MAX5231AEEE+中文资料
- 格式:pdf
- 大小:329.12 KB
- 文档页数:18
PowerSpeech LOW VOLTAGE ADPCM VOICE SYNTHESIZERPublication Release Date: March 1996GENERAL DESCRIPTIONThe W523X is a programmable speech synthesis IC that utilizes the ADPCM coding method to generate all types of voice effects. The W523X's LOAD and JUMP commands and four programmable registers provide powerful user-programmable functions that make this chip suitable for an extremely wide range of speech IC applications.The W523X family includes the W5231, W5232, W5233, and W5234. The ROM size of each of these products is shown below:BODY W5231W5232W5233W5234Second3 Sec6 Sec9 Sec12 SecNote: All of the playback lengths are estimated by typical applications.FEATURES•Wide operating voltage range: 1.2 to 3.6 volts •Programmable speech synthesizer•4-bit ADPCM synthesis method and 8-bit D/A converter•RC oscillator with built-in capacitor; voice output frequency typically at 6 KHz •Provides 4 trigger inputs•Drives 2 flash LEDs for two batteries •3 STOP output signals•Flexible functions programmable through the following:−LD (load), JP (jump) commands−Four registers: R0, EN, STOP, and MODE −Conditional instructions −Speech equation−Global repeat (GR) setting•Programmable power-on initialization (POI), which can be interrupted by trigger inputs •Interrupt or non-interrupt for rising or falling edge of each trigger pin (this feature determines retriggerable, non-retriggerable, overwrite, and non-overwrite features of each trigger pin)•LED On/Off control can be set independently in each GO instruction of speech equation •Independent control of LED1 and LED2•Total of 256 voice group entries available for programming (including eight hardware and 248 software group entry points)•20 to 40 mS debounce time•Provides the following mask options:− LED flash frequency: 3 Hz/6 Hz/Off − LED flash type: synchronous/alternate − LED1 section-controlled: Yes/No − LED2 section-controlled/STPC-controlled− AUD output current: 1 mA for one battery, 3 mA for two batteries•Packaged in 20-pin DIPPIN CONFIGURATIONPublication Release Date: March 1996PIN DESCRIPTIONPIN NO.PIN NAME I/O FUNCTION1TG1I Trigger Input 1 2TG2I Trigger Input 2 3TG3I Trigger Input 34TG4/LED2/STPCI/O Trigger Input 4 or LED 2 or Stop Signal C 5LED1O LED 1 6STPB O Stop Signal B 7STPA O Stop Signal A 8NC -Not Connected9SPK O Current Output for Speaker 10V SS -Negative Power Supply 11V DD -Positive Power Supply12OSCI I Oscillator Input Connect Resistor 13OSCO O Oscillator Output Connect Resistor 14NC -Not Connected 15NC -Not Connected 16NC -Not Connected 17NC -Not Connected 18NC -Not Connected 19NC -Not Connected 20TESTITest PinABSOLUTE MAXIMUM RATINGSPARAMETER SYMBOL CONDITIONSRATED VALUE UNIT Power Supply V DD −V SS-0.3 to +5.0V Input Voltage V IN All Inputs V SS -0.3 to V DD +0.3V Storage Temp.T STG -55 to +150°C Operating Temp.T OPR0 to +70°CNote: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliabilityof the device.ELECTRICAL CHARACTERISTICS(T A = 25° C, V SS = 0 V)Note: R OSC = Typ.= 100 KΩ for one battery; 110 KΩ for two batteries.Publication Release Date: March 1996TYPICAL APPLICATION CIRCUITNotes:1. In principle, the playing speed determined by R OSC should correspond to the sampling rate during the coding phase. The playing speed may be adjusted by varying R OSC , however.2. Rs is an optional current-dividing resistor. If Rs is added, the resistance should be between 470 and 750 Ω.3. R is used to limit the current on the LED.4. Cs is optional.5. The DC current gain β of transistor 8050 ranges from 120 to 200.6. All unused trigger pins can be left open because of their internal pull-high resistance.7. No warranty for production!HeadquartersNo. 4, Creation Rd. III,Science-Based Industrial Park,Hsinchu, Taiwan TEL: 886-3-5770066FAX: 886-3-5792697/Voice & Fax-on-demand: 886-2-7197006Taipei Office11F, No. 115, Sec. 3, Min-Sheng East Rd.,Taipei, TaiwanTEL: 886-2-7190505FAX: 886-2-7197502Winbond Electronics (H.K.) Ltd.Rm. 803, World Trade Square, Tower II,123 Hoi Bun Rd., Kwun Tong,Kowloon, Hong Kong TEL: 852-********FAX: 852-********Winbond Electronics North America Corp.Winbond Memory Lab.Winbond Microelectronics Corp.Winbond Systems Lab.2730 Orchard Parkway, San Jose,CA 95134, U.S.A.TEL: 1-408-9436666FAX: 1-408-9436668Note: All data and specifications are subject to change without notice.。
MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIODS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADCMAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313,MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和POR MAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233,MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241,MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3645EVKIT MAX3645评估板MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4079EVKIT MAX4079评估板MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSEMAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLLMAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8533EVKIT MAX8533评估板MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8727EVKIT MAX8727评估板MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9501EVKIT MAX9501评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。
General DescriptionThe MAX5230/MAX5231 low-power, dual 12-bit voltage-output digital-to-analog converters (DACs) feature an internal 10ppm/°C precision bandgap voltage reference and precision output amplifiers. The MAX5231 operates on a single 5V supply with an internal 2.5V reference and features a 4.095V full-scale output range. The MAX5230operates on a single 3V supply with an internal 1.25V ref-erence and features a 2.0475V full-scale output range.The MAX5231 consumes only 470µA while the MAX5230consumes only 420µA of supply current. Both devices feature low-power (2µA) software- and hardware-enabled shutdown modes.The MAX5230/MAX5231 feature a 13.5MHz SPI ™-,QSPI ™-, and MI CROWI RE™-compatible 3-wire serial interface. An additional data output (DOUT) allows for daisy-chaining and read back. Each DAC has a double-buffered digital input. The MAX5230/MAX5231 feature two software-selectable shutdown output impedances:1k Ωor 200k Ω. A power-up reset feature sets DAC out-puts at ground or at the midscale DAC code.The MAX5230/MAX5231 are specified over the extended temperature range (-40°C to +85°C) and are available in 16-pin QSOP packages.ApplicationsIndustrial Process Controls Automatic Test Equipment Digital Offset and Gain Adjustment Motion Control µP-Controlled SystemsFeatures♦Internal 10ppm/°C Precision Bandgap Reference2.465V (MAX5231)1.234V (MAX5230)♦Single-Supply Operation5V (MAX5231)3V (MAX5230)♦Low Supply Current470µA (MAX5231)420µA (MAX5230)♦13.5MHz SPI/QSPI/MICROWIRE-Compatible, 3-Wire Serial Interface ♦Pin-Programmable Power-Up Reset State to Zero or Midscale Output Voltage ♦Programmable Shutdown Modes with 1k Ωor 200k ΩInternal Output Loads ♦Recalls Output State Prior to Shutdown or Reset ♦Buffered Output Drives 5k Ω|| 100pF Loads ♦Space-Saving 16-Pin QSOP PackageMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference________________________________________________________________Maxim Integrated Products 1Ordering Information19-2332; Rev 2; 9/08For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Functional Diagram appears at end of data sheet.SPI and QSPI are trademarks of Motorola, Inc.MICROWIRE is a trademark of National Semiconductor, Corp.Pin Configuration+M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—MAX5231Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to AGND, DGND...............................................-0.3V to +6V AGND to DGND.....................................................-0.3V to +0.3V Digital Inputs to DGND.............................................-0.3V to +6V Digital Output (DOUT) to DGND...................-0.3V to V DD + 0.3V OUT_ to AGND.............................................-0.3V to V DD + 0.3V OS_ to AGND...................................................-4V to V DD + 0.3VMaximum Current into Any Pin............................................50mA Continuous Power Dissipation (T A = +70°C)16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—MAX5231 (continued)(V DD = +4.5V to +5.5V, OS_ = AGND = DGND = 0, R L = 5k Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T= +25°C.)ELECTRICAL CHARACTERISTICS—MAX5230(V= +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k Ω, C = 100pF, T = T to T , unless otherwise noted. Typical valuesM A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX5230 (continued)(V DD = +2.7V to +3.6V, OS_ = AGND = DGND = 0, R L = 5k Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T= +25°C.)MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal ReferenceNote 1:Note 2:Note 3:∆V OUT over the temperature range isdivided by ∆T.Note 4:DC crosstalk is measured as follows: set DAC A to midscale, and DAC B to zero, and measure DAC A output; then changeDAC B to full scale, and measure ∆V OUT for DAC A. Repeat the same measurement with DAC A and DAC B interchanged.DC crosstalk is the maximum ∆V OUT measured.Note 5:Accuracy is better than 1LSB for V OUT_= 10mV to V DD - 180mV. Note 6:Guaranteed by design, not production tested.Note 7:R LOAD = ∞and digital inputs are at either V DD or DGND.TIMING CHARACTERISTICS—MAX5231(V DD = +4.5V to +5.5V, AGND = DGND = 0, T A = T MINto T MAX , unless otherwise noted. Typical values are at T A = +25°C.) ELECTRICAL CHARACTERISTICS—MAX5230 (continued)(V = +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k Ω, C = 100pF, T = T to T , unless otherwise noted. Typical valuesM A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 6_______________________________________________________________________________________TIMING CHARACTERISTICS—MAX5230(V DD = +2.7V to +3.6V, AGND = DGND = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)contents.INTEGRAL NONLINEARITYvs. DIGITAL INPUT CODE (MAX5230)M A X 5230/M A X 5231 t o c 01DIGITAL INPUT CODEI N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15INTEGRAL NONLINEARITYvs. DIGITAL INPUT CODE (MAX5231)M A X 5230/M A X 5231 t o c 02DIGITAL INPUT CODEI N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15DIFFERENTIAL NONLINEARITY vs. DIGITAL INPUT CODE (MAX5230)M A X 5230/M A X 5231 t o c 03DIGITAL INPUT CODED N L (L S B )40003500300025002000150010005000-0.283-0.0370.0860.208-0.160Typical Operating Characteristics(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,T A = +25°C, unless otherwise noted.)MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________7DIFFERENTIAL NONLINEARITY vs. DIGITAL INPUT CODE (MAX5231)M A X 5230/M A X 5231 t o c 04DIGITAL INPUT CODED N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15SUPPLY CURRENT vs. TEMPERATURE(MAX5230)M A X 5230/M A X 5231 t o c 05TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15410420430440450400-4085SUPPLY CURRENT vs. TEMPERATURE(MAX5231)M A X 5230/M A X 5231 t o c 06TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15410420430440450400-4085SUPPLY CURRENT vs. SUPPLY VOLTAGE(MAX5230)M A X 5230/M A X 5231 t o c 07SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )3.33.04054104154204254304002.73.6SUPPLY CURRENT vs. SUPPLY VOLTAGE(MAX5231)M A X 5230/M A X 5231 t o c 08SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )5.255.004.754654704754804854904604.505.50FULL POWER-DOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-15100.450.500.550.600.650.700.750.800.40-4085TWO-DACs SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15205210215220225230200-4085ONE-DAC SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15305310315320325330300-4085FULL POWER-DOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-15100.50.60.70.80.91.01.11.20.4-4085Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 8_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)TWO-DACs SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15230235240245250255225-4085ONE-DAC SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15355360365370375380350-4085FULL-SCALE OUTPUT VOLTAGE vs. TEMPERATURE (MAX5230)TEMPERATURE (°C)F U L L -S C A L E O U T P U T V O L T AG E (V )603510-152.04652.04702.04752.04802.0460-4085FULL-SCALE OUTPUT VOLTAGE vs. TEMPERATURE (MAX5231)TEMPERATURE (°C)F U L L -S C A L E O U T P U T V O L T AG E (V )603510-154.09154.09204.09254.09304.09354.09404.0910-4085FULL-SCALE ERROR vs. RESISTIVE LOAD(MAX5230)RESISTIVE LOAD (k Ω)F U L L -S C A L E E R R O R (L S B )6.55.54.53.50.050.100.150.200.250.300.3502.57.5FULL-SCALE ERROR vs. RESISTIVE LOAD(MAX5231)RESISTIVE LOAD (k Ω)F U L L -S C A L E E R R O R (L S B )6.55.54.53.50.050.100.150.200.252.57.5DYNAMIC RESPONSE RISE TIME(MAX5230)MAX5230/MAX5231 toc192µs/divV OUT 500mV/divV CS 2V/div2.048V3V 010mVDYNAMIC RESPONSE RISE TIME(MAX5231)MAX5230/MAX5231 toc202µs/divV OUT 1V/divV CS 5V/div4.096V5V 010mVDYNAMIC RESPONSE FALL TIME(MAX5230)MAX5230/MAX5231 toc212µs/divV OUT 500mV/divV CS 2V/div2.048V3V 010mVMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________9DYNAMIC RESPONSE FALL TIME(MAX5231)MAX5230/MAX5231 toc222µs/divVOUT 1V/divV CS 5V/div4.096V5V 010mVANALOG CROSSTALK(MAX5230)MAX5230/MAX5231 toc23400µs/div OUTB 5mV/div AC-COUPLED OUTA 2V/div ANALOG CROSSTALK(MAX5231)MAX5230/MAX5231 toc24400µs/divOUTB 5mV/div AC-COUPLEDOUTA 5V/divDIGITAL FEEDTHROUGH(MAX5230)MAX5230/MAX5231 toc2510µs/div OUTA 1mV/div AC-COUPLED SCLK 2V/div DIGITAL FEEDTHROUGH(MAX5231)MAX5230/MAX5231 toc2610µs/div OUTA 1mV/div AC-COUPLEDSCLK 5V/div MAJOR-CARRY TRANSITION(MAX5230)MAX5230/MAX5231 toc272µs/divOUTA 100mV/div AC-COUPLEDCS 5V/divMAJOR-CARRY TRANSITION(MAX5231)MAX5230/MAX5231 toc282µs/div OUTA 100mV/div AC-COUPLEDCS 5V/divREFERENCE VOLTAGE vs. TEMPERATURE (MAX5230)TEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-151.23351.23401.23451.23501.2330-4085REFERENCE VOLTAGEvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-152.46152.46202.46252.46302.4610-4085Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 10______________________________________________________________________________________Detailed DescriptionThe MAX5230/MAX5231 12-bit, voltage-output DACs are easily configured with a 3-wire SPI -, QSPI -,MI CROWI RE-compatible serial interface. The devices include a 16-bit data-in/data-out shift register and have an input consisting of an input register and a DAC reg-ister. I n addition, these devices employ precision trimmed internal resistors to produce a gain of 1.6384V/V, maximizing the output voltage swing, and a programmable-shutdown output impedance of 1k Ωor 200k ΩThe full-scale output voltage is 4.095V for the MAX5231 and 2.0475V for the MAX5230. These devices produce a weighted output voltage proportion-al to the digital input code with an inverted rail-to-rail ladder network (Figure 3).Internal ReferenceThe MAX5230/MAX5231 use an on-board precision bandgap reference to generate an output voltage of 1.234V (MAX5230) or 2.465V (MAX5231). With a low temperature coefficient of only 10ppm/°C, REF can source up to 100µA and is stable for capacitive loads less than 35pF.Output AmplifiersThe output amplifiers have internal resistors that pro-vide for a gain of 1.6384V/V when OS_ is connected to AGND. The output amplifiers have a typical slew rate of0.6V/µs and settle to 1/2LSB within 10µs with a load of 5k Ωin parallel with 100pF. Use the serial interface to set the shutdown output impedance of the amplifiers to 1k Ωor 200k Ω.OS_ can be used to produce an offset voltage at the output. For instance, to achieve a 1V offset, apply -1V to OS_ to produce an output range from 1V to (1V +V FS /V REF ). Note that the DAC’s output range is still lim-ited by the maximum output voltage specification.MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________11Figure 3. Simplified DAC Circuit DiagramM A X 5230/M A X 5231The 3-wire serial interface (SPI , QSPI , MI CROWI RE compatible) used in the MAX5230/MAX5231 allows for complete control of DAC operations (Figures 4 and 5).Figures 1 and 2 show the timing for the serial interface.The serial word consists of 3 control bits followed by 12data bits (MSB first) and 1 sub-bit as described in Tables 1, 2, and 3. When the 3 control bits are all zero or all 1, D11–D8 are used as additional control bits,allowing for greater DAC functionality.The digital inputs allow any of the following: loading the input register(s) without updating the DAC register(s),updating the DAC register(s) from the input register(s),or updating the input and DAC register(s) simultane-ously. The control bits and D11–D8 allow the DACs to operate independently.Send the 16-bit data as one 16-bit word (QSPI) or two 8-bit packets (SPI , MI CROWI RE), with CS low during this period. The control bits and D11–D8 determine which registers update and the state of the registers when exiting shutdown. The 3-bit control and D11–D8determine the following:•Registers to be updated•Selection of the power-down and shutdown modes The general timing diagram of Figure 1 illustrates data acquisition. Driving CS low enables the device to receive data. Otherwise the interface control circuitry is disabled. With CS low, data at DIN is clocked into the register on the rising edge of SCLK. As CS goes high,data is latched into the input and/or DAC registers,depending on the control bits and D11–D8. The maxi-mum clock frequency guaranteed for proper operation is 13.5MHz. Figure 2 depicts a more detailed timing diagram of the serial interface.3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 12______________________________________________________________________________________Power-Down and Shutdown ModesAs described in Tables 2 and 3, several serial interface commands put one or both of the DACs into shutdown mode. Shutdown modes are completely independent for each DAC. I n shutdown, the amplifier output be-comes high impedance, and OUT_ terminates to OS_through the 200k Ω(typ) gain resistors. Optionally (see Tables 2 and 3), OUT_ can have an additional termina-tion of 1k Ωto AGND.Full power-down mode shuts down the main bias gene-rator, reference, and both DACs. The shutdown impe-dance of the DAC outputs can still be controlled independently, as described in Tables 2 and 3.A serial interface command exits shutdown mode and updates a DAC register. Each DAC can exit shutdown at the same time or independently (see Tables 2 and 3). For example, if both DACs are shut down, updating the DAC A register causes DAC A to power up, while DAC B remains shut down. I n full power-down mode,powering up either DAC also powers up the main bias generator and reference. To change from full power-down to both DACs shutdown requires the waking of at least one DAC between states.When powering up the MAX5230/MAX5231 (powering V DD ), allow 400µs (max) for the output to stabilize. When exiting full power-down mode, also allow 400µs (max) for the output to stabilize. When exiting DAC shutdown mode, allow 160µs (max) for the output to stabilize.Reset Value (RSTV) andClear (CLR ) InputsDriving CLR low asynchronously forces both DAC out-puts and all the internal registers (input registers and DAC registers) for both DACs to either zero or midscale,depending on the level at RSTV. RSTV = DGND sets the zero value, and RSTV, = V DD sets the midscale value.The internal power-on reset circuit sets the DAC out-puts and internal registers to either zero or midscale when power is first applied to the device, depending on the level at RSTV as described in the preceding para-graph. The DAC outputs are enabled after power is first applied. I n order to obtain the midscale value on power-up (RSTV = V DD ), the voltage on RSTV must rise simultaneously with the V DD supply.Load DAC Input (LDAC )Asserting LDAC asynchronously loads the DAC registers from their corresponding input registers (DACs that are shut down remain shut down). The LDAC input is totally asynchronous and does not require any activity on CS ,SCLK, or DIN in order to take effect. If LDAC is asserted coincident with a rising edge of CS,which executes a serial command modifying the value of either DAC input register, then LDAC must remain asserted for at least 30ns following the CS rising edge. This requirement applies only for serial commands that modify the value of the DAC input registers.Power-Down Lockout Input (PDL )Driving PDL low disables shutdown of either DAC. When PDL is low, serial commands to shut down either DAC are ignored. When either DAC is in shutdown mode, a high-to-low transition on PDL brings the DACs and the refer-ence out of shutdown with DAC outputs set to the state prior to shutdown.MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference13Figure 4. SPI/QSPI Interface ConnectionsFigure 5. Connections for MICROWIREM A X 5230/M A X 5231Applications InformationDefinitionsIntegral Nonlinearity (INL)Integral nonlinearity (Figure 6a) is the deviation of the val-ues on an actual transfer function from a straight line.This straight line can be either a best-straight-line fit (closest approximation to the actual transfer curve) or a line drawn between the endpoints of the transfer func-tion, once offset and gain errors have been nullified. For a DAC, the deviations are measured at every single step.Differential Nonlinearity (DNL)Differential nonlinearity (Figure 6b) is the difference between an actual step height and the ideal value of 1LSB. If the magnitude of the DNL is less than 1LSB, the DAC guarantees no missing codes and is monotonic.Offset ErrorThe offset error (Figure 6c) is the difference between the ideal and the actual offset point. For a DAC, the off-set point is the step value when the digital input is zero.This error affects all codes by the same amount and can usually be compensated for by trimming.Gain ErrorGain error (Figure 6d) is the difference between the ideal and the actual full-scale output voltage on the transfer curve, after nullifying the offset error. This error alters the slope of the transfer function and corre-sponds to the same percentage error in each step.Settling TimeThe settling time is the amount of time required from the start of a transition, until the DAC output settles to its new output value within the converter’s specified accuracy.3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 14Digital feedthrough is noise generated on the DAC’s output when any digital input transitions. Proper board layout and grounding significantly reduce this noise,but there is always some feedthrough caused by the DAC itself.Unipolar OutputFigure 7 shows the MAX5230/MAX5231 configured for unipolar, rail-to-rail operation. The MAX5231 produces a 0 to 4.095V output, while the MAX5230 produces 0 to 2.0475V output. Table 4 lists the unipolar output codes.Digital Calibration and Threshold SelectionFigure 8 shows the MAX5230/MAX5231 in a digital cali-bration application. With a bright light value applied to the photodiode (on), the DAC is digitally ramped until it trips the comparator. The microprocessor (µP) stores this “high” calibration value. Repeat the process with a dim light (off) to obtain the dark current calibration. The µP then programs the DAC to set an output voltage at the midpoint of the two calibrated values. Applications include tachometers, motion sensing, automatic read-ers, and liquid clarity analysis.Sharing a Common DIN LineSeveral MAX5230/MAX5231s may share one common DIN signal line (Figure 9). In this configuration, the data bus is common to all devices; data is not shifted through a daisy-chain. The SCLK and DIN lines are shared by all devices, but each IC needs its own dedicated CS line.Daisy-Chaining DevicesAny number of MAX5230/MAX5231s can be daisy-chained by connecting the serial data output (DOUT) of one device to the digital input (DI N) of the following device in the chain (Figure 10).MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________15M A X 5230/M A X 5231Power-Supply and BypassingConsiderationsOn power-up, the input and DAC registers are cleared to either zero (RSTV = DGND) or midscale (RSTV =V DD ). Bypass V DD with a 4.7µF capacitor in parallel with a 0.1µF capacitor to AGND, and bypass V DD with a 0.1µF capacitor to DGND. Minimize lead lengths to reduce lead inductance.Grounding and Layout ConsiderationsDigital and AC transient signals on AGND or DGND can create noise at the output. Connect AGND and DGND to the highest quality ground available. Use propergrounding techniques, such as a multilayer board with a low-inductance ground plane or star connect all ground return paths back to the MAX5230/MAX5231 AGND.Carefully lay out the traces between channels to reduce AC cross-coupling and crosstalk. Wire-wrapped boards and sockets are not recommended. I f noise becomes an issue, shielding may be required.Chip InformationTRANSISTOR COUNT: 4745PROCESS: BiCMOS3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 16______________________________________________________________________________________Figure 9. Multiple MAX5230/MAX5231s Sharing a Common DIN LineMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________17Functional DiagramPackage InformationFor the latest package outline information and land patterns, go to /packages .M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.18____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。
摘要:论述了一种串行控制的12位数模转换器的基本原理,并给出了其在高频开关整流模块的控制环节中的硬件电路及软件设计。
关键词:单片机变换器整流模块1 引言本公司研制的DZW02型220V系列整流模块,广泛应用于电力电源系统中。
通过全桥移相高频变换,采用高品质的D/A变换器——MAX531,解决了单片机与移相控制电路的接口问题,使整流模块的稳压精度达到≤0.1%的水平。
DZW02型整流模块的基本结构框图如图1所示。
它由主电路、PWM控制电路、监控电路和辅助保护电路组成。
其主电路由输入电网滤波电路、整流桥、有源功率因数校正(APFC)电路、DC/DC高频变换电路、输出整流滤波等电路组成。
这里着重讨论单片机与PWM控制之间的接口电路12位D/A转换器MAX531的应用。
2 D/A转换器MAX531是美信集成产品公司生产的12位串行数据接口数模转换器,采用“反向”R-2R的梯形电阻网络结构。
内置单电源CMOS运算放大器,其最大工作电流仅为260μA,具有很好的电压偏移,增益和线性度。
内部运算放大器根据需要可配置成+1或+2的增益,也可作四象限乘法器。
2.1 主要性能主要性能如下:单/双工作电源;缓冲电压输出;内置2.048V电压基准;总不可调整误差(INL):±1/2LSB;灵活的输出电压范围:VSS~VDD;电源上电复位功能;具有菊花链连接的串行数据输出。
2.2 管脚结构MAX531采用14脚DIP封装,见图2,其引脚功能的详细说明见表1。
2.3 工作原理在芯片选择CS为高电平时,SCLK被禁止且DIN端的数据不能进入D/A,从而VOUT处于高阻状态。
当数据串行接口把CS拉至低电平时,转换时序开始允许SCLK工作并使VOUT 脱离高阻状态。
数据串行接口将SCLK时钟序列传给SCLK,在SCLK的上升沿,16位串行数字输到DIN被锁入12位移位寄存器,其中高4位(MSB)移入DOUT寄存器,此时D/A以菊花链连接才能用到。
General DescriptionThe MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communica-tions interfaces, particularly applications where ±12V is not available.These parts are especially useful in battery-powered sys-tems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225,MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for appli-cations where printed circuit board space is critical.________________________ApplicationsPortable Computers Low-Power Modems Interface TranslationBattery-Powered RS-232 Systems Multidrop RS-232 NetworksNext-Generation Device Features♦For Low-Voltage, Integrated ESD ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: +3.0V to +5.5V, Low-Power, Up to 1Mbps, True RS-232 Transceivers Using Four 0.1µF External Capacitors (MAX3246E Available in a UCSP™Package)♦For Low-Cost ApplicationsMAX221E: ±15kV ESD-Protected, +5V, 1µA,Single RS-232 Transceiver with AutoShutdown™MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers________________________________________________________________Maxim Integrated Products 1Selection Table19-4323; Rev 15; 1/06Power No. of NominalSHDN RxPart Supply RS-232No. of Cap. Value & Three-Active in Data Rate Number (V)Drivers/Rx Ext. Caps (µF)State SHDN (kbps)FeaturesMAX220+52/240.047/0.33No —120Ultra-low-power, industry-standard pinout MAX222+52/2 4 0.1Yes —200Low-power shutdownMAX223 (MAX213)+54/54 1.0 (0.1)Yes ✔120MAX241 and receivers active in shutdown MAX225+55/50—Yes ✔120Available in SOMAX230 (MAX200)+55/04 1.0 (0.1)Yes —120 5 drivers with shutdownMAX231 (MAX201)+5 and2/2 2 1.0 (0.1)No —120Standard +5/+12V or battery supplies; +7.5 to +13.2same functions as MAX232MAX232 (MAX202)+52/24 1.0 (0.1)No —120 (64)Industry standardMAX232A+52/240.1No —200Higher slew rate, small caps MAX233 (MAX203)+52/20— No —120No external capsMAX233A+52/20—No —200No external caps, high slew rate MAX234 (MAX204)+54/04 1.0 (0.1)No —120Replaces 1488MAX235 (MAX205)+55/50—Yes —120No external capsMAX236 (MAX206)+54/34 1.0 (0.1)Yes —120Shutdown, three stateMAX237 (MAX207)+55/34 1.0 (0.1)No —120Complements IBM PC serial port MAX238 (MAX208)+54/44 1.0 (0.1)No —120Replaces 1488 and 1489MAX239 (MAX209)+5 and3/52 1.0 (0.1)No —120Standard +5/+12V or battery supplies;+7.5 to +13.2single-package solution for IBM PC serial port MAX240+55/54 1.0Yes —120DIP or flatpack package MAX241 (MAX211)+54/54 1.0 (0.1)Yes —120Complete IBM PC serial port MAX242+52/240.1Yes ✔200Separate shutdown and enableMAX243+52/240.1No —200Open-line detection simplifies cabling MAX244+58/104 1.0No —120High slew rateMAX245+58/100—Yes ✔120High slew rate, int. caps, two shutdown modes MAX246+58/100—Yes ✔120High slew rate, int. caps, three shutdown modes MAX247+58/90—Yes ✔120High slew rate, int. caps, nine operating modes MAX248+58/84 1.0Yes ✔120High slew rate, selective half-chip enables MAX249+56/1041.0Yes✔120Available in quad flatpack packageFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering InformationOrdering Information continued at end of data sheet.*Contact factory for dice specifications.AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243Note 1:For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.Note 2:Input voltage measured with T OUT in high-impedance state, SHDN or V CC = 0V.Note 3:Maximum reflow temperature for the MAX233A is +225°C.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V V+ (Note 1)..................................................(V CC - 0.3V) to +14V V- (Note 1).............................................................+0.3V to +14V Input VoltagesT IN ..............................................................-0.3V to (V CC - 0.3V)R IN (Except MAX220)........................................................±30V R IN (MAX220).....................................................................±25V T OUT (Except MAX220) (Note 2).......................................±15V T OUT (MAX220)...............................................................±13.2V Output VoltagesT OUT ...................................................................................±15V R OUT .........................................................-0.3V to (V CC + 0.3V)Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)..842mW18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)..889mW 20-Pin Plastic DIP (derate 8.00mW/°C above +70°C)..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s) (Note 3)...................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________3Note 4:MAX243 R2OUT IN ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 4_________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243108-1051525OUTPUT VOLTAGE vs. LOAD CURRENT-4-6-8-2642LOAD CURRENT (mA)O U T P U T V O L T A G E (V )1002011104104060AVAILABLE OUTPUT CURRENTvs. DATA RATE65798DATA RATE (kb/s)O U T P U T C U R R E N T (m A )203050+10V-10VMAX222/MAX242ON-TIME EXITING SHUTDOWN+5V +5V 0V0V 500μs/div V +, V - V O L T A G E (V )ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V CC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T A = T MIN to T MAX ‚ unless otherwise noted.)MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________5V CC ...........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................+0.3V to -14V Input VoltagesT IN ............................................................-0.3V to (V CC + 0.3V)R IN ......................................................................................±30V Output VoltagesT OUT ...................................................(V+ + 0.3V) to (V- - 0.3V)R OUT .........................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T OUT ......................................Continuous Continuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C)..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW20-Pin Wide SO (derate 10.00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C).....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C)........889mW 24-Pin Narrow CERDIP(derate 12.50mW/°C above +70°C)..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _...................................................-40°C to +85°C MAX2 _ _ M _ _......................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s) (Note 4)...................+300°CABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 4:Maximum reflow temperature for the MAX233/MAX235 is +225°C.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________78.56.54.55.5TRANSMITTER OUTPUT VOLTAGE (V OH ) vs. V CC7.08.0V CC (V)V O H (V )5.07.57.46.02500TRANSMITTER OUTPUT VOLTAGE (V OH )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.46.27.27.0LOAD CAPACITANCE (pF)V O H (V )1500100050020006.86.612.04.02500TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE6.05.011.09.010.0LOAD CAPACITANCE (pF)S L E W R A T E (V /μs )1500100050020008.07.0-6.0-9.04.55.5TRANSMITTER OUTPUT VOLTAGE (V OL ) vs. V CC-8.0-8.5-6.5-7.0V CC (V)V O L (V )5.0-7.5-6.0-7.62500TRANSMITTER OUTPUT VOLTAGE (V OL )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES-7.0-7.2-7.4-6.2-6.4LOAD CAPACITANCE (pF)V O L (V )150010005002000-6.6-6.810-105101520253035404550TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CURRENT-2-6-4-886CURRENT (mA)V +, V - (V )420__________________________________________Typical Operating CharacteristicsMAX223/MAX230–MAX241*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTSV+, V- WHEN EXITING SHUTDOWN(1μF CAPACITORS)MAX220-13SHDN*V-O V+500ms/divM A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 8_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ‚ ENA , ENB , ENR , ENT , ENRA ,ENRB , ENTA , ENTB ..................................-0.3V to (V CC + 0.3V)R IN .....................................................................................±25V T OUT (Note 5).....................................................................±15V R OUT ........................................................-0.3V to (V CC + 0.3V)Short Circuit (one output at a time)T OUT to GND............................................................Continuous R OUT to GND............................................................ContinuousContinuous Power Dissipation (T A = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C)...........1.07W Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering,10s) (Note 6)....................+300°CNote 5:Input voltage measured with transmitter output in a high-impedance state, shutdown, or V CC = 0V.Note 6:Maximum reflow temperature for the MAX225/MAX245/MAX246/MAX247 is +225°C.MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________9Note 7:The 300Ωminimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or V CC =0V is 10M Ωas is implied by the leakage specification.ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 10________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX225/MAX244–MAX24918212345TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE86416LOAD CAPACITANCE (nF)T R A N S M I T T E R S L E W R A T E (V /μs )14121010-105101520253035OUTPUT VOLTAGEvs. LOAD CURRENT FOR V+ AND V--2-4-6-88LOAD CURRENT (mA)O U T P U T V O L T A G E (V )64209.05.012345TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.05.58.5LOAD CAPACITANCE (nF)V +, V (V )8.07.57.06.5MAX220–MAX249Drivers/ReceiversFigure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay TimingFigure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable TimingM A X 220–M A X 249Drivers/Receivers ENT ENR OPERATION STATUS TRANSMITTERSRECEIVERS00Normal Operation All Active All Active 01Normal Operation All Active All 3-State10Shutdown All 3-State All Low-Power Receive Mode 11ShutdownAll 3-StateAll 3-StateTable 1a. MAX245 Control Pin ConfigurationsENT ENR OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All Active RA1–RA4 3-State,RA5 Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll 3-StateAll Low-Power Receive Mode All Low-Power Receive Mode 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RB5 Low-Power Receive ModeTable 1b. MAX245 Control Pin ConfigurationsTable 1c. MAX246 Control Pin ConfigurationsENA ENB OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All 3-State All Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll ActiveRA1–RA4 3-State,RA5 Active All Active 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RA5 Low-Power Receive ModeMAX220–MAX249Drivers/ReceiversM A X 220–M A X 249_______________Detailed DescriptionThe MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 dri-vers, RS-232 receivers, and receiver and transmitter enable control inputs.Dual Charge-Pump Voltage ConverterThe MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to dou-ble the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output.A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section),except on the MAX225 and MAX245–MAX247, where these pins are not available. V+ and V- are not regulated,so the output voltage drops with increasing load current.Do not load V+ and V- to a point that violates the mini-mum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222,MAX225, MAX230, MAX235, MAX236, MAX240,MAX241, and MAX245–MAX249, avoid using V+ and V-to power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applica-tions where a +10V external supply is applied to the V+pin (instead of using the internal charge pump to gen-erate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to V CC . This is because V+is internally connected to V CC in shutdown mode.RS-232 DriversThe typical driver output voltage swing is ±8V when loaded with a nominal 5k ΩRS-232 receiver and V CC =+5V. Output swing is guaranteed to meet the EIA/TIA-232E and V.28 specification, which calls for ±5V mini-mum driver output levels under worst-case conditions.These include a minimum 3k Ωload, V CC = +4.5V, and maximum operating temperature. Unloaded driver out-put voltage ranges from (V+ -1.3V) to (V- +0.5V).Input thresholds are both TTL and CMOS compatible.The inputs of unused drivers can be left unconnected since 400k Ωinput pullup resistors to V CC are built in (except for the MAX220). The pullup resistors force the outputs of unused drivers low because all drivers invert.The internal input pullup resistors typically source 12µA,except in shutdown mode where the pullups are dis-abled. Driver outputs turn off and enter a high-imped-ance state—where leakage current is typically microamperes (maximum 25µA)—when in shutdownmode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The power-supply current typically drops to 8µA in shutdown mode.The MAX220 does not have pullup resistors to force the outputs of the unused drivers low. Connect unused inputs to GND or V CC .The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240,and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver three-state control on the receiver outputs.The receiver TTL/CMOS outputs are in a high-imped-ance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239–MAX241), and are also high-impedance whenever the shutdown control line is high.When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1µA with the driver output pulled to ground. The driver output leakage remains less than 1µA, even if the transmitter output is backdriven between 0V and (V CC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1k Ωseries impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1k Ω.The driver output slew rate is limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifica-tions. Typical slew rates are 24V/µs unloaded and 10V/µs loaded with 3Ωand 2500pF.RS-232 ReceiversEIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert.Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels.The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors withDrivers/ReceiversTable 2. Three-State Control of ReceiversMAX220–MAX249Drivers/Receiversnominal 5k Ωvalues. The receivers implement Type 1interpretation of the fault conditions of V.28 and EIA/TIA-232E.The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear out-put transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.Low-Power Receive ModeThe low-power receive mode feature of the MAX223,MAX242, and MAX245–MAX249 puts the IC into shut-down mode but still allows it to receive information. This is important for applications where systems are periodi-cally awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communi-cation at faster data rates. This operation conserves system power.Negative Threshold—MAX243The MAX243 is pin compatible with the MAX232A, differ-ing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or “OK to send” state. Normally‚ the MAX243’s other receiver (+1.4V threshold) is used for the data line (TD or RD)‚ while the negative threshold receiver is con-nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA-232E specifications. This means a receiver output goes high whenever its input is driven negative‚ left floating‚or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this‚the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.Shutdown—MAX222–MAX242On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and MAX241‚ all receivers are disabled during shutdown.On the MAX223 and MAX242‚ two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions‚ the propagation delay increases to about 2.5µs for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices‚ SHDN (SH DN for MAX241) also disables the receiver outputs.The MAX225 provides five transmitters and five receivers‚ while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply cur-rent drops to less than 25µA and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225‚ all five receivers are controlled by the ENR input. On the MAX245‚ eight of the receiver out-puts are controlled by the ENR input‚ while the remain-ing two receivers (RA5 and RB5) are always active.RA1–RA4 and RB1–RB4 are put in a three-state mode when ENR is a logic high.Receiver and Transmitter EnableControl InputsThe MAX225 and MAX245–MAX249 feature transmitter and receiver enable controls.The receivers have three modes of operation: full-speed receive (normal active)‚ three-state (disabled)‚ and low-power receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.M A X 220–M A X 249Tables 1a–1d define the control states. The MAX244has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA )causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB ) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one A-side and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shut-down mode when both the A and B sides are disabled (ENA = ENB = +5V).The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active.The device enters shutdown mode with a logic high on both ENTA and ENTB .The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and trans-mitters go into a three-state mode with a logic high on both ENTA and ENTB .The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three dri-vers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB . In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kb/s.__________Applications InformationFigures 5 through 25 show pin configurations and typi-cal operating circuits. In applications that are sensitive to power-supply noise, V CC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.Drivers/Receivers。
新品发布NEW PRODUCTS今日电子 · 2018年5月 · 外带来新的层面,例如,混光。
整合式M O S F E T额定60V,使A L8862成为可行的解决方案,可用于更高功率的输出应用。
利用Diodes公司的专有技术,M O S F E T也具备仅0.4Ω的超低R D S(O N),能在缩减外部零件需求的同时展现出高效率。
亦针对短路或开路可能造成的故障情形提供完整保护,同时包含了过热保护。
Diodes Incorporated线性LED控制器A L5814、A L5817、A L5815及AL5816线性LED控制器,为LED灯条提供可调光和可调节的驱动电流,效率高达80%以上。
A L58x x系列提供物料列表(B O M)成本低廉的解决方案,适用于商业和工业领域的各项产品应用,包括广告牌、仪器照明、家电内部照明、建筑细部照明,以及一般智能照明设备。
这些装置的输入范围为4.5~60V,无须电感,可保持良好的E M I效能,使系统整合更简单。
此外,相较于其他设计,外部功率晶体管可使内部功耗降至最低。
A L58x x系列可提供高达15m A 的电流给外部MOSFET或双极晶体管,以驱动LED灯条。
LED驱动电流由一个外部电阻配置,具有4%的参考电压准确度,以及出色的温度稳定性。
不仅如此,AL5815与AL5816装置支持PWM调光功能,A L5814与A L5817装置则同时支持模拟和PWM调光功能。
保护功能包括过温保护及输入欠压锁定。
A L5814及A L5817装置也利用VFAULT脚位提供「LED 开回路」保护功能,以及L E D 热回流保护。
A L58x x系列线性控制器提供良好的E M I效能,而广泛的工作温度范围(-40~+105℃)使其适用于恶劣环境。
Diodes Incorporated超小电源模块MAXM17532和MAXM15462超小尺寸(2.6mm×3.0mm×1.5mm)、集成式DC-DC电源模块是Maxim喜马拉雅电源方案专有组合的一部分,适用于工业、医疗健康、通信和消费市场。
General DescriptionThe MAX200–MAX211/MAX213 transceivers are designed for RS-232 and V.28 communication inter-faces where ±12V supplies are not available. On-board charge pumps convert the +5V input to the ±10V need-ed for RS-232 output levels. The MAX201 and MAX209operate from +5V and +12V, and contain a +12V to -12V charge-pump voltage converter.The MAX200–MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V.28 specifications at a data rate of 20kbps. The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The 5µW shutdown mode of the MAX200, MAX205,MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shut-down and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing ring indica-tor (RI) to be monitored easily using only 75µW power.The MAX211 and MAX213 are available in a 28-pin wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now avail-able in a 24-pin SO package and a 24-pin SSOP. The MAX203 and MAX205 use no external components,and are recommended for applications with limited circuit board space.ApplicationsComputersLaptops, Palmtops, Notebooks Battery-Powered Equipment Hand-Held Equipment Next-Generation Device Features ♦For Low-Cost Applications:MAX221E: ±15kV ESD-Protected, +5V, 1µA, Single RS-232 Transceiver with AutoShutdown™♦For Low-Voltage and Space-Constrained Applications:MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA,+3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in UCSP™Package)♦For Space-Constrained Applications:MAX3228E/MAX3229E: ±15kV ESD-Protected,+2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable Applications:MAX3380E/MAX3381E: +2.35V TO +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins ♦For Low-Power Applications:MAX3224E–MAX3227E/MAX3244E/MAX3245E:±15kV ESD-Protected, 1µA, 1Mbps, +3.0V to+5.5V, RS-232 Transceivers with AutoShutdown Plus™MAX200–MAX211/MAX213+5V , RS-232 Transceivers with 0.1µF External Capacitors ________________________________________________________________Maxim Integrated Products 119-0065; Rev 6; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information appears at end of data sheetAutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.MAX200–MAX211/MAX213+5V , RS-232 Transceiverswith 0.1µF External Capacitors______________________________________________________________________________________19Ordering Information*Contact factory for dice specifications.M A X 200–M A X 211/M A X 213+5V , RS-232 Transceiverswith 0.1µF External Capacitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
General DescriptionThe MAX5230/MAX5231 low-power, dual 12-bit voltage-output digital-to-analog converters (DACs) feature an internal 10ppm/°C precision bandgap voltage reference and precision output amplifiers. The MAX5231 operates on a single 5V supply with an internal 2.5V reference and features a 4.095V full-scale output range. The MAX5230operates on a single 3V supply with an internal 1.25V ref-erence and features a 2.0475V full-scale output range.The MAX5231 consumes only 470µA while the MAX5230consumes only 420µA of supply current. Both devices feature low-power (2µA) software- and hardware-enabled shutdown modes.The MAX5230/MAX5231 feature a 13.5MHz SPI ™-,QSPI ™-, and MI CROWI RE™-compatible 3-wire serial interface. An additional data output (DOUT) allows for daisy-chaining and read back. Each DAC has a double-buffered digital input. The MAX5230/MAX5231 feature two software-selectable shutdown output impedances:1k Ωor 200k Ω. A power-up reset feature sets DAC out-puts at ground or at the midscale DAC code.The MAX5230/MAX5231 are specified over the extended temperature range (-40°C to +85°C) and are available in 16-pin QSOP packages.ApplicationsIndustrial Process Controls Automatic Test Equipment Digital Offset and Gain Adjustment Motion Control µP-Controlled SystemsFeatures♦Internal 10ppm/°C Precision Bandgap Reference2.465V (MAX5231)1.234V (MAX5230)♦Single-Supply Operation5V (MAX5231)3V (MAX5230)♦Low Supply Current470µA (MAX5231)420µA (MAX5230)♦13.5MHz SPI/QSPI/MICROWIRE-Compatible, 3-Wire Serial Interface ♦Pin-Programmable Power-Up Reset State to Zero or Midscale Output Voltage ♦Programmable Shutdown Modes with 1k Ωor 200k ΩInternal Output Loads ♦Recalls Output State Prior to Shutdown or Reset ♦Buffered Output Drives 5k Ω|| 100pF Loads ♦Space-Saving 16-Pin QSOP PackageMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference________________________________________________________________Maxim Integrated Products 1Ordering Information19-2332; Rev 2; 9/08For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Functional Diagram appears at end of data sheet.SPI and QSPI are trademarks of Motorola, Inc.MICROWIRE is a trademark of National Semiconductor, Corp.Pin Configuration+M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—MAX5231Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to AGND, DGND...............................................-0.3V to +6V AGND to DGND.....................................................-0.3V to +0.3V Digital Inputs to DGND.............................................-0.3V to +6V Digital Output (DOUT) to DGND...................-0.3V to V DD + 0.3V OUT_ to AGND.............................................-0.3V to V DD + 0.3V OS_ to AGND...................................................-4V to V DD + 0.3VMaximum Current into Any Pin............................................50mA Continuous Power Dissipation (T A = +70°C)16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—MAX5231 (continued)(V DD = +4.5V to +5.5V, OS_ = AGND = DGND = 0, R L = 5k Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T= +25°C.)ELECTRICAL CHARACTERISTICS—MAX5230(V= +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k Ω, C = 100pF, T = T to T , unless otherwise noted. Typical valuesM A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX5230 (continued)(V DD = +2.7V to +3.6V, OS_ = AGND = DGND = 0, R L = 5k Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T= +25°C.)MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal ReferenceNote 1:Note 2:Note 3:∆V OUT over the temperature range isdivided by ∆T.Note 4:DC crosstalk is measured as follows: set DAC A to midscale, and DAC B to zero, and measure DAC A output; then changeDAC B to full scale, and measure ∆V OUT for DAC A. Repeat the same measurement with DAC A and DAC B interchanged.DC crosstalk is the maximum ∆V OUT measured.Note 5:Accuracy is better than 1LSB for V OUT_= 10mV to V DD - 180mV. Note 6:Guaranteed by design, not production tested.Note 7:R LOAD = ∞and digital inputs are at either V DD or DGND.TIMING CHARACTERISTICS—MAX5231(V DD = +4.5V to +5.5V, AGND = DGND = 0, T A = T MINto T MAX , unless otherwise noted. Typical values are at T A = +25°C.) ELECTRICAL CHARACTERISTICS—MAX5230 (continued)(V = +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k Ω, C = 100pF, T = T to T , unless otherwise noted. Typical valuesM A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 6_______________________________________________________________________________________TIMING CHARACTERISTICS—MAX5230(V DD = +2.7V to +3.6V, AGND = DGND = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)contents.INTEGRAL NONLINEARITYvs. DIGITAL INPUT CODE (MAX5230)M A X 5230/M A X 5231 t o c 01DIGITAL INPUT CODEI N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15INTEGRAL NONLINEARITYvs. DIGITAL INPUT CODE (MAX5231)M A X 5230/M A X 5231 t o c 02DIGITAL INPUT CODEI N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15DIFFERENTIAL NONLINEARITY vs. DIGITAL INPUT CODE (MAX5230)M A X 5230/M A X 5231 t o c 03DIGITAL INPUT CODED N L (L S B )40003500300025002000150010005000-0.283-0.0370.0860.208-0.160Typical Operating Characteristics(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,T A = +25°C, unless otherwise noted.)MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________7DIFFERENTIAL NONLINEARITY vs. DIGITAL INPUT CODE (MAX5231)M A X 5230/M A X 5231 t o c 04DIGITAL INPUT CODED N L (L S B )40003500300025002000150010005000-0.10-0.0500.050.100.15-0.15SUPPLY CURRENT vs. TEMPERATURE(MAX5230)M A X 5230/M A X 5231 t o c 05TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15410420430440450400-4085SUPPLY CURRENT vs. TEMPERATURE(MAX5231)M A X 5230/M A X 5231 t o c 06TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15410420430440450400-4085SUPPLY CURRENT vs. SUPPLY VOLTAGE(MAX5230)M A X 5230/M A X 5231 t o c 07SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )3.33.04054104154204254304002.73.6SUPPLY CURRENT vs. SUPPLY VOLTAGE(MAX5231)M A X 5230/M A X 5231 t o c 08SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )5.255.004.754654704754804854904604.505.50FULL POWER-DOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-15100.450.500.550.600.650.700.750.800.40-4085TWO-DACs SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15205210215220225230200-4085ONE-DAC SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5230)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15305310315320325330300-4085FULL POWER-DOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )6035-15100.50.60.70.80.91.01.11.20.4-4085Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 8_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)TWO-DACs SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15230235240245250255225-4085ONE-DAC SHUTDOWN SUPPLY CURRENTvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15355360365370375380350-4085FULL-SCALE OUTPUT VOLTAGE vs. TEMPERATURE (MAX5230)TEMPERATURE (°C)F U L L -S C A L E O U T P U T V O L T AG E (V )603510-152.04652.04702.04752.04802.0460-4085FULL-SCALE OUTPUT VOLTAGE vs. TEMPERATURE (MAX5231)TEMPERATURE (°C)F U L L -S C A L E O U T P U T V O L T AG E (V )603510-154.09154.09204.09254.09304.09354.09404.0910-4085FULL-SCALE ERROR vs. RESISTIVE LOAD(MAX5230)RESISTIVE LOAD (k Ω)F U L L -S C A L E E R R O R (L S B )6.55.54.53.50.050.100.150.200.250.300.3502.57.5FULL-SCALE ERROR vs. RESISTIVE LOAD(MAX5231)RESISTIVE LOAD (k Ω)F U L L -S C A L E E R R O R (L S B )6.55.54.53.50.050.100.150.200.252.57.5DYNAMIC RESPONSE RISE TIME(MAX5230)MAX5230/MAX5231 toc192µs/divV OUT 500mV/divV CS 2V/div2.048V3V 010mVDYNAMIC RESPONSE RISE TIME(MAX5231)MAX5230/MAX5231 toc202µs/divV OUT 1V/divV CS 5V/div4.096V5V 010mVDYNAMIC RESPONSE FALL TIME(MAX5230)MAX5230/MAX5231 toc212µs/divV OUT 500mV/divV CS 2V/div2.048V3V 010mVMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference_______________________________________________________________________________________9DYNAMIC RESPONSE FALL TIME(MAX5231)MAX5230/MAX5231 toc222µs/divVOUT 1V/divV CS 5V/div4.096V5V 010mVANALOG CROSSTALK(MAX5230)MAX5230/MAX5231 toc23400µs/div OUTB 5mV/div AC-COUPLED OUTA 2V/div ANALOG CROSSTALK(MAX5231)MAX5230/MAX5231 toc24400µs/divOUTB 5mV/div AC-COUPLEDOUTA 5V/divDIGITAL FEEDTHROUGH(MAX5230)MAX5230/MAX5231 toc2510µs/div OUTA 1mV/div AC-COUPLED SCLK 2V/div DIGITAL FEEDTHROUGH(MAX5231)MAX5230/MAX5231 toc2610µs/div OUTA 1mV/div AC-COUPLEDSCLK 5V/div MAJOR-CARRY TRANSITION(MAX5230)MAX5230/MAX5231 toc272µs/divOUTA 100mV/div AC-COUPLEDCS 5V/divMAJOR-CARRY TRANSITION(MAX5231)MAX5230/MAX5231 toc282µs/div OUTA 100mV/div AC-COUPLEDCS 5V/divREFERENCE VOLTAGE vs. TEMPERATURE (MAX5230)TEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-151.23351.23401.23451.23501.2330-4085REFERENCE VOLTAGEvs. TEMPERATURE (MAX5231)TEMPERATURE (°C)R E F E R E N C E V O L T A G E (V )603510-152.46152.46202.46252.46302.4610-4085Typical Operating Characteristics (continued)(V DD = +3V (MAX5230), V DD = +5V (MAX5231), R L = 5k Ω, C L = 100pF, OS_ = AGND, both DACs enabled with full-scale output code, T A = +25°C, unless otherwise noted.)M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 10______________________________________________________________________________________Detailed DescriptionThe MAX5230/MAX5231 12-bit, voltage-output DACs are easily configured with a 3-wire SPI -, QSPI -,MI CROWI RE-compatible serial interface. The devices include a 16-bit data-in/data-out shift register and have an input consisting of an input register and a DAC reg-ister. I n addition, these devices employ precision trimmed internal resistors to produce a gain of 1.6384V/V, maximizing the output voltage swing, and a programmable-shutdown output impedance of 1k Ωor 200k ΩThe full-scale output voltage is 4.095V for the MAX5231 and 2.0475V for the MAX5230. These devices produce a weighted output voltage proportion-al to the digital input code with an inverted rail-to-rail ladder network (Figure 3).Internal ReferenceThe MAX5230/MAX5231 use an on-board precision bandgap reference to generate an output voltage of 1.234V (MAX5230) or 2.465V (MAX5231). With a low temperature coefficient of only 10ppm/°C, REF can source up to 100µA and is stable for capacitive loads less than 35pF.Output AmplifiersThe output amplifiers have internal resistors that pro-vide for a gain of 1.6384V/V when OS_ is connected to AGND. The output amplifiers have a typical slew rate of0.6V/µs and settle to 1/2LSB within 10µs with a load of 5k Ωin parallel with 100pF. Use the serial interface to set the shutdown output impedance of the amplifiers to 1k Ωor 200k Ω.OS_ can be used to produce an offset voltage at the output. For instance, to achieve a 1V offset, apply -1V to OS_ to produce an output range from 1V to (1V +V FS /V REF ). Note that the DAC’s output range is still lim-ited by the maximum output voltage specification.MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________11Figure 3. Simplified DAC Circuit DiagramM A X 5230/M A X 5231The 3-wire serial interface (SPI , QSPI , MI CROWI RE compatible) used in the MAX5230/MAX5231 allows for complete control of DAC operations (Figures 4 and 5).Figures 1 and 2 show the timing for the serial interface.The serial word consists of 3 control bits followed by 12data bits (MSB first) and 1 sub-bit as described in Tables 1, 2, and 3. When the 3 control bits are all zero or all 1, D11–D8 are used as additional control bits,allowing for greater DAC functionality.The digital inputs allow any of the following: loading the input register(s) without updating the DAC register(s),updating the DAC register(s) from the input register(s),or updating the input and DAC register(s) simultane-ously. The control bits and D11–D8 allow the DACs to operate independently.Send the 16-bit data as one 16-bit word (QSPI) or two 8-bit packets (SPI , MI CROWI RE), with CS low during this period. The control bits and D11–D8 determine which registers update and the state of the registers when exiting shutdown. The 3-bit control and D11–D8determine the following:•Registers to be updated•Selection of the power-down and shutdown modes The general timing diagram of Figure 1 illustrates data acquisition. Driving CS low enables the device to receive data. Otherwise the interface control circuitry is disabled. With CS low, data at DIN is clocked into the register on the rising edge of SCLK. As CS goes high,data is latched into the input and/or DAC registers,depending on the control bits and D11–D8. The maxi-mum clock frequency guaranteed for proper operation is 13.5MHz. Figure 2 depicts a more detailed timing diagram of the serial interface.3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 12______________________________________________________________________________________Power-Down and Shutdown ModesAs described in Tables 2 and 3, several serial interface commands put one or both of the DACs into shutdown mode. Shutdown modes are completely independent for each DAC. I n shutdown, the amplifier output be-comes high impedance, and OUT_ terminates to OS_through the 200k Ω(typ) gain resistors. Optionally (see Tables 2 and 3), OUT_ can have an additional termina-tion of 1k Ωto AGND.Full power-down mode shuts down the main bias gene-rator, reference, and both DACs. The shutdown impe-dance of the DAC outputs can still be controlled independently, as described in Tables 2 and 3.A serial interface command exits shutdown mode and updates a DAC register. Each DAC can exit shutdown at the same time or independently (see Tables 2 and 3). For example, if both DACs are shut down, updating the DAC A register causes DAC A to power up, while DAC B remains shut down. I n full power-down mode,powering up either DAC also powers up the main bias generator and reference. To change from full power-down to both DACs shutdown requires the waking of at least one DAC between states.When powering up the MAX5230/MAX5231 (powering V DD ), allow 400µs (max) for the output to stabilize. When exiting full power-down mode, also allow 400µs (max) for the output to stabilize. When exiting DAC shutdown mode, allow 160µs (max) for the output to stabilize.Reset Value (RSTV) andClear (CLR ) InputsDriving CLR low asynchronously forces both DAC out-puts and all the internal registers (input registers and DAC registers) for both DACs to either zero or midscale,depending on the level at RSTV. RSTV = DGND sets the zero value, and RSTV, = V DD sets the midscale value.The internal power-on reset circuit sets the DAC out-puts and internal registers to either zero or midscale when power is first applied to the device, depending on the level at RSTV as described in the preceding para-graph. The DAC outputs are enabled after power is first applied. I n order to obtain the midscale value on power-up (RSTV = V DD ), the voltage on RSTV must rise simultaneously with the V DD supply.Load DAC Input (LDAC )Asserting LDAC asynchronously loads the DAC registers from their corresponding input registers (DACs that are shut down remain shut down). The LDAC input is totally asynchronous and does not require any activity on CS ,SCLK, or DIN in order to take effect. If LDAC is asserted coincident with a rising edge of CS,which executes a serial command modifying the value of either DAC input register, then LDAC must remain asserted for at least 30ns following the CS rising edge. This requirement applies only for serial commands that modify the value of the DAC input registers.Power-Down Lockout Input (PDL )Driving PDL low disables shutdown of either DAC. When PDL is low, serial commands to shut down either DAC are ignored. When either DAC is in shutdown mode, a high-to-low transition on PDL brings the DACs and the refer-ence out of shutdown with DAC outputs set to the state prior to shutdown.MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference13Figure 4. SPI/QSPI Interface ConnectionsFigure 5. Connections for MICROWIREM A X 5230/M A X 5231Applications InformationDefinitionsIntegral Nonlinearity (INL)Integral nonlinearity (Figure 6a) is the deviation of the val-ues on an actual transfer function from a straight line.This straight line can be either a best-straight-line fit (closest approximation to the actual transfer curve) or a line drawn between the endpoints of the transfer func-tion, once offset and gain errors have been nullified. For a DAC, the deviations are measured at every single step.Differential Nonlinearity (DNL)Differential nonlinearity (Figure 6b) is the difference between an actual step height and the ideal value of 1LSB. If the magnitude of the DNL is less than 1LSB, the DAC guarantees no missing codes and is monotonic.Offset ErrorThe offset error (Figure 6c) is the difference between the ideal and the actual offset point. For a DAC, the off-set point is the step value when the digital input is zero.This error affects all codes by the same amount and can usually be compensated for by trimming.Gain ErrorGain error (Figure 6d) is the difference between the ideal and the actual full-scale output voltage on the transfer curve, after nullifying the offset error. This error alters the slope of the transfer function and corre-sponds to the same percentage error in each step.Settling TimeThe settling time is the amount of time required from the start of a transition, until the DAC output settles to its new output value within the converter’s specified accuracy.3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 14Digital feedthrough is noise generated on the DAC’s output when any digital input transitions. Proper board layout and grounding significantly reduce this noise,but there is always some feedthrough caused by the DAC itself.Unipolar OutputFigure 7 shows the MAX5230/MAX5231 configured for unipolar, rail-to-rail operation. The MAX5231 produces a 0 to 4.095V output, while the MAX5230 produces 0 to 2.0475V output. Table 4 lists the unipolar output codes.Digital Calibration and Threshold SelectionFigure 8 shows the MAX5230/MAX5231 in a digital cali-bration application. With a bright light value applied to the photodiode (on), the DAC is digitally ramped until it trips the comparator. The microprocessor (µP) stores this “high” calibration value. Repeat the process with a dim light (off) to obtain the dark current calibration. The µP then programs the DAC to set an output voltage at the midpoint of the two calibrated values. Applications include tachometers, motion sensing, automatic read-ers, and liquid clarity analysis.Sharing a Common DIN LineSeveral MAX5230/MAX5231s may share one common DIN signal line (Figure 9). In this configuration, the data bus is common to all devices; data is not shifted through a daisy-chain. The SCLK and DIN lines are shared by all devices, but each IC needs its own dedicated CS line.Daisy-Chaining DevicesAny number of MAX5230/MAX5231s can be daisy-chained by connecting the serial data output (DOUT) of one device to the digital input (DI N) of the following device in the chain (Figure 10).MAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________15M A X 5230/M A X 5231Power-Supply and BypassingConsiderationsOn power-up, the input and DAC registers are cleared to either zero (RSTV = DGND) or midscale (RSTV =V DD ). Bypass V DD with a 4.7µF capacitor in parallel with a 0.1µF capacitor to AGND, and bypass V DD with a 0.1µF capacitor to DGND. Minimize lead lengths to reduce lead inductance.Grounding and Layout ConsiderationsDigital and AC transient signals on AGND or DGND can create noise at the output. Connect AGND and DGND to the highest quality ground available. Use propergrounding techniques, such as a multilayer board with a low-inductance ground plane or star connect all ground return paths back to the MAX5230/MAX5231 AGND.Carefully lay out the traces between channels to reduce AC cross-coupling and crosstalk. Wire-wrapped boards and sockets are not recommended. I f noise becomes an issue, shielding may be required.Chip InformationTRANSISTOR COUNT: 4745PROCESS: BiCMOS3V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference 16______________________________________________________________________________________Figure 9. Multiple MAX5230/MAX5231s Sharing a Common DIN LineMAX5230/MAX52313V/5V , 12-Bit, Serial Voltage-Output Dual DACswith Internal Reference______________________________________________________________________________________17Functional DiagramPackage InformationFor the latest package outline information and land patterns, go to /packages .M A X 5230/M A X 52313V/5V , 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.18____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。