第七章
- 格式:ppt
- 大小:817.00 KB
- 文档页数:51
第七章 神经组织总论组成神经细胞(神经元)神经胶质细胞功能神经元接受刺激、整合信息、传导冲动把接受的信息加以分析或贮存传递信息给各种肌细胞、腺细胞等效应细胞,以产生效应意识、记忆、思维和行为调节的基础神经胶质细胞支持、保护、营养和绝缘等参与神经递质和活性物质的代谢神经元神经元的结构胞体形态圆形,锥形,梭形和星形等分布位于灰质、皮质和神经节内功能神经元的营养和代谢中心光镜电镜结构细胞核位于胞体中央,大而圆核被膜明显着色浅,核仁大而圆细胞质特征性结构尼氏体神经原纤维两者不可在同一切片看到尼氏体强嗜碱性,HE染色紫蓝色均匀分布粗块状或小颗粒状有发达的粗面内质网和游离核糖体合成更新细胞器所需的结构蛋白、神经递质所需的酶类及肽类神经调质但是,不合成神经递质神经原纤维(嗜银纤维)HE染色切片无法分辨镀银染色呈棕黑色细丝,交错排列成网构成神经丝由神经丝蛋白构成的中间丝微管微管相关蛋白2构成神经元的细胞骨架,微管参与物质运输有脂褐素一种溶酶体的残余体细胞膜可兴奋膜双层脂质结构接受刺激、处理信息、产生并传导神经冲动树突每个神经元有一至多个树突内部结构同胞体有尼氏体和神经原纤维功能极大地扩展了神经元接受刺激的表面积轴突每个神经元有一条轴突无尼氏体,有神经原纤维、神经丝、微管、微丝比树突细无粗面内质网和游离核糖体神经丝、微管和微丝之间均有横桥连接, 构成轴质中的网架轴突运输(轴突内的物质运输)慢速轴突运输运输新形成的神经丝、微丝和微管快速顺向轴突运输快速逆向轴突运输神经元的分类按神经元的突起数量多极神经元双极神经元假单极神经元呈T形分为两支,周围突(分布到周围器官,接受刺激,具有树突的功能)和中枢突(进入中枢神经系统,传出冲动,为轴突)按神经元轴突的长短高尔基Ⅰ型神经元长轴突高尔基Ⅱ型神经元短轴突按神经元的功能感觉神经元(传入)多为假单极神经元运动神经元(传出)一般为多极神经元中间神经元主要为多极神经元学习、记忆和思维的基础按神经递质和调质的化学性质胆碱能神经元去甲肾上腺素能神经元胺能神经元氨基酸能神经元肽能神经元一氧化氮(NO)和一氧化碳(CO)也是一种神经递质突触概念神经元与神经元之间,或神经元与效应细胞之间传递信息的结构细胞连接方式轴-体突触轴-树突触轴-棘突触分类化学突触(人体主要)以神经递质作为传递信息的媒介HE染色不可分辨电突触缝隙连接,以电流作为信息载体存在于中枢神经系统和视网膜内的同类神经元之间化学性突触的结构 (电镜)突触前成分在镀银染色的切片呈棕黑色的圆形颗粒,称突触小体有线粒体、微丝和微管,无神经丝有突触小泡含神经递质或调质表面附有一种蛋白质,称突触素,将小泡连接干细胞骨架突触前膜较厚突触间隙15~30nm突触后成分突触后膜含有特异性的神经递质和调质的受体及离子通道突触的兴奋或抑制,取决于神经递质及其受体的种类Na+ → 兴奋Cl- → 抑制特点一个神经元可以通过突触把信息传递给许多其他神经元或效应细胞一个运动神经元可同时支配上千条骨骼肌纤维一个神经元也可以通过突触接受来自许多其他神经元的信息小脑的浦肯野细胞的树突上有数十万个突触神经胶质细胞功能支持、营养、保护和分隔神经元保证信息传递的专一性和不受干扰中枢神经系统胶质细胞HE染色中,除室管膜细胞外,都不易区分星形胶质细胞形态体积最大星形核圆或卵圆形胞质内含胶质丝(胶质原纤维酸性蛋白构成的中间丝)有些突起末端扩展形成脚板在脑和脊髓表面形成胶质界膜构成血-脑屏障的神经胶质膜功能支持和绝缘分泌神经营养因子和多种生长因子维持神经元的分化、功能,以及创伤后神 经元的可塑性变化组织损伤时,细胞增生形成胶质瘢痕少突胶质细胞分布神经元胞体附近及轴突周围形态胞体较小突起较少功能是中枢神经系统的髓鞘形成细胞(与施万细胞一起作用)小胶质细胞形态体积最小核小、染色深源于血液的单核细胞从两端发起突起功能中枢神经系统损伤时转变为巨噬细胞,具有吞噬作用室管膜细胞分布衬在脑室和脊髓中央管的腔面形态呈立方或柱状单层上皮游离面有微绒毛,少数细胞有纤毛功能参与产生脉络丛的脑脊液周围神经系统胶质细胞施万细胞参与周围神经系统中神经纤维的构成参与有髓神经纤维髓鞘形成分泌神经营养因子,促进受损的神经元存活及其轴突的再生卫星细胞有突起一层扁平或立方形细胞支持、保护、营养作用神经纤维和神经神经纤维构成神经元的长轴突神经胶质细胞根据神经胶质细胞是否形成髓鞘有髓神经纤维无髓神经纤维神经神经末梢。
第七章金属和半导体的接触金属—半导体接触指由金属和半导体互相接触而形成的结构,简称M-S 接触。
主要的金属与半导体接触类型:1、单向导电性的整流接触2、欧姆接触§7.1M-S 接触的势垒模型一、功函数和电子亲和能要使一个电子能够逸出金属表面(即能够达到0E 以上的能级),需要给予电子的能量最少应为0m Fm W E E =−,m W 称为金属的功函数或逸出功。
半导体的功函数为0S FSW E E =−半导体的电子亲和势为0C E E χ=−,表示要使半导体导带底的电子逸出体外所需要的最小能量。
此时半导体的功函数又可以表示为:[]S C FS n W E E E χχ=+−=+。
二、理想的M-S 接触的势垒模型假设:①在半导体表面不存在表面态;②M-S 接触之间没有绝缘层或绝缘层很薄(1020o~A )的紧密接触的理想情况。
以金属和n 型半导体的接触为例:1、S mW W <若m S W W >,电子从半导体一侧流向金属一侧,在半导体表面形成正的空间电荷区,产生自建电场,形成负的表面势(从半导体表面到半导体内部的电势之差),能带向上弯曲,形成表面势垒(阻挡层)。
用D V 表示从半导体内部到界面的电势差,则半导体一侧的电子所面临的势垒高度为:D S m s qV qV W W =−=−,称为表面势垒或肖特基势垒;金属一侧的电子所面临的势垒高度为ns D n m q qV E W φχ=+=−2、m SW W <在n 型半导体表面处形成一个高电导区,称为反阻挡层。
金属和p 型半导体接触时:当m S W W >时,表面处能带向上弯曲,形成空穴的反阻挡层;当m S W W <时,表面处能带向下弯曲,形成p 型阻挡层。
三、表面态对接触势垒的影响巴丁最早提出了M-S 接触中有表面态影响的模型,称为巴丁势垒模型。
在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。
第七章第二节弹力知识点归纳
一、弹力
1、弹性:物体在受力时会发生形变,不受力时又恢复到原来的形状的这种性质叫弹性。
2、塑性:物体在受力时发生形变,不受力时不能自动恢复原状的这种性质叫塑性。
3、弹力:物体由于发生弹性形变而产生的力叫弹力。
(1)弹力产生的条件:物体接触且有挤压(既发生弹性形变)
(2)平常说的压力、支持力、拉力都属于弹力
(3)弹力的方向:总是与作用在物体上使物体发生形变的力的方向相反。
(4)在弹性限度内,同一物体形变越大,其产生的弹力越大(注:不同物体,弹力还跟物体的材料(材质、长短、粗细、宽窄、厚薄)有关)。
(5)弹力是由物体发生弹性形变而产生的,因此,弹力的施力物体是发生形变的物体,受力物体是与其接触使其发生形变的物体。
二、弹簧测力计
1、测力计:测量力大小的工具。
2、弹簧测力计的原理:在弹性限度内,弹簧受到的拉力越大,弹簧的伸长量就越长。
(也可表述为:在弹性限度内,弹簧的伸长量跟所受拉力成正比)。
3、弹簧测力计的使用
(1)使用前:①观察量程②认清分度值③调零④将挂钩拉动几次检查弹簧与外壳之间是否有摩擦。
(2)使用时:①拉力方向要与弹簧测力计轴线在同一直线上。
②所测的力不能超过弹簧测力计最大测量值。
③读数时,视线要与指针所指刻度线垂直。
注意:1、弹簧测力计即可沿竖直方向拉动,也可沿其它方向拉动。
2、弹簧测力计示数等于作用在挂钩上拉力的大小。
3、弹簧测力计倒过来使用的时候,测量结果会偏大。