1、F 2的合力的大小,且在△OAB 中,∠OAB =120°,OB =F 21+F 22-2F 1·F 2cos120°=28=27,即F 3为27.答案:D10.函数y =tan(π4-π2)的部分图象如下图所示,则(OA →+OB →)·AB →=( )A .-6B .-4C .4D .6解析:函数y =tan(π4x -π2)的图象是由y =tan x 的图象向右平移π2坐标扩大为原来的4π倍得到,所以点A 的坐标为(2,0),令tan(π4x -π2)=1得π4x -π2=π4,故可得B 点坐标为(3,1),所以(OA →+OB →)·AB →=(5,1)·(1,1)=6.答案:D11.设点P 为△ABC 的外心(三条边垂直平分线的交点),若AB =2,AC =4,则AP →·BC →=( )A .8B .6C .4D .2解析:我们可以采用特殊方法解答,设A (-1,0),B (1,0),C (-1,4),则外心P 为(0,2),故AP →=(1,2),BC →=(-2,4),故AP →·BC →=6.答案:B12.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →(其中λ∈R ),则点P 一定在( )A .△ABC 的内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上解析:CB →=PB →-PC →=λPA →+PB →化简即得-PC →=λPA →,由共线向量的充要条件可知,点P ,A ,C 三点共线,所以答案选B.答案:B 二、填空题13.若复数a +3i1+2i (a ∈R ,i 是虚数单位)是纯虚数,则实数a =________.解析:∵a +3i 1+2i =(a +3i )(1-2i )(1+2i )(1-2i )=a +65+3-2a5i , ∴⎩⎨⎧a +6503-2a 5≠0,∴a =-6.答案:-614.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________. 解析:|a -2b |=a 2+4b 2-4a ·b =1+4-4(cos10°cos70°+sin10°sin70°) =5-4cos60°= 3. 答案: 315.已知AD 是△ABC 的中线,AD →=λAB →+μAC →(λ,μ∈R ),那么λ+μ=________;若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________.解析:若AD 为△ABC 的中线,则有AD →=12(AB →+AC →),∴λ+μ=1.|AD →|2=14(AB →+AC →)2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4),∵|AB →|2+|AC →|2≥2|AB →|·|AC →|=2AB →·AC →cos120°8,所以|AD →|≥1.答案:1 116.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析:以O 为坐标原点,OA 为x 轴建立平面直角坐标系,则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则有x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值为2.答案:2 三、解答题17.如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.解法一:设AB →=a ,AD →=b , 则a =AN →+NB →=d +(-12)①b =AM →+MD →=c +(-12a )②将②代入①得a =d +(-12)[c +(-12a )]⇒a =43d -23,代入②得b =c +(-12)(43d -23c )=43c -23d .解法二:设AB →=a ,AD →=b . 因M ,N 分别为CD ,BC 中点, 所以BN →=12b ,DM →=12a .因而⎩⎨⎧c =b +12a d =a +12b ⇒⎩⎨⎧a =23(2d -c )b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).18.设a =(-1,1),b =(4,3),c =(5,-2),(1)求证a 与b 不共线,并求a 与b 的夹角的余弦值; (2)求c 在a 方向上的投影; (3)求λ1和λ2,使c =λ1a +λ2b .解:(1)∵a =(-1,1),b =(4,3),且-1×3≠1×4,∴a 与b 不共线. 又a ·b =-1×4+1×3=-1,|a |=2,|b |=5, ∴cos 〈a ,b 〉=a ·b |a ||b |=-152=-210. (2)∵a ·c =-1×5+1×(-2)=-7, ∴c 在a 方向上的投影为a ·c |a |=-72=-72 2.(3)∵c =λ1a +λ2b ,∴(5,-2)=λ1(-1,1)+λ2(4,3)=(4λ2-λ1,λ1+3λ2),∴⎩⎪⎨⎪⎧4λ2-λ1=5λ1+3λ2=-2,解得⎩⎨⎧λ1=-237λ2=37.19.设△ABC 的外心为O ,则圆O 为△ABC 的外接圆,垂心为H .求证:OH →=OA →+OB →+OC →.证明:延长BO 交圆O 于D 点,连AD 、DC , 则BD 为圆O 的直径,故∠BCD =∠BAD =90°. 又∵AE ⊥BC ,DC ⊥BC , 得AH ∥DC ,同理DA ∥CH . ∴四边形AHCD 为平行四边形, ∴AH →=DC →.又∵DC →=OC →-OD →=OC →+OB →, ∴AH →=OB →+OC →. 又∵OH →=OA →+AH →, ∴OH →=OA →+OB →+OC →.20.(1)如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,试用a ,b 表示OP →,OQ →,并判断OP →+OQ →与OA →+OB →的关系;(2)受(1)的启示,如果点A 1,A 2,A 3,…,A n -1是AB 的n (n ≥3)等分点,你能得到什么结论?请证明你的结论.解:(1)OP →=OA →+AP →=OA →+13AB →=OA →+13OB →-OA →)=13OB →+23OA →=23a +13.同理OQ →=13a +23b ,∴OP →+OQ →=a +b =OA →+OB →.(2)OA 1→+OA n -1 =OA 2→+OA n -2 =…=OA →+OB →. 证明如下:由(1)可推出OA 1→=OA →+AA 1→=OA →+1n AB →=OA →+1n OB →-OA →)=n -1n OA →+1n OB →,∴OA 1→=n -1n a +1n b ,同理OA n -1=1n a +n -1nb ,OA 2→=n -2n a +2n b ,OA n -2=2n a +n -2n b ,…因此有OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.21.已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,AB →与BC →的夹角为θ. (1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值. 解:(1)由题意知: AB →·BC →=|AB →|·|BC →|·cos θ=6① S =12|AB →|·|BC →|·sin(π-θ)=12|AB →|·|BC →|·sin θ② ②÷①得S 6=12tan θ,即3tan θ=S .由3≤S ≤3,得3≤3tan θ≤3,即33≤tan θ≤1. ∵θ为AB →与BC →的夹角,∴θ∈(0,π),∴θ∈[π6,π4].(2)f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ =1+sin2θ+2cos 2θ=2+sin2θ+cos2θ =2+2sin(2θ+π4).∵θ∈[π6,π4],∴2θ+π4∈[7π12,3π4].∴当2θ+π4=3π4,即θ=π4时,f (θ)有最小值为3.22.设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). (1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . 解:(1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0, 因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .。
第11模块 第3节[知能演练]一、选择题1.若二项式(x -2x)n 的展开式中第5项是常数项,则自然数n 的值可能为( )A .6B .10C .12D .15解析:T r +1=C r n (x )n -r(-2x )r =(-2)r C rn x n -3r2,当r =4时,n -3r 2=0,又n ∈N *,∴n =12. 答案:C2.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )A .74B .121C .-74D .-121解析:展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121.答案:D3.在(x 2+3x +2)5展开式中x 的系数为( )A .160B .240C .360D .800解析:∵(x 2+3x +2)5=(x +1)5·(x +2)5=(x 5+C 15x 4+…+1)(x 5+2C 15x 4+…+25), ∴其展开式中x 项的系数为C 4525+C 4524=240.答案:B4.在(1-x )5(1+x )4的展开式中x 3项的系数为( )A .-6B .-4C .4D .6解析:(1-x )5(1+x )4=(1-C 15x +C 25x 2-C 35x 3+…)(1+C 14x +C 24x 2+C 34x 3+C 44x 4), ∴x 3项的系数为1×C 34-C 15C 24+C 25C 14-C 35×1=4.答案:C 二、填空题5.已知二项式(1-3x )n 的展开式中所有项系数之和等于64,那么这个展开式中含x 2项的系数是________.解析:令x =1,则(1-3x )n =(-2)n , 即(-2)n =64,∴n =6.又T r +1=C r 6(-3x )r ,则T 3=C 26(-3x )2=135x 2,∴(1-3x )n 展开式中含x 2项的系数为135. 答案:1356.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364 三、解答题7.已知(4 41x +3x 2)n展开式中的倒数第三项的二项式系数为45.(1)求含有x 3的项; (2)求二项式系数最大的项.解:(1)由已知得C n -2n =45,即C 2n =45,∴n 2-n -90=0,解得n =-9(舍)或n =10, 由通项公式得T r +1=C r10(4·x -14)10-r (x 23)r . =C r 10·410-r·x -10-r 4+23r .令-10-r 4+23r =3,得r =6,∴含有x 3的项是T 7=C 610·44·x 3=53760x 3. (2)∵此展开式共有11项, ∴二项式系数最大项是第6项,∴T 6=C 510(4x -14)5(x 23)5=258048x 2512.8.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,求: (1)a 8+a 7+…+a 1; (2)a 8+a 6+a 4+a 2+a 0.解:令x =0得a 0=1. (1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0, ① ∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0. ② 由①+②得28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=12(28+48)=32896.[高考·模拟·预测]1.在二项式⎝⎛⎭⎫x 2-1x 5的展开式中,含x 4的项的系数是 ( )A .-10B .10C .-5D .5解析:T r +1=C r 5x 2(5-r )(-x -1)r =(-1)r C r 5x10-3r(r =0,1,…,5),由10-3r =4得r =2.含x 4的项为T 3,其系数为C 25=10,故选B.答案:B2.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( )A .45B .55C .70D .80解析:由二项式定理得:(1+2)5=1+C 15·2+C 25·(2)2+C 35·(2)3+C 45·(2)4+C 55·(2)5 =1+52+20+202+20+42=41+292, ∴a =41,b =29,a +b =70.故选C. 答案:C3. (1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为( )A .a =2,b =-1,n =5B .a =-2,b =-1,n =6C .a =-1,b =2,n =6D .a =1,b =2,n =5解析:不含x 的项的系数的绝对值为(1+|b |)n =243=35,不含y 的项的系数的绝对值为(1+|a |)n=32=25,∴n =5,⎩⎪⎨⎪⎧1+|b |=3,1+|a |=2,故选D.答案:D4. (x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________解析:T 4=-C 310x 7y 3,T 8=-C 710x 3y 7,则x 7y 3与x 3y 7的系数之和为-2C 310=-240. 答案:-2405.在(1+x )3+(1+x )3+(1+3x )3的展开式中,x 的系数为________(用数字作答).解析:C 13+C 23+C 33=23-1=7.答案:7 6.已知(x x +23x)n 展开式的前3项系数的和为129,这个展开式中是否含有常数项、一次项?如没有,请说明理由;如有,请求出来.解:∵T r +1=C r n (x x )n -r ·(23x)r =C r n 2r x 9n -11r 6(r =0,1,2,…,n ), ∴由题意得C 0n 20+C 1n ·2+C 2n ·22=129, ∴1+2n +2(n -1)n =129,∴n 2=64,∴n =8.故T r +1=C r 82r x 72-11r 6(r =0,1,2,…,8). 若展开式存在常数项,则72-11r 6=0,∴72-11r =0,∴r =7211∉N ,∴展开式中没有常数项.若展开式存在一次项,则72-11r6=1,∴72-11r =6. ∴r =6,∴展开式中存在一次项,它是第7项,T 7=C 6826x =1792x .。
高三基础知识天天练数学11-9人教版第11模块第9节[知能演练]一、选择题1.某一离散型随机变量ξ的概率分布列如下表,且Eξ=1.5,则a-b的值ξ 0 1 2 3 P 0.1 a b 0.1 A.-0.1 B.0 C.0.1D.0.2解析:???0.1+a+b+0.1=1??a=0.4??0×0.1+a+2b+3×0.1=1.5 ???,?b=0.4故a-b=0. 答案:B2.随机变量X的分布列为X 1 2 4 P 0.4 0.3 0.3 则E(5X+4)等于A.15 B.11 C.2.2D.2.3 解析:∵EX=1×0.4+2×0.3+4×0.3=2.2,∴E(5X+4)=5EX+4=11+4=15. 答案:A3.在正态分布N(0,19)中,数值落在(-∞,-1)∪(1,+∞)内的概率为A.0.097 B.0.046 C.0.03D.0.0026解析:∵μ=0,σ=13,∴P(x1)=1-P(-1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.9974=0.0026. 答案:D( )( )( )4.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如下图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如下图曲线可得下列说法中正确的一个是( )A.甲科总体的标准差最小 B.丙科总体平均数最小C.乙科总体的标准差及平均数都居中 D.甲、乙、丙的总体的平均数不相同解析:由正态曲线性质可得.答案:A 二、填空题5.设离散型随机变量X可能取的值为1,2,3,4.P(X=k)=ak+b(k=1,2,3,4).又X的均值EX=3,则a+b=________.解析:设离散型随机变量X可能取的值为1,2,3,4. P(X=k)=ak+b(k=1,2,3,4),所以 (a+b)+(2a+b)+(3a+b)+(4a+b)=1,即10a+4b=1,又X的均值EX=3,则(a+b)+2(2a+b)+3(3a+b)+4(4a+b)=3,即30a+10b=3,a1=,b=0, 101∴a+b=.101答案: 106.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.解析:∵ξ服从正态分布(1,σ2),∴ξ在(0,1)与(1,2)内取值的概率相同均为0.4. ∴ξ在(0,2)内取值概率为0.4+0.4=0.8. 答案:0.8 三、解答题7.某地区的一个季节下雨天的概率是0.3,气象台预报天气的准确率为0.8.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失3000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.(1)若该厂任其自然不作防雨处理,写出每天损失ξ的分布列,并求其平均值; (2)若该厂完全按气象预报作防雨处理,以η表示每天的损失,写出η的分布列.计算η的平均值,并说明按气象预报作防雨处理是否是正确的选择?解:(1)设ξ为损失数,分布列为:ξP ∴Eξ=3000×0.3=900(元) (2)设η为损失数,则 P(η=0)=0.7×0.8=0.56.P(η=500)=0.3×0.8+0.7×0.2=0.38. P(η=3000)=0.3×0.2=0.06. 分布列为:ηP 0 0.56 500 0.38 3000 0.06 0 0.7 3000 0.3 ∴Eη=0+500×0.38+3000×0.06=370 平均每天损失为370元.∵370<900,∴按天气预报作防雨处理是正确的选择.8.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以ξ和η分别表示取出次品和正品的个数.(1)求ξ的分布列、期望值及方差; (2)求η的分布列、期望值及方差.解:(1)ξ的可能值为0,1,2.若ξ=0,表示没有取出次品,其概率为:3C062C10P(ξ=0)=3=;C12112C192C10同理,有P(ξ=1)=3=;C12221C212C10P(ξ=2)=3=.C1222∴ξ的分布列为ξ P 0 6 111 9 222 1 226911∴Eξ=0×+1×+2×=.112222216191139915Dξ=(0-)2×+(1-)2×+(2-)2×=++=.21122222222888844(2)η的可能值为1,2,3,显然ξ+η=3. 1P(η=1)=P(ξ=2)=,229P(η=2)=P(ξ=1)=,226P(η=3)=P(ξ=0)=.11∴η的分布列为:η P 15Eη=E(3-ξ)=3-Eξ=3-=. 2215∵η=-ξ+3,∴Dη=(-1)2Dξ=.441 1 222 9 223 6 11[高考・模拟・预测]1.已知离散型随机变量X的分布列如下表.若EX=0,DX=1,则a=________,b=________.解析:由题意得,a+b+c+1=1,① 1211∵EX=0,∴-1×a+0×b+1×c+2×=0,即-a+c+=0,②12612∵DX=1,∴(-1-0)2×a+(0-0)2×b+(1-0)2×c+(2-0)2×=1,即a+c=,③12351联立①②③解得a=,b=. 12451答案: 1242.若随机变量X~N(μ,σ2),则P(X≤μ)=________. 解析:由正态分布曲线的性质知,P(X≤μ)=0.5. 答案:0.53.已知随机变量x~N(2,σ2),若P(x解析:由正态分布图象的对称性可得:P(a≤x<4-a)=1-2P(x4.袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望Eξ=________.解析:由题得ξ所取得的值为0或2,其中ξ=0表示取得的球为两个黑球,ξ=2表示C21C111133取得的球为一黑一红,所以P(ξ=0)=2=,P(ξ=2)=2=,故Eξ=0×+2×=1.C42C4222答案:15.一个盒子中装有分别标有数字1,2,3,4的4个大小、形状完全相同的球,现从中有放回地先后抽取2个球,抽取的球的标号分别为x1,x2,记ξ=|x1-1|+|x2-2|.(1)求ξ取得最大值时的概率; (2)求ξ的分布列及数学期望.解:(1)抽取的球的标号x可能为1,2,3,4,则x1-1分别为0,1,2,3;x2-2分别为-1,0,1,2. 因此ξ的所有取值为0,1,2,3,4,5.1当x1=x2=4时,ξ取得最大值5,此时P(ξ=5)=.161(2)当ξ=0时,(x1,x2)的所有取值为(1,2),此时P(ξ=0)=;163当ξ=1时,(x1,x2)的所有取值为(1,1),(1,3),(2,2),此时P(ξ=1)=;161当ξ=2时,(x1,x2)的所有取值为(1,4),(2,1),(2,3),(3,2),此时P(ξ=2)=; 41当ξ=3时,(x1,x2)的所有取值为(2,4),(3,1),(3,3),(4,2),此时P(ξ=3)=; 43当ξ=4时,(x1,x2)的所有取值为(3,4),(4,1),(4,3),此时P(ξ=4)=.16故ξ的分布列为:ξ P 0 1 161 3 162 1 43 1 44 3 165 1 161311315Eξ=0×+1×+2×+3×+4×+5×=.16164416162[备选精题]6.甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到感谢您的阅读,祝您生活愉快。
第十一章 第一节 分类加法计数原理与分步乘法计数原理[理]课下练兵场一、选择题1.从a 、b 、c 、d 、e 五人中选1名班长,1名副班长,1名学习委员,1名纪律委员,1名文娱委员,但a 不能当班长,b 不能当副班长.不同选法总数为 ( )A .78B .54C .24D .20解析:第1类,a 当副班长,共有A 44种选法;第2类,a 当委员,共有C 13C 13·A 33种选法. ∴不同选法共有A 44+C 13C 13·A 33=24+54=78(种). 答案:A2.一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有 ( )A .24种B .36种C .48种D .72种解析:分两类:(1)第一道工序安排甲时有1×1×4×3=12种;(2)第一道工序不安排甲有1×2×4×3=24种.∴共有36种.答案:B3.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有 ( )A .6B .8C .36D .48解析:如图,在A 点可先参观区域1,也可先参观区域2或3,共有3种不同选法.每种选法中又有2×2×2×2=16(种)不同线路.∴共有3×16=48(种)不同的参观路线.答案:D4.把编号为1、2、3、4、5的5位运动员排在编号为1、2、3、4、5的5条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同排法的种数是() A.10 B.20 C.40 D.60解析:共有C25C12=20.答案:B5.如图所示的几何体是由一个正三棱锥P—ABC与正三棱柱ABC—A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有()A.24种B.18种C.16种D.12种解析:先涂三棱锥P—ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.答案:D6.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个B.9个C.18个D.36个解析:由题意知,1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案:C二、填空题7.2009年9月某地全运会火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有____________种(用数字作答).解析:因为第一棒与最后一棒甲、乙均能传递,而丙不能传递最后一棒.分两类讨论:(1)丙传第一棒,此时有C12·A44=48(种);(2)甲、乙传第一棒和最后一棒,方法有A22A44=48(种).因此共有48+48=96(种)方法.答案:968.(2010·南通模拟)如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有 种.解析:依题意用三种颜色为五个顶点染色,可将五个顶点分成三组,模型为2、2、1,则共有15C 13A =30种不同的染色方法.答案:309.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且两个公益广告不能连续播放,则不同的播放种类数为________.解析:分三步:C 12C 13·A 33=36. 答案:36三、解答题10.中央电视台“开心辞典”节目的现场观众来自四个不同的单位,分别在右图中的A 、B 、C 、D 四个区域落座.现有四种不同颜色的服装,每个单位的观众必须穿同色服装,且相邻区域不能同色,不相邻区域是否同色不受限制,则不同的着装方法共有多少种?解:当A 、B 、C 、D 四个区域的观众服装颜色全不相同时,有4×3×2×1=24种不同的方法;当A 区与C 区同色,B 区和D 区不同色且不与A 、C 同色时,或B 区、D 区同色,A 区、C 区不同色且不与B 、D 同色时,有2×4×3×2=48种不同的方法;当A 区与C 区同色,B 区与D 区也同色且不与A 、C 同色时,有4×3=12种不同的方 法.由分类计数原理知共有24+48+12=84种不同的着装方法.11.一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋中任取一封信,有多少种不同的取法?(2)从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法?解:(1)任取一封信,不论从哪个口袋里取,都能单独完成这件事,因此是两类办法. 用分类加法计数原理,共有5+4=9(种).(2)各取一封信,不论从哪个口袋中取,都不能算完成了这件事,因此应分两个步骤完成,由分步乘法计数原理,共有5×4=20(种).(3)第一封信投入邮筒有4种可能,第二封信仍有4种可能,…,第九封信还有4种可能.由分步乘法计数原理可知,共有49种不同的放法.12.现有高一年级四个班有学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类,第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法,所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5040(种).(3)分六类,每类又分两步,从一班、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1 人,有7×9种不同的选法,从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).。
汉学2021届高三数学〔文〕天天练〔11〕〔满分是100分,时间是60分钟〕一、选择题:〔8个小题一共40分〕1.过点)3,2(A 且垂直于直线052=-+y x 的直线方程为〔 〕 (A)042=+-y x (B)072=-+y x (C)032=+-y x (D)052=+-y x2.{}n a 是等差数列,154=a ,555=S ,那么过点34(3,(4,),)P a Q a 的直线的斜率〔 〕 A .4B .41C .-4D .-143.直线1:60l x ay ++=和2l :()2320a x y a -++=,那么1l ∥2l 的充要条件是a=〔 〕 A .3 B .1 C .-1 D .3或者-14.过点()1,4A ,且横、纵截距的绝对值相等的直线的条数为 〔 〕 A. 1 B. 2 C. 3 D. 45.圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,那么圆2C 的方程为〔 〕A.2(2)x ++2(2)y -=1B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=16.假设方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围为〔 〕A .〔0,+∞〕B .〔0,2〕C .〔1,+∞〕D .〔0,1〕7.椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点在椭圆上,假如线段1PF 的中点在y 轴上,那么12:PF PF 的值是〔 〕A .35B .12C .56D .538.椭圆的两个焦点为)0,5(1-F ,)0,5(2F ,M 是椭圆上一点,假设021=⋅MF MF ,128MF MF ⋅=,那么该椭圆的方程是〔 〕A .12722=+y xB .17222=+y xC .14922=+y xD .19422=+y x第二卷 非选择题二、填空题〔5个小题一共20分〕9.过抛物线24y x =的焦点,且被圆22420x y x y +-+=截得弦最长的直线的方程是_________ ____;10.假设圆224x y +=与圆22260x y ay ++-=〔a>0〕的公一共弦的长为23,那么=a ___________;11.动圆222(42)24410x y m x my m m +-+-+++=的圆心的轨迹方程是 .12.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左顶点为A ,左焦点为F ,上顶点为B ,假设090BAO BFO ∠+∠=,那么椭圆的离心率是 .汉学2021届高三数学〔文〕天天练〔11〕答题卡班级 姓名 成绩一、选择题:二、填空题:9. ;10. ;11. ;12. 三、解答题:〔3个小题一共40分〕 13.〔此题满分是13分〕直线l 过点P 〔3,2〕且与x 轴正半轴,y 轴正半轴分别交于A 、B 两点 〔Ⅰ〕求△AOB 面积的最小值及此时直线l 方程〔O 为原点〕; 〔Ⅱ〕求直线l 在两坐标轴上截距之和的最小值。
第11模块 第4节[知能演练]一、选择题1.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上.因此,出现正面向上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. A .0 B .1 C .2D .3解析:要明确在试验中,虽然随机事件发生的频率mn 不是常数,但它具有稳定性,且总是接近于某个常数,在其附近波动,这个常数叫做概率,所以随机事件发生的频率和它的概率是不一样的.由此可知①②③都是不正确的.答案:A2.对某电视机厂生产的电视机进行抽样检测,数据如下:( )A .0.92B .0.94C .0.95D .0.96解析:由概率的定义可知,检测次数越多越接近概率值. 答案:C3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( )A.16B.536C.112D.12解析:由log 2X Y =1得Y =2X ,满足条件的X 、Y 有3对,而骰子朝上的点数X 、Y 共有6×6=36对.∴概率为336=112.答案:C4.在10支铅笔中,有8支正品和2支次品,从中不放回地任取2支,至少取到1支次品的概率是( )A.29B.1645C.1745D.25解析一:(直接法).“至少取到1支次品”包括:A =“第一次取到次品,第二次取到正品”;B =“第一次取到正品,第二次取到次品”;C =“第一、二次均取到次品”三种互斥事件,所以所求事件的概率为P (A )+P (B )+P (C )=2×8+8×2+2×110×9=1745. 解析二:(间接法)“至少取到1支次品”的对立事件为“取到的2支铅笔均为正品”,所以所求事件的概率为1-8×710×9=1745. 答案:C 二、填空题5.设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为________.解析:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件a ≥b .基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.答案:346.定义集合A 与B 的差集A -B ={x |x ∈A 且x ∉B },记“从集合A 中任取一个元素x ,x ∈A -B ”为事件E ,“从集合A 中任取一个元素x ,x ∈A ∩B ”为事件F .P (E )为事件E 发生的概率,P (F )为事件F 发生的概率,当a ,b ∈Z ,且a <-1,b ≥1时,设集合A ={x ∈Z |a <x <0},集合B ={x ∈Z |-b <x <b },给出以下判断:①当a =-4,b =2时,P (E )=23,P (F )=13;②总有P (E )+P (F )=1成立; ③若P (E )=1,则a =-2,b =1;④P (F )不可能等于1.其中所有判断正确的序号为________.解析:对于①,当a =-4,b =2时,A ={x ∈Z |-4<x <0}={-3,-2,-1},B ={x ∈Z |-2<x <2}={-1,0,1},A -B ={-3,-2},A ∩B ={-1},P (E )=23,P (F )=13,因此①正确;对于②,依题意知,对于集合A 中的任一元素x ,要么x 属于A -B ,要么x 属于A ∩B ,二者必居其一,因此P (E )+P (F )=1,②正确;对于③,由P (E )=1得A ∩B =Ø,结合题意分析可知此时b =1,a 可以取-2、-3、-4等,因此③不正确;对于④,当a =-3,且b =4时,A ={-2,-1},B ={-3,-2,-1,0,2,3},此时A ∩B =A ,P (F )=1,因此④不正确.综上所述,其中所有正确命题的序号是①②.答案:①② 三、解答题7.同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在2~13范围之内”是什么事件?其概率是多少? (3)“点数之和是7”是什么事件?其概率是多少?解:(1)由于点数最大是6,和最大是12,不可能得13,因此此事件是不可能事件,其概率为0.(2)由于点数之和最小是2,最大是12,在2~13范围之内,它是必然事件,其概率为1.(3)由(2)知,和是7是有可能的,此事件是随机事件,事件“点数和为7”包含的基本事件有{1,6},{2,5},{3,4},{4,3},{5,2},{6,1}共6个,因此P =66×6=16.8.口袋里装有不同的红色球和白色球共36个,且红色球多于白色球.从袋子中取出2个球,若是同色的概率为12,求:(1)袋中红色、白色球各是多少?(2)从袋中任取3个小球,至少有一个红色球的概率为多少? 解:(1)令红色球为x 个,则依题意得C 2xC 236+C 236-x C 236=12,所以2x 2-72x +18×35=0,得x =15或x =21, 又红色球多于白色球,所以x =21, 所以红色球为21个,白色球为15个.(2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B , 则P (A )=1-P (B )=1-C 315C 336=191204.[高考·模拟·预测]1.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是( )A.112 B.110 C.325D.12125解析:每条棱上有8块,共8×12=96块. ∴概率为8×121000=12125.答案:D2.福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为( )A.110 B.15 C.35D.45解析:本题分甲选中吉祥物和乙选中吉祥物两种情况,先甲选后乙选的方法有5×4=20,甲选中乙没有选中的方法有2×3=6,概率为620=310,乙选中甲没有选中的方法有2×3=6,概率为620=310,∴恰有一个被选中的概率为310+310=35. 答案:C3.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.解析:依题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.54.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为________. 解析:基本事件有6×6×6=216个,点数依次成等差数列的有: (1)当公差d =0时,1,1,1及2,2,2,…,共6个.(2)当公差d =±1时,1,2,3及2,3,4;3,4,5;4,5,6,共4×2个. (3)当公差d =±2时,1,3,5;2,4,6,共2×2个.∴P =6+4×2+2×26×6×6=112.答案:1125.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如右图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.解:(1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P (A )=1220=35.(2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P (B )=1-220=910.[备选精题]6.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.解:(1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因此每次都随机抽取,因此这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.概型.用A表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A的结果共有5种,因此独唱和朗诵由同一个人表演的概率P(A)=525=15=0.2.。
第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。
第3模块 第1节[知能演练]一、选择题1.已知角α的终边过点(-1,2),则cos α的值为( )A .-55 B.255 C .-255 D .-12答案:A2.点P (tan2007°,cos2007°)位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角, ∴tan2007°>0,cos2007°<0. ∴P 点在第四象限,故选D. 答案:D3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上解析:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合,故选A. 答案:A4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b解析:∵a =-sin1,b =cos1,c =-tan1,∴a <0,b >0,c <0.又∵sin1<tan1,∴-sin1>-tan1,∴c <a <b .故选C.答案:C 二、填空题5.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由弧长公式l =|α|r ,l =2π3,r =1得,P 点按逆时针方向转过的角度为α=2π3,所以Q 点的坐标为(cos 2π3,sin 2π3),即(-12,32).答案:(-12,32)6.若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3的终边相同的角为________________________.解析:∵β=k ·360°+60°,k ∈Z ,∴β3=k ·120°+20°,k ∈Z .又β3∈[0°,360°),∴0°≤k ·120°+20°<360°,k ∈Z ,∴-16≤k <176,∴k =0,1,2.此时得β3分别为20°,140°,260°.故在[0°,360°)内,与角β3终边相同的角为20°,140°,260°.答案:20°,140°,260° 三、解答题7.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.解:∵θ∈(π2,π),∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ,故sin α=-45,cos α=35,tan α=-43.8.(1)确定tan(-3)cos8·tan5的符号;(2)确定lg(cos6-sin6)的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0,∴原式>0.(2)∵6为第四象限角,∴cos6>0,sin6<0,故cos6-sin6>0.∵(cos6-sin6)2=1-2sin6cos6=1-sin12>1(12是第四象限的角),∴cos6-sin6>1,∴lg(cos6-sin6)>0.[高考·模拟·预测]1.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:D2.已知sin α=45,cos α=35,则角2α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解法一:由sin α=45,cos α=35知2kπ+π4<α<2kπ+π2,∴4kπ+π2<2α<4kπ+π(k ∈Z ),角2α所在的象限是第二象限,选择B.解法二:由sin α=45,cos α=35易得sin2α=2425,cos2α=-725,∴角2α所在的象限是第二象限,选择B.答案:B3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.解析:yx=tan300°=-tan60°=- 3.答案:- 34.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2α+1-cos 2αcos α=________.解析:由定义知,sin α=-22,cos α=22,则原式=0.答案:05.借助单位圆解不等式组⎩⎪⎨⎪⎧sin x ≥02cos x -1>0.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,即⎩⎪⎨⎪⎧sin x ≥0,cos x >12,分析正弦函数线和余弦函数线,如右图所示,由三角函数线可得x 满足的条件为 ⎩⎪⎨⎪⎧2kπ≤x ≤2kπ+π,2kπ-π3<x <2kπ+π3(k ∈Z ).此交集恰好为图形中的阴影交错部分,由数形结合可得2kπ≤x <2kπ+π3(k ∈Z ).[备选精题]6.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).(1)求sin(α+π6)的值;(2)若点P 、Q 分别是角α始边、终边上的动点,且PQ =4,求△POQ 面积最大时,点P 、Q 的坐标.解:(1)由射线l 的方程为y =22x ,可得sin α=223,cos α=13,故sin(α+π6)=223×32+13×12=1+266. (2)设P (a,0),Q (b,22b )(a >0,b >0).在△POQ 中,因为PQ 2=(a -b )2+8b 2=16, 即16=a 2+9b 2-2ab ≥6ab -2ab =4ab , 所以ab ≤4.所以S △POQ =2ab ≤4 2.(当且仅当a =3b ,即a =23,b =233时取得等号).所以△POQ 面积最大时,点P ,Q 的坐标分别为P (23,0),Q (233,463).。
高三数学天天练0411.将函数sin(2)3y x π=-的图象先向左平移3π,然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为 .2.若]2,0[πθ∈,且54sin =θ,则2tan θ= . 3.已知点A 、B 、C 满足3=AB ,4=BC ,5=CA ,则AB CA CA BC BC AB ⋅+⋅+⋅的值是 .4.入射光线沿直线12+=x y 射向直线x y =, 被x y =反射后,反射光线所在的直线方程是 .5.ABC ∆的三内角A ,B ,C 所对边长分别是c b a ,,,设向量),sin ,(C b a m +=)sin sin ,3(A B c a n -+=,若n m //,则角B 的大小为 .6.两个正数,m n 的等差中项是5,等比中项是4.若m n >,则椭圆221x y m n+=的离心率e 的大小为 .7.函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n +的最小值为 .8.等差数列2008200520071,220052007,2008,,}{S S S a n S a n n 则项和是其前中=--=的值为 9.若函数f (x )=log a (x +a x -4) ( a >0且a ≠1) 的值域为R ,则实数a 的取值范围是 .10.已知点A (-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线.段.AB 没有公共点时,求m 的取值范围_ .11.设,s t 为正整数,两直线12:0:022t t l x y t l x y s s+-=-=与的交点是11(,)x y ,对于 正整数(2)n n ≥,过点1(0,)(,0)n t x -和的直线与直线2l 的交点记为(,)n n x y .则数列{}n x 通项公式n x = .12、设函数()()0,11x xa f x a a a =>≠+且,若用【m 】表示不超过实数m 的最大整数,求函数【()12f x -】+【()12f x --】的值域填空题答案纸:1、______________2、_____________3、______________4、______________5、_____________6、______________7、______________8、_____________9、______________ 10、_____________ 11、_____________。
第3模块 第7节[知能演练]一、选择题1.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A .60°B .45°或135°C .120°D .30°解析:∵a 2-c 2+b 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0°<C <180°,∴C =60°.答案:A2.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为 ( )A.85B.58C.53D.35解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.答案:D3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A 等于( )A .45°B .30°C .120°D .15°解析:由S △ABC =14(b 2+c 2-a 2)=12bc sin A得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°.答案:A4.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33D.32解析:由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ×BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.答案:C 二、填空题5.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是________.解析:如图所示,该问题转化为已知△ABC 中BC =3,AC =3,B =30°,求AB 的长.由正弦定理AC sin B =BC sin A 可求得角A ,进而可求出角C 再由AB sin C =ACsin B可求得AB ,即x . 答案:3或2 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.解析:由余弦定理变形得cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32.又∵B ∈(0,π),∴B =5π6.答案:5π6三、解答题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ). (1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状. (1)证明:因为a 2=b (b +c ),即a 2=b 2+bc , 所以在△ABC 中,由余弦定理可得, cos B =a 2+c 2-b 22bc =c 2+bc 2ac=b +c 2a =a 22ab =a 2b =sin A2sin B, 所以sin A =sin2B ,∴A =2B 或A +2B =π,而当A +2B =π时有B =C 即b =c ,代回已知得a =2b ,此时a 2=b 2+c 2,故A =90°,而B =C =45°也即A =2B .故A =2B .(2)解:因为a =3b ,所以ab =3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b 2=32所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.8.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解:(1)设x 1、x 2为方程ax 2-2c 2-b 2x -b =0的两根,则x 1+x 2=2c 2-b 2a,x 1·x 2=-b a. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =4(c 2-b 2)a 2+4b a =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab =ab 2ab =12,又∵C ∈(0°,180°),∴C =60°. (2)由S =12ab sin C =103,∴ab =40.①由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2×40×(1+12).∴a +b =13.又∵a >b ② ∴由①②,得a =8,b =5.[高考·模拟·预测]1.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1D .2∶1解析:cos2B +3cos(A +C )+2=2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴B=π3.∴c sin C =b sin B =332=2.故选D. 答案:D2.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:1sin30°=3sin C ,∴sin C =32.∴C =60°或120°. (1)当C =60°时,A =90°,∴BC =2,此时,S △ABC =32; (2)当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选D.答案:D3.在锐角△ABC 中,b =2,B =π3,sin2A +sin(A -C )-sin B =0,则△ABC 的面积为________.解析:sin2A +sin(A -C )-sin B =sin2A +sin(A -C )-sin(A +C )=sin2A -2sin C cos A =2cos A (sin A -sin C )=0,∵△ABC 是锐角三角形, ∴cos A ≠0.∴sin A =sin C ,即A =C . 又B =π3,∴△ABC 为正三角形.∴S =34×22= 3. 答案: 34.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12.由正弦定理得b =asin A ·sin B=2+62+64×12=2,故选A. 答案:A5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,AB sin C =BCsin A .于是AB =sin Csin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin ⎝⎛⎫2A -π4=sin2A cos π4-cos2A sin π4=210. [备选精题]6.已知函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =2,f (A )=32,求角C .解:(1)f (x )=2sin x 1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). 因为f (x )在x =π时取最小值. 所以sin(π+φ)=-1,故sin φ=1. 又0<φ<π,所以φ=π2.(2)由(1)知f (x )=sin ⎝⎛⎭⎫x +π2=cos x .因为f (A )=cos A =32,且A 为△ABC 的内角, 所以A =π6.由正弦定理得sin B =b sin A a =22.又b >a ,所以B =π4或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12,当B =3π4时,C =π-A -B =π-π6-3π4=π12.综上所述,C =7π12或C =π12.。
高考能力测试步步数学基础训练11基础训练11 数列的通项与前n 项和●训练指要掌握等差、等比数列前n 项和的公式,了解推导公式的思想方法,会解已知a 1,d (q )n ,a n ,S n 中某三个量,求另外量的基本问题.一、选择题1.数列通项为a n =n n ++11,当前n 项和为9时,项数n 是A.9B.99C.10D.1002.(2003年安徽春季高考题)等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.193.等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18二、填空题4.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则1020a a =_________. 5.已知等差数列{a n }中,a 1、a 3、a 9成等比数列,则1042931a a a a a a ++++=_________. 三、解答题6.已知等差数列{a n } 中,a 5=a 14,a 2+a 9=31,求前10项的和.7.(2000年全国高考题)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n }的前n 项和,求T n . 8.(2002年江苏高考题)设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3. 分别求出{a n }及{b n }的前10项和S 10及T 10.高考能力测试步步数学基础训练11答案一、1.B 2.C 3.A二、4.1613.52332或三、6.155 7.T n =n n 49412- 8.S 10=-)22(323185510±=T。
第11模块第1节
一、选择题
1.从1到10的正整数中,任意抽取两个相加所得和为奇数的不同情形的种数是
() A.10B.15
C.20 D.25
解析:当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25(种).
答案:D
2.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要
() A.3360元B.6720元
C.4320元D.8640元
解析:从01至10的三个连号的个数有8种;从11至20的两个连号的个数有9种;从21至30的单选号的个数有10种;从31至36的单选号的个数有6种,故总的选法有8×9×10×6=4320种,可得需要钱数为8640元.
答案:D
3.如果一个三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数共有
() A.240个B.285个
C.231个D.243个
解析:当十位数字是9时,百位数字有8种取法,个位数字有9种取法,此时取法种数为8×9;当十位数字是8时,百位数字有7种取法,个位数字有8种取法,此时取法种数为7×8,依此类推,直到当十位数字是2时,百位数字有1种取法,个位数字有2种取法,此时取法种数为1×2,所以总的个数为1×2+2×3+3×4+…+8×9=240.
答案:A
4.一植物园参观路径如右图所示,若要全部参观并且路线不重复,
则不同的参观路线共有
()
A.6种B.8种
C.36种D.48种
解析:如右图,在A点可先参观区域1,也可先参观区域2或3,
共有3种不同选法.每种选法中又有2×2×2×2=16种不同路线.∴
共有3×16=48种不同的参观路线.
答案:D
二、填空题
5.如右图所示为一电路图,从A到B共有________条不同的线
路可通电.
解析:按上、中、下三条线路可分为三类,从上线路中有3种,
中线路中有一种,下线路中有2×2=4种.根据分类计数原理,共有
3+1+4=8(种).
答案:8
6.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个.(用数字作答) 解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理,知共有二次函数3×3×2=18个.若二次函数为偶函数,则b=0.同上共有3×2=6个.
答案:18 6
三、解答题
7.由数字1,2,3,4.
(1)可组成多少个三位数;
(2)可组成多少个没有重复数字的三位数;
(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.
解:(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步计数原理共可组成43=64个三位数.
(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法;由分步计数原理共可排成没有重复数字的三位数4×3×2=24个.
(3)排出的三位数分别是432,431,421,321共4个.
8.从{-3,-2,-1,0,1,2,3,4}中任选三个不同元素作为二次函数y=ax2+bx+c的系
数,问能组成多少条图象为经过原点且顶点在第一象限或第三象限的抛物线?
解:抛物线经过原点,得c =0, 当顶点在第一象限时,a <0,-b
2a
>0,
即⎩
⎪⎨⎪⎧ a <0,b >0,则有3×4=12(种); 当顶点在第三象限时,a >0,-b
2a
<0,
即⎩
⎪⎨⎪⎧
a >0,
b >0,则有4×3=12(种); 共计有12+12=24(种).
[高考·模拟·预测]
1. 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为
( )
A .50
B .45
C .40
D .35
解析:仅参加了一项活动的学生人数=50-(30+25-50)=45.故选B. 答案 :B
2.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有
( )
A .120种
B .96种
C .60种
D .48种
解析:5人中选4人则有C 45种.星期五一人有C 14种,星期六两人则有C 23种,星期日则有C 11种,故共有C 45C 14C 23C 1
1=60(种),故选C.
答案:C
3.甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
( )
A .150种
B .180种
C .300种
D .345种
解析:分两类:
(1)甲组中选出1名女生有C 15·C 13·C 26=225(种)选法;(2)乙组中选出1名女生有C 25·C 16·
C 1
2=120(种)选法.故共有345种选法.故选D.
答案:D
4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,那么k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.
解:S的不含“孤立元”的三元集合为由三个连接整数所组成的集合,共有6个,故填6.
答案:6
5.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).
解析:分两类:每级台阶上一人共有A37种站法;
一级二人,一级一人,共有C23·A27种站法,
故共有A37+C23·A27=336(种).
答案:336
6.2008年9月27日16时34分,神舟七号宇航员翟志刚出舱进行太空行走,17时00分35秒返回.某校全体师生集体观看了电视实况转播,观看后组织全体学生进行关于“太空行走”的论文评选.若高一年级共4个班,每班评出两篇优秀论文(男、女生各一篇),把这些优秀论文平均分成四组进行展览,且每组都有男、女生所写论文,则不同的展览方式共多少种?
解:论文分四组展览,可分四步完成:
第一步:先选第一组,因为每组男、女生都有,所以共4×4=16种选法;
第二步:选第二组,共3×3=9种选法;
第三步:选第三组,共2×2=4种选法;
第四步:确定第四组,共1×1=1种选法.
由分步乘法计数原理知,不同的展览方式共有:
16×9×4×1=576种.。