C语言 栈 求表达式
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
一、设计思想计算算术表达式可以用两种方法实现:1.中缀转后缀算法此算法分两步实现:先将算术表达式转换为后缀表达式,然后对后缀表达式进行计算.具体实现方法如下:(1)中缀转后缀需要建一个操作符栈op和一个字符数组exp,op栈存放操作符,字符数组用来存放转换以后的后缀表达式。
首先,得到用户输入的中缀表达式,将其存入str数组中。
对str数组逐个扫描,如果是数字或小数点,则直接存入exp数组中,当扫描完数值后,在后面加一个#作为分隔符。
如果是操作符,并且栈为空直接入栈,如果栈不为空,与栈顶操作符比较优先等级,若比栈顶优先级高,入栈;如果比栈顶优先级低或相等,出栈将其操作符存到exp数组中,直到栈顶元素优先等级低于扫描的操作符,则此操作符入栈;如果是左括号,直接入栈,如果是右括号,出栈存入exp数组,直到遇到左括号,左括号丢掉。
然后继续扫描下一个字符,直到遇到str中的结束符号\0,扫描结束。
结束后看op栈是否为空,若不为空,继续出栈存入exp数组中,直到栈为空.到此在exp数组最后加结束字符\0。
我们就得到了后缀表达式。
(2)后缀表达式计算此时需要一个数值栈od来存放数值。
对exp数组进行逐个扫描,当遇到数字或小数点时,截取数值子串将其转换成double类型的小数,存入od栈中。
当遇到操作符,从栈中取出两个数,进行计算后再放入栈中。
继续扫描,知道扫描结束,此时值栈中的数值就是计算的结果,取出返回计算结果。
2。
两个栈实现算法此算法需要两个栈,一个值栈od,一个操作符栈op。
将用户输入的数学表达式存入str数组中,对其数组进行逐个扫描。
当遇到数字或小数点,截取数值子串,将其转换成double类型的数值存入od栈中;当遇到左括号,直接入op栈;遇到右括号,op栈出栈,再从值栈od中取出两个数值,计算将其结果存入值栈中,一直进行此操作,直到操作符栈栈顶为左括号,将左括号丢掉。
如果遇到操作符,若op栈为空,直接入栈;若栈不为空,与栈顶元素比较优先等级,若比栈顶操作符优先等级高,直接入op栈,如果低于或等于栈顶优先等级,op栈出栈,再从值栈中取出两个数值,计算将其结果存入值栈中,一直进行此操作,直到栈顶优先等级低于扫描的操作符等级,将此操作符入op 栈。
c语言栈计算表达式在计算机科学中,栈是一种非常重要的数据结构,被广泛应用于编译器、操作系统、网络通信等领域。
在本文中,我们将探讨如何使用C语言实现栈来计算表达式。
表达式是由操作数、操作符和括号组成的数学式子,例如:3 + 4 * 2 / (1 - 5)。
在计算表达式时,我们需要遵循一定的计算规则,如乘除法优先于加减法,括号内的计算优先于括号外的计算等。
我们可以使用栈来实现对表达式的计算。
具体步骤如下:1. 定义两个栈:一个操作数栈和一个操作符栈。
2. 从左到右遍历表达式的每一个字符,如果是数字则将其压入操作数栈;如果是操作符则将其压入操作符栈,并根据运算规则进行计算。
3. 在遍历完成后,操作符栈中可能还有未计算的操作符,需要继续计算,直到操作符栈为空。
4. 最终操作数栈中只剩下一个数,即为表达式的计算结果。
下面是一段示例代码,用于计算简单的表达式:```#include <stdio.h>#include <stdlib.h>#include <ctype.h>#define MAX_SIZE 100typedef struct {int data[MAX_SIZE];int top;} Stack;void initStack(Stack *s) {s->top = -1;}void push(Stack *s, int item) { if (s->top == MAX_SIZE - 1) { printf('Stack Overflow');exit(1);}s->data[++s->top] = item;}int pop(Stack *s) {if (s->top == -1) {printf('Stack Underflow');exit(1);}return s->data[s->top--];}int isEmpty(Stack *s) {return s->top == -1;}int isFull(Stack *s) {return s->top == MAX_SIZE - 1;}int peek(Stack *s) {return s->data[s->top];}int evaluate(char *expr) {Stack operandStack, operatorStack; initStack(&operandStack);initStack(&operatorStack);int i = 0;while (expr[i] != '0') {if (isdigit(expr[i])) {int num = 0;while (isdigit(expr[i])) {num = num * 10 + (expr[i] - '0'); i++;}push(&operandStack, num);}else if (expr[i] == '(') {push(&operatorStack, expr[i]);i++;}else if (expr[i] == ')') {while (!isEmpty(&operatorStack) && peek(&operatorStack) != '(') {int op2 = pop(&operandStack);int op1 = pop(&operandStack);char op = pop(&operatorStack);int result;switch (op) {case '+':result = op1 + op2;break;case '-':result = op1 - op2;break;case '*':result = op1 * op2;break;case '/':result = op1 / op2;break;}push(&operandStack, result);}pop(&operatorStack);i++;}else if (expr[i] == '+' || expr[i] == '-' || expr[i] == '*' || expr[i] == '/') {while (!isEmpty(&operatorStack) &&peek(&operatorStack) != '(' &&((expr[i] == '*' || expr[i] == '/') || (expr[i] == '+' || expr[i] == '-') &&(peek(&operatorStack) == '*' || peek(&operatorStack) == '/'))) {int op2 = pop(&operandStack);int op1 = pop(&operandStack);char op = pop(&operatorStack);int result;switch (op) {case '+':result = op1 + op2;break;case '-':result = op1 - op2;break;case '*':result = op1 * op2;break;case '/':result = op1 / op2;break;}push(&operandStack, result); }push(&operatorStack, expr[i]); i++;}else {i++;}}while (!isEmpty(&operatorStack)) { int op2 = pop(&operandStack);int op1 = pop(&operandStack);char op = pop(&operatorStack);int result;switch (op) {case '+':result = op1 + op2;break;case '-':result = op1 - op2;break;case '*':result = op1 * op2;break;case '/':result = op1 / op2;break;}push(&operandStack, result);}return pop(&operandStack);}int main() {char expr[MAX_SIZE];printf('Enter an expression: ');fgets(expr, MAX_SIZE, stdin);int result = evaluate(expr);printf('Result = %d', result);return 0;}```在这段代码中,我们定义了一个栈结构体,包含了栈的数据和栈顶指针。
c语言栈实验总结在实验中,我们使用C语言编写了栈的相关代码,并进行了多个测试和验证。
通过这些实验,我们对栈的基本特征、操作和应用有了更深入的理解。
我们需要明确栈的定义和特点。
栈是一种具有特定限制的线性数据结构,它的特点是“后进先出”(Last In First Out,LIFO)。
这意味着在栈的操作中,最后一个进入栈的元素将首先被访问和操作,而之前的元素则需要等待。
在实验中,我们首先实现了栈的基本操作,包括创建栈、入栈、出栈和判断栈是否为空。
通过这些操作,我们可以有效地管理栈中的元素,并根据需要进行添加和删除。
接下来,我们进行了一系列的测试和验证,以确保栈的操作和功能的正确性。
我们通过不同的测试用例,模拟了各种情况下的栈操作,包括正常情况下的入栈和出栈、栈的空和满状态的判断,以及异常情况下的错误处理。
通过这些测试,我们可以验证栈的实现是否符合预期,并检查代码中是否存在潜在的问题。
在实验过程中,我们还探讨了栈的应用场景和实际用途。
栈的一个典型应用是函数调用过程中的函数调用栈。
当一个函数被调用时,其局部变量和返回地址等信息被压入栈中,当函数执行完毕后,这些信息再从栈中被弹出,使得程序可以正确地返回到原来的调用点。
通过理解函数调用栈的原理和实现,我们可以更好地理解函数调用的工作原理,并能更好地处理函数之间的交互和数据传递。
栈还可以用于解决一些特定的问题,如括号匹配、逆波兰表达式求值等。
通过使用栈,我们可以方便地处理这些问题,并提高程序的效率和可读性。
总结来说,通过C语言栈的实验,我们深入了解了栈的概念、操作和应用,掌握了栈的基本原理和使用方法。
在实验中,我们通过编写代码、进行测试和验证,验证了栈的正确性,并探讨了栈的应用场景和实际用途。
通过这些实验,我们不仅提高了对栈的理解和掌握,还培养了我们的编程能力和问题解决能力。
希望通过这些实验,我们可以更好地应用栈的知识,解决实际问题,并在以后的学习和工作中取得更好的成果。
c语言实现中缀表达式的计算C语言实现中缀表达式的计算一、前言在计算机科学领域,中缀表达式是最容易理解的数学表达式,也是人们最常用的表达方式。
但对于计算机而言,中缀表达式并不方便计算。
因此,在进行表达式计算时,需要将中缀表达式转化为其它形式,例如前缀表达式和后缀表达式。
在本篇文章里,我们将介绍如何使用C语言实现中缀表达式的计算。
二、中缀表达式的转换在C语言中,实现中缀表达式的计算,通常需要先将中缀表达式转换为后缀表达式。
中缀表达式的转换过程主要分为以下三个步骤:1. 初始化一个栈,存储操作符。
2. 遍历中缀表达式,根据操作符的运算优先级将其从中缀表达式转化为后缀表达式。
3. 根据后缀表达式,使用栈实现表达式的计算。
其中,第二步是最关键的一个步骤。
我们可以通过以下方法进行转换:1. 将操作数直接输出。
2. 如果遇到运算符,先将栈中所有优先级大于等于该运算符的操作符弹出,再将该运算符入栈。
3. 如果遇到左括号,直接入栈。
4. 如果遇到右括号,将栈中的元素一直弹出到遇到左括号为止。
例如,对于中缀表达式2 + 3 * 4 - 5,转换为后缀表达式的过程如下所示:中缀表达式:2 + 3 * 4 - 5转换为后缀表达式:2 3 4 * + 5 -三、代码实现现在,我们已经掌握了中缀表达式的转换方法,接下来,我们就可以实现C语言代码了。
具体实现如下:#include <stdio.h>#include <stdlib.h>#include <string.h>// 定义运算符栈char op_stack[100];// 定义数字栈int num_stack[100];// 定义存储后缀表达式的数组char postfix[100];// 定义存储后缀表达式的栈顶指针int postIndex = 0;// 获取优先级int getPriority(char op){switch(op){case '+':case '-':return 1;case '*':case '/':return 2;case '(':case ')':return 0;}return -1;}// 中缀表达式转换为后缀表达式void infixToPostfix(char* infix){// 定义中缀表达式的指针char* ptr = infix;// 定义操作符栈顶指针int opTop = 0;while(*ptr != '\0'){if(*ptr >= '0' && *ptr <= '9') // 如果是数字,直接存入后缀表达式{postfix[postIndex++] = *ptr;}else if(*ptr == '(') // 如果是左括号,先入栈{op_stack[opTop++] = *ptr;}else if(*ptr == ')') // 如果是右括号,将栈中元素全部弹出{while(op_stack[opTop-1] != '('){postfix[postIndex++] = op_stack[--opTop];}opTop--;}else // 如果是运算符{while(opTop > 0 && getPriority(op_stack[opTop-1]) >= getPriority(*ptr)) // 将栈中优先级大于等于当前运算符的元素全部弹出{postfix[postIndex++] = op_stack[--opTop];}op_stack[opTop++] = *ptr; // 将当前运算符入栈}ptr++;}while(opTop > 0) // 将栈中剩余运算符全部弹出{postfix[postIndex++] = op_stack[--opTop];}}// 计算后缀表达式int calculate(char* postfix){// 定义后缀表达式的指针char* ptr = postfix;// 定义数字栈顶指针int numTop = 0;while(*ptr != '\0'){if(*ptr >= '0' && *ptr <= '9') // 如果是数字,直接入栈{num_stack[numTop++] = *ptr - '0';}else // 如果是运算符{int num2 = num_stack[--numTop];int num1 = num_stack[--numTop];switch(*ptr){case '+':num_stack[numTop++] = num1 + num2;break;case '-':num_stack[numTop++] = num1 - num2;break;case '*':num_stack[numTop++] = num1 * num2;break;case '/':num_stack[numTop++] = num1 / num2;break;}}ptr++;}return num_stack[0];}// 测试函数void test(char* infix){printf("中缀表达式:%s\n", infix);infixToPostfix(infix);printf("后缀表达式:%s\n", postfix);int result = calculate(postfix);printf("计算结果:%d\n", result);printf("--------------------------\n");}// 主函数int main(){test("2 + 3 * 4 - 5");test("3 + 4 * 2 / (1 - 5) ^ 2");return 0;}四、总结通过以上代码实现,我们可以看到中缀表达式的计算过程,其实就是将中缀表达式转化为后缀表达式的过程,并使用栈进行计算。
c语言入栈出栈代码C语言是一种广泛使用的编程语言,它具有高效、简洁、灵活等特点,因此在计算机科学领域中得到了广泛的应用。
在C语言中,入栈出栈是一种非常重要的操作,它可以帮助我们实现很多有用的功能。
本文将介绍C语言中的入栈出栈操作,并提供一些示例代码,帮助读者更好地理解这些操作。
一、什么是栈在介绍入栈出栈操作之前,我们需要先了解一下什么是栈。
栈是一种数据结构,它具有后进先出(LIFO)的特点。
也就是说,最后进入栈的元素最先被取出。
栈可以用数组或链表来实现,但是数组实现的栈比较简单,因此我们在本文中只介绍数组实现的栈。
二、栈的基本操作栈的基本操作包括入栈和出栈。
入栈操作将一个元素压入栈中,出栈操作将栈顶元素弹出。
下面是栈的基本操作的代码实现:```c#define MAXSIZE 100 // 栈的最大容量typedef struct {int data[MAXSIZE]; // 栈的数据int top; // 栈顶指针} Stack;// 初始化栈void initStack(Stack *s) {s->top = -1;}// 判断栈是否为空int isEmpty(Stack *s) {return s->top == -1;}// 判断栈是否已满int isFull(Stack *s) {return s->top == MAXSIZE - 1; }// 入栈操作void push(Stack *s, int x) {if (isFull(s)) {printf("Stack is full.\n");return;}s->top++;s->data[s->top] = x;}// 出栈操作int pop(Stack *s) {if (isEmpty(s)) {printf("Stack is empty.\n");return -1;}int x = s->data[s->top];s->top--;return x;}```在上面的代码中,我们定义了一个结构体Stack,它包含一个数组data和一个指针top。
栈是一种常见的数据结构,用于解决许多算法和数据处理问题。
在编程中,栈通常用于处理表达式求值问题。
本篇文章将介绍如何使用栈解决表达式求值问题,并给出对应的C语言代码。
1. 表达式求值问题介绍表达式求值是指计算一个数学表达式的值,通常涉及到四则运算、括号和优先级等概念。
给定一个表达式“3 + 4 * 2”,我们需要得到其计算结果为11。
在编程中,需要将该表达式转换为计算机可识别的形式,并使用算法进行求值。
2. 中缀表达式、前缀表达式和后缀表达式在计算机中常见的表达式有三种形式:中缀表达式、前缀表达式和后缀表达式。
其中,中缀表达式是通常人们在日常生活中使用的表达式形式,如“3 + 4 * 2”。
前缀表达式是运算符位于操作数之前的形式,例如“+ 3 * 4 2”。
后缀表达式则是运算符位于操作数之后的形式,例如“3 4 2 * +”。
3. 使用栈解决表达式求值问题在解决表达式求值问题时,我们可以利用栈的特性来简化计算过程。
具体步骤如下:3.1 将中缀表达式转换为后缀表达式我们需要将中缀表达式转换为后缀表达式,这样可以简化表达式的计算顺序。
具体转换规则如下:- 从左至右扫描中缀表达式的每个数字或符号。
- 如果是操作数,则直接输出。
- 如果是运算符,则弹出栈中所有优先级大于或等于该运算符的运算符,并将其压入栈中,然后压入该运算符。
- 如果是括号,则根据括号的不同情况进行处理。
通过以上规则,我们可以将中缀表达式转换为后缀表达式。
3.2 计算后缀表达式的值得到后缀表达式后,我们可以利用栈来计算其值。
具体步骤如下:- 从左至右扫描后缀表达式的每个数字或符号。
- 如果是操作数,则压入栈中。
- 如果是运算符,则弹出栈中的两个操作数进行相应的运算,并将结果压入栈中。
- 继续扫描直到表达式结束,栈中的值即为所求结果。
通过以上步骤,我们可以使用栈来解决表达式求值问题。
4. C语言代码实现以下是使用C语言实现栈来解决表达式求值问题的代码示例:```c#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct {int top;int capacity;int* array;} Stack;Stack* createStack(int capacity) {Stack* stack = (Stack*)malloc(sizeof(Stack));stack->capacity = capacity;stack->top = -1;stack->array = (int*)malloc(stack->capacity * sizeof(int)); return stack;}int isFull(Stack* stack) {return stack->top == stack->capacity - 1; }int isEmpty(Stack* stack) {return stack->top == -1;}void push(Stack* stack, int item) {if (isFull(stack)) return;stack->array[++stack->top] = item;}int pop(Stack* stack) {if (isEmpty(stack)) return -1;return stack->array[stack->top--];}int evaluatePostfix(char* exp) {Stack* stack = createStack(strlen(exp)); for (int i = 0; exp[i]; i++) {if (isdigit(exp[i])) {push(stack, exp[i] - '0');} else {int val1 = pop(stack);int val2 = pop(stack);switch (exp[i]) {case '+':push(stack, val2 + val1); break;case '-':push(stack, val2 - val1); break;case '*':push(stack, val2 * val1); break;case '/':push(stack, val2 / val1); break;}}}return pop(stack);}int m本人n() {char exp[] = "34*2+";printf("The value of s is d\n", exp, evaluatePostfix(exp));return 0;}```以上代码实现了栈的基本功能,并利用栈来计算后缀表达式的值。
一、设计思想两种算法首先都要建立两个栈,一个是存放操作数的数栈OdStack,一个是存放运算符的符栈OpStack。
数栈采用double型的用来存放浮点数,符栈采用char型的用来存放运算符,由于考虑到运算符有优先级的问题,所以事先做了一个Type用来存储运算符的优先级。
栈建立好了之后做栈的相关操作,初始化栈,入栈,出栈,看栈顶。
其中入栈要判满,出栈和看栈顶要判空。
中缀转后缀再计算的算法。
此算法的基本思路是先将中缀表达式转换成后缀表达式,之后再利用后缀表达式的算法对表达式进行计算。
首先,用一个char数组将中缀表达式读入,对数组中的每一个元素进行处理,区分哪些是数,哪些是运算符。
如果是数元素(或小数点元素),则依次存入用来存储后缀表达式的char数组,直到一个整合数存完之后用空格将其与后面的元素分开。
如果是运算符元素,则根据当前运算符的优先级和栈里面的运算符的优先级进行处理。
如果栈内元素的优先级小于当前元素的优先级或者栈内为空,则将当前运算符入栈;如果栈内元素的优先级大于等于当前元素的,则依次将出栈元素存入后缀表达式,并用空格将其与后面的元素分开,直到栈内元素的优先级小或者栈内为空。
对于左括号来说,无条件进栈,并只在有右括号出现的时候才有可能出栈。
对于右括号来说,无条件让栈内元素出栈,直到左括号出栈。
依次将每个元素进行处理直到中缀表达式索引完毕。
至此,已经实现了将中缀表达式转换成了后缀表达式,在数组的最后加上结束符以便下一步的调用。
第二步,读出后缀表达式并进行计算。
如果索引到空格则将索引标志后推1位。
之后要先对char型的数字元素进行整合,从后缀表达式中依次取出数字元素(连同小数点)存入一个新的char型数组,直到一整个数取完后通过atof函数将char型转换成浮点型存入数栈,并将新数组初始化用来存储下一个数。
如果是索引到运算符,则在数栈中出栈两个数字与当前运算符进行运算,先出栈的数字放在运算符后面,后出栈的数字放在运算符的前面,将运算以后的结果再次存入数栈。
C语⾔简单计算器原理——表达式求值(采⽤逆波兰表达式和栈
结合)
表达式的求解的关键是将其转换成逆波兰表达式(即后缀表达式,如1+2*3它的逆波兰表达式为123*+),在后缀表达式中已经考虑了运算符的优先级,
没有括号,只有操作数和运算符。
算术表达式转换成后缀表达式⽅法如下:
依次从键盘输⼊表达式的字符ch,对于每个ch:
(1)若ch为数字则直接将其放⼊后缀数组exp中并以#号标记数值串结束。
(2)若ch为"(",则直接将其压⼊字符栈op中。
(3)若ch为")",则将栈中"("以前的字符依次全部删除并将其放⼊后缀数组exp中,然后再将字符ch放⼊字符栈op中。
(4)若ch为"+"."-",则将栈中"("以前的运算符依次全部删除并将其放⼊后缀数组exp中,然后再将ch放⼊op栈中。
(5)若ch为"*"."/",则将栈顶连续的"*"."/"删除,并放⼊后缀数组exp中,然后将ch放⼊op栈中。
(6)若字符串str扫描完毕,则将栈中所有运算符删除并放⼊后缀数组exp,最后在后缀数组exp中便可得到后缀表达式。
在对后缀表达式求值时要⽤到⼀个数值栈st,在后缀数组exp中从头开始扫描,若是数字则将其放⼊数值栈中,
若遇到字符就进⾏两次退栈,并将运算结果再放⼊栈中,如此重复下去,最后当后缀数组扫描完后数值栈st的栈顶元素便是所要求的表达式的值。
数据结构课程设计报告栈的应用:表达式求值的设计专业学生姓名班级学号指导教师 徐燕萍完成日期目录1设计内容 (1)2设计分析2.1系统需求分析 (1)2.1.1系统目标 (1)2.1.2主体功能 (1)2.2系统概要设计 (1)2.2.1系统的功能模块划分 (1)2.2.2系统流程图 (2)3设计实践3.1基本分析 (3)3.2中缀表达式求值 (4)3.3后缀表达式求值 (5)3.4中缀表达式转换成后缀表达式 (6)4测试方法4.1基本测试 (7)4.2拓展测试 (7)4.3容错测试 (8)5程序运行效果 (7)6设计心得 (8)7附录:源代码 (10)栈的应用:表达式求值的设计1 设计内容设计一个表达式求值的程序。
该程序必须可以接受包含(,),+,-,*,/,%,和^(求幂运算符,a^b=a b)的中缀表达式,并求出结果。
如果表达式正确,则输出表达式的结果;如果表达式非法,则输出错误信息。
2 设计分析2.1系统需求分析2.1.1系统目标利用栈设计一个程序,该程序能够用于表达式求值,程序将读入的中缀表达式转换为后缀表达式,然后读取后缀表达式,输出结果。
输入要求:程序从“input.txt”文件中读取信息,在这个文件中如果有多个中缀表达式,则每个表达式独占一行,程序的读取操作在文件的结尾处停止。
输出要求:对于每一个表达式,将其结果放在“output.txt”文件的每一行中。
这些结果可能是值(精确到小数点后两位),也可能是错误信息“ERROR IN INFIX NOTATION”。
2.1.2 主体功能能够处理以字符序列的形式输入的不含变量的实数表达式,正确处理负数与小数,判断表达式是否语法正确(包含分母不能为零的情况),正确实现对算术四则混合运算表达式的求值,能够将计算中遇到的问题和结果以文件的形式予以存储。
2.2系统概要设计2.2.1系统的功能模块划分1.判断操作数的函数isnum()判断当前所指字符是否属于数字,是就返回‘1’,不是就返回‘0’。
栈是一种后进先出(LIFO)的数据结构,在C语言中通常使用数组或链表来实现。
以下是一些关于栈的C语言题目:
1. 栈的定义和基本操作:定义一个栈数据结构,实现推入(push)、弹出(pop)、查看栈顶(peek)等基本操作。
2. 栈的应用:使用栈解决括号匹配问题,例如给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,判断字符串是否有效。
3. 逆波兰表达式求值:给定一个逆波兰表达式,利用栈计算表达式的值。
4. 浏览器前进后退功能的模拟:使用两个栈来模拟浏览器的前进和后退功能。
5. 最小值栈:设计一个栈,除了正常的push/pop操作外,还支持查询当前栈中的最小元素。
6. 有效的括号序列:给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,判断字符串是否为有效的括号序列。
7. 用栈实现队列:仅使用栈来实现队列的操作,如enqueue、dequeue等。
8. 括号的最大嵌套深度:给定一个只包含'('、')'、'{'、'}'、'['、']'的字符串,求出合法括号序列的最大嵌套深度。
9. 逆序对问题:给定一个数组,找出所有逆序对。
10. 汉诺塔问题:使用栈来解决经典的汉诺塔问题。
c语言中缀、后缀算术表达式求值用栈实现下面是用栈实现中缀表达式求值的示例代码:#include <stdio.h>#include <stdlib.h>#include <ctype.h>#define MAX_STACK_SIZE 100typedef struct {int top;int data[MAX_STACK_SIZE];} Stack;void init(Stack *s) {s->top = -1;}int is_empty(Stack *s) {return s->top == -1;}int is_full(Stack *s) {return s->top == MAX_STACK_SIZE - 1;}void push(Stack *s, int x) {if (is_full(s)) {printf("Error: stack overflow\n");exit(EXIT_FAILURE);}s->data[++s->top] = x;}int pop(Stack *s) {if (is_empty(s)) {printf("Error: stack underflow\n");exit(EXIT_FAILURE);}return s->data[s->top--];}int peek(Stack *s) {if (is_empty(s)) {printf("Error: stack underflow\n");exit(EXIT_FAILURE);}return s->data[s->top];}int precedence(char op) {switch (op) {case '+':case '-':return 1;case '*':case '/':return 2;default:return 0;}}int evaluate(int op1, int op2, char op) {switch (op) {case '+':return op1 + op2;case '-':return op1 - op2;case '*':return op1 * op2;case '/':return op1 / op2;default:printf("Error: invalid operator\n");exit(EXIT_FAILURE);}}int evaluate_infix(char *expr) {Stack op_stack, val_stack;init(&op_stack);init(&val_stack);while (*expr != '\0') {if (isdigit(*expr)) {int val = 0;while (isdigit(*expr)) {val = val * 10 + (*expr - '0');expr++;}push(&val_stack, val);} else if (*expr == '+' || *expr == '-' || *expr == '*' || *expr == '/') {while (!is_empty(&op_stack) && precedence(peek(&op_stack)) >= precedence(*expr)) {int op2 = pop(&val_stack);int op1 = pop(&val_stack);char op = pop(&op_stack);push(&val_stack, evaluate(op1, op2, op));}push(&op_stack, *expr);expr++;} else if (*expr == '(') {push(&op_stack, '(');expr++;} else if (*expr == ')') {while (peek(&op_stack) != '(') {int op2 = pop(&val_stack);int op1 = pop(&val_stack);char op = pop(&op_stack);push(&val_stack, evaluate(op1, op2, op));}pop(&op_stack);expr++;} else {printf("Error: invalid character\n");exit(EXIT_FAILURE);}}while (!is_empty(&op_stack)) {int op2 = pop(&val_stack);int op1 = pop(&val_stack);char op = pop(&op_stack);push(&val_stack, evaluate(op1, op2, op));}return peek(&val_stack);}int main() {char expr[100];printf("Enter infix expression: ");scanf("%[^\n]", expr);printf("Result = %d\n", evaluate_infix(expr));return 0;}下面是用栈实现后缀表达式求值的示例代码:#include <stdio.h>#include <stdlib.h>#include <ctype.h>#define MAX_STACK_SIZE 100typedef struct {int top;int data[MAX_STACK_SIZE];} Stack;void init(Stack *s) {s->top = -1;}int is_empty(Stack *s) {return s->top == -1;}int is_full(Stack *s) {return s->top == MAX_STACK_SIZE - 1;}void push(Stack *s, int x) {if (is_full(s)) {printf("Error: stack overflow\n");exit(EXIT_FAILURE);}s->data[++s->top] = x;}int pop(Stack *s) {if (is_empty(s)) {printf("Error: stack underflow\n");exit(EXIT_FAILURE);}return s->data[s->top--];}int peek(Stack *s) {if (is_empty(s)) {printf("Error: stack underflow\n");exit(EXIT_FAILURE);}return s->data[s->top];}int evaluate(int op1, int op2, char op) {switch (op) {case '+':return op1 + op2;case '-':return op1 - op2;case '*':return op1 * op2;case '/':return op1 / op2;default:printf("Error: invalid operator\n");exit(EXIT_FAILURE);}}int evaluate_postfix(char *expr) {Stack stack;init(&stack);while (*expr != '\0') {if (isdigit(*expr)) {int val = 0;while (isdigit(*expr)) {val = val * 10 + (*expr - '0');expr++;}push(&stack, val);} else if (*expr == '+' || *expr == '-' || *expr == '*' || *expr == '/') { int op2 = pop(&stack);int op1 = pop(&stack);push(&stack, evaluate(op1, op2, *expr));expr++;} else {printf("Error: invalid character\n");exit(EXIT_FAILURE);}}return peek(&stack);}int main() {char expr[100];printf("Enter postfix expression: ");scanf("%[^\n]", expr);printf("Result = %d\n", evaluate_postfix(expr));return 0;}。
数据结构(C语言版)课程设计报告表达式求值说明书XX大学数据结构课程设计说明书题目:表达式求值院系:计算机科学与工程学院专业班级:计算机班学号:学生姓名:指导教师:2021年X月X日XX大学课程设计(论文)任务书计算机科学与工程学院学号学生姓名专业(班级)设计题目表达式求值设计技术参数系统平台:Windows7/WindowsXP开发工具:VC++6.0设计要求(1)能够计算的运算符包括:加、减、乘、除、圆括号。
(2)能够计算的数要求在实数范围内。
(3)能执行多重括号嵌套运算。
(4)对于异常表达式给出错误提示。
工作量课程设计报告要求不少于3000字。
源程序要求不少于300行工作计划2021.11.21-12.01根据课程设计大纲的要求,查找相关资料,完成需求分析;2021.12.02-12.16进行系统的概要设计;2021.12.17-12.31进行系统的详细设计和源代码的书写;2021.01.01-01.17对系统进行调试分析,写出课程设计报告。
参考资料[1]何钦铭主编.C语言程序设计.北京:高等教育出版社,2021.[2]谭浩强编著.C程序设计(第四版).北京:清华大学出版社,2021.[3]严蔚敏,吴伟民编著.数据结构(C语言版)北京:清华大学出版社,2021.[4]严蔚敏,吴伟民编著.数据结构题集北京:清华大学出版社,2021.指导教师签字教研室主任签字2021年X月X日学生姓名:学号:专业班级:课程设计题目:表达式求值指导教师评语:成绩:指导教师:年月日XX大学课程设计(论文)成绩评定表目录1需求分析12概要设计12.1设计思路12.2存储结构设计12.3功能模块设计13详细设计14运行与测试15总结1参考文献2(要求:给出一级目录和二级目录,宋体,四号字,1.5倍行距,页码使用罗马数字,居中)(报告正文部分):(要求:正文部分一律用小四号字,宋体,行距20磅。
一级标题靠左,加粗。
二级大标题靠左,不加粗。
c语言顺序栈实现表达式求值下面是C语言顺序栈实现表达式求值的代码示例:```c#include <stdio.h>#include <stdlib.h>#define MAX_EXPR_LEN 100typedef struct {double* data; // 存储数据的数组指针int top; // 栈顶指针int maxSize; // 栈的最大容量} Stack;// 初始化栈void init(Stack* stack, int maxSize) {stack->data = (double*)malloc(maxSize * sizeof(double));stack->top = -1;stack->maxSize = maxSize;}// 判断栈是否为空int isEmpty(Stack* stack) {return stack->top == -1;}// 判断栈是否已满int isFull(Stack* stack) {return stack->top == stack->maxSize - 1;}// 入栈void push(Stack* stack, double value) {if (isFull(stack)) {printf("Stack is full.\n");return;}stack->data[++stack->top] = value;}// 出栈double pop(Stack* stack) {if (isEmpty(stack)) {printf("Stack is empty.\n");return -1;}return stack->data[stack->top--];}// 获取栈顶元素double top(Stack* stack) {if (isEmpty(stack)) {printf("Stack is empty.\n");return -1;}return stack->data[stack->top];}// 运算符优先级比较int priority(char op) {switch(op) {case '+':case '-':return 1;case '*':case '/':return 2;case '(':case ')':return 0;default:return -1;}}// 执行操作double operate(double operand1, double operand2, char op) { switch(op) {case '+':return operand1 + operand2;case '-':return operand1 - operand2;case '*':return operand1 * operand2;case '/':return operand1 / operand2;default:return 0;}}// 表达式求值double evaluateExpression(char* expression) {Stack operandStack; // 操作数栈Stack operatorStack; // 运算符栈init(&operandStack, MAX_EXPR_LEN);init(&operatorStack, MAX_EXPR_LEN);int i = 0;while (expression[i] != '\0') {if (expression[i] >= '0' && expression[i] <= '9') {// 处理数字double num = 0;while (expression[i] >= '0' && expression[i] <= '9') {num = num * 10 + (expression[i] - '0');i++;}push(&operandStack, num);} else if (expression[i] == '+' || expression[i] == '-' || expression[i] == '*' || expression[i] == '/') {// 处理运算符while (!isEmpty(&operatorStack) && priority(expression[i]) <= priority(top(&operatorStack))) {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}push(&operatorStack, expression[i]);i++;} else if (expression[i] == '(') {// 处理左括号push(&operatorStack, expression[i]);i++;} else if (expression[i] == ')') {// 处理右括号while (top(&operatorStack) != '(') {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}// 弹出左括号pop(&operatorStack);i++;} else {i++;}}// 处理剩余的运算符while (!isEmpty(&operatorStack)) {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}double result = pop(&operandStack);return result;}int main() {char expression[MAX_EXPR_LEN];printf("请输入表达式:");fgets(expression, sizeof(expression), stdin);double result = evaluateExpression(expression);printf("表达式的结果为:%lf\n", result);return 0;}```使用该代码,可以实现对不带括号的四则运算表达式进行求值。
c语言中缀、后缀算术表达式求值用栈实现#include<stdio.h>#include<string.h>#include<malloc.h>#include<stdlib.h>#define MaxSize 50typedef struct{float data[MaxSize];int top;}OpStack;typedef struct{char data[MaxSize];int top;}SeqStack;void InitStack(SeqStack *S);//初始化栈int StackEmpty(SeqStack S);//判断栈是否为空int PushStack(SeqStack *S,char e);//进栈int PopStack(SeqStack *S,char *e);//删除栈顶元素int GetTop(SeqStack S,char *e);//取栈顶元素void TranslateExpress(char s1[],char s2[]);//将中缀表达式转化为后缀表达式float ComputeExpress(char s[]);//计算后缀表达式的值void main(){char a[MaxSize],b[MaxSize];float f;printf("请输入一个算术表达式:\n");gets(a);printf("中缀表达式为:%s\n",a);TranslateExpress(a,b);printf("后缀表达式为:%s\n",b);f=ComputeExpress(b);printf("计算结果:%f\n",f);}void InitStack(SeqStack *S)//初始化栈{S->top=0;}int StackEmpty(SeqStack S)//判断栈是否为空{if(S.top ==0)return 1;elsereturn 0;}int PushStack(SeqStack *S,char e)//进栈{if(S->top>=MaxSize){printf("栈已满,不能进栈!"); return 0;}else{S->data[S->top]=e;S->top++;return 1;}}int PopStack(SeqStack *S,char *e)//删除栈顶元素{if(S->top==0){printf("栈已空\n");return 0;}else{S->top--;*e=S->data[S->top];return 1;}}int GetTop(SeqStack S,char *e)//取栈顶元素{if(S.top<=0){printf("栈已空");return 0;}else{*e=S.data[S.top-1];return 1;}}void TranslateExpress(char str[],char exp[])//把中缀表达式转换为后缀表达式{SeqStack S;char ch;char e;int i=0,j=0;InitStack(&S);ch=str[i];i++;while(ch!='\0') //依次扫描中缀表达式{switch(ch){case'(':PushStack(&S,ch);break;case')':while(GetTop(S,&e)&&e!='('){PopStack(&S,&e);exp[j]=e;j++;}PopStack(&S,&e);break;case'+':case'-':while(!StackEmpty(S)&&GetTop(S,&e)&&e!='(') {PopStack(&S,&e);j++;}PushStack(&S,ch);break;case'*':case'/':while(!StackEmpty(S)&&GetTop(S,&e)&&e=='/'||e==&# 39;*'){PopStack(&S,&e);exp[j]=e;j++;}PushStack(&S,ch);break; //是空格就忽略case' ':break;default:while(ch>='0'&&ch<='9'){exp[j]=ch;j++;ch=str[i];i++;}i--;exp[j]=' ';j++;}ch=str[i];i++;}while(!StackEmpty(S)) //将栈中剩余运算符出栈{PopStack(&S,&e);exp[j]=e;j++;}exp[j]='\0';}float ComputeExpress(char a[])//计算后缀表达式的值{int i=0;float x1,x2,value;float result;S.top=-1;while(a[i]!='\0') //依次扫描后缀表达式{if(a[i]!=''&&a[i]>='0'&&a[i]<='9')//如果是数字{value=0;while(a[i]!=' ') //如果不是空格{value=10*value+a[i]-'0';i++;}S.top++;S.data[S.top]=value; //处理后进栈}else //如果是运算符{switch(a[i]){case'+':x1=S.data[S.top];S.top--;x2=S.data[S.top];S.top--;result=x1+x2;S.top++;S.data[S.top]=result;break;case'-':x1=S.data[S.top];S.top--;x2=S.data[S.top];S.top--;result=x2-x1;S.top++;S.data[S.top]=result;break;case'*':x1=S.data[S.top];S.top--;x2=S.data[S.top];S.top--;result=x1*x2;S.top++;S.data[S.top]=result;break;case'/':x1=S.data[S.top];S.top--;x2=S.data[S.top];S.top--;result=x2/x1;S.top++;S.data[S.top]=result;break;}i++;}}if(!S.top!=-1) //如果栈不空,将结果出栈并返回{result=S.data[S.top];S.top--;if(S.top==-1)return result;else{printf("表达式错误");exit(-1);}}return 0;}。
c语言后缀表达式计算C语言是一门面向过程的编程语言,它能够处理各种不同的计算需求,包括后缀表达式的计算。
所谓后缀表达式,也叫做逆波兰表达式,是一种使用后缀符号(如“+”、“-”、“*”、“/”等)表示数学表达式的方法。
与中缀表达式相比,后缀表达式的计算更加高效和简单。
下面,我们就来一步步介绍C语言如何计算后缀表达式。
步骤一:将后缀表达式转换为栈要实现后缀表达式的计算,首先需要将后缀表达式对应的字符串转换为栈。
在这个过程中,需要分别处理操作数和操作符。
对于操作数,可以使用变量num来保存其值,并将其推入栈中。
对于操作符,可以利用switch语句来处理,如果遇到“+”或“-”或“*”或“/”等操作符,则需要从栈中弹出两个操作数进行计算,并将结果推入栈中。
示例代码如下:```c#include <stdio.h>#include <string.h>#include <stdlib.h>#define MAX_STACK_SIZE 100double stack[MAX_STACK_SIZE];int top = -1;void push(double num) {if (top >= MAX_STACK_SIZE - 1) {printf("Stack overflow.\n");return;}stack[++top] = num;}double pop() {if (top < 0) {printf("Stack underflow.\n");return 0;}return stack[top--];}int isOperator(char *token) {return (strcmp(token, "+") == 0 || strcmp(token, "-") == 0 ||strcmp(token, "*") == 0 || strcmp(token, "/") == 0);}void calculate(char *operator) {double num1 = pop();double num2 = pop();double result;switch (operator[0]) {case '+':result = num2 + num1;break;case '-':result = num2 - num1;break;case '*':result = num2 * num1;break;case '/':result = num2 / num1;break;}push(result);}int main() {char expression[100];printf("Enter the expression: ");gets(expression);char *token = strtok(expression, " ");while (token != NULL) {if (!isOperator(token)) {push(atof(token));} else {calculate(token);}token = strtok(NULL, " ");}printf("Result: %lf\n", pop());return 0;}```步骤二:读入后缀表达式完成栈的转换之后,就可以开始读入后缀表达式了。
#include<stdio.h>
#include<malloc.h>
#include<math.h>
#include<process.h>
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define STACK_INIT_SIZE 100
#define STACKINCERMENT 10
typedef int Status;
typedef int OperandType;
typedef char OperatorType;
typedef struct SqStack{
int *base;
int *top;
int stacksize;
}SqStack;
char a[8][8]={
{'\0','+','-','*','/','(',')','='},
{'+','>','>','<','<','<','>','>'},
{'-','>','>','<','<','<','>','>'},
{'*','>','>','>','>','<','>','>'},
{'/','>','>','>','>','<','>','>'},
{'(','<','<','<','<','<','=','\0'},
{')','>','>','>','>','\0','>','>'},
{'=','<','<','<','<','<','\0','='}};
Status In(char c) //判断c是否运算符函数
{ if(c<48||c>57)
return TRUE;
else
return FALSE;
}//In
Status InitStack(SqStack &s) //初始化栈函数{ s.base=(int *)malloc(STACK_INIT_SIZE*sizeof(int)); if(!s.base) exit(OVERFLOW);
s.top=s.base;
s.stacksize=STACK_INIT_SIZE;
return OK;
}//InitStack
int GetTop(SqStack s) //取栈顶元素函数
if(s.top==s.base)
return ERROR;
e=*(s.top-1);
return e;
}//GetTop
Status Push(SqStack &s,int e) // 压栈函数
{ if(s.top-s.base>=s.stacksize){
s.base=(int *)realloc(s.base,(s.stacksize+STACKINCERMENT)*sizeof(int)); if(!s.base) exit(OVERFLOW);
s.top=s.base+s.stacksize;
s.stacksize+=STACKINCERMENT;
}
*s.top++=e;
return OK;
}//Push
Status Pop(SqStack &s,int &e) //出栈函数
{ if(s.top==s.base)
return ERROR;
e=*--s.top;
return OK;
}//Pop
OperatorType Precede(OperatorType c1,OperatorType c2) //判断两个运算符优先级函数
{ int i,j;
for(i=0;i<8&&a[i][0]!=c1;i++); //从第0列查找操作符c1
if(i>=8){
printf("Operator error!1\n");
exit(OVERFLOW);
}
for(j=0;j<8&&a[0][j]!=c2;j++); //从第0行查找操作符c2
if(j>=8){
printf("Operator error!2\n");
exit(OVERFLOW);
}
return a[i][j];
}//Precede
Status StackEmpty(SqStack s) //判断栈是否为空函数
{ if(s.base==s.top)
return TRUE;
return FALSE;
}//StackEmpty
OperandType Operate(OperandType a,OperatorType thera,OperandType b) //求两个元素通过指定运算的结果函数
{ switch(thera){
case'+': return a+b;
case'-': return a-b;
case'*': return a*b;
case'/': if(b==0)
{ printf("Divide zero!\n"); //除数为0,程序结束
exit(OVERFLOW);
}
else
return a/b;
default: printf("Operator error!\n"); //操作符错误,程序结束
exit(OVERFLOW);
}
}//Operate
OperandType EvaluateExpression() //求表达式值函数
{ int i,t,a,b,thera,f=0,j;
char c=0,d;
SqStack OPTR,OPND;
InitStack(OPTR); InitStack(OPND);
Push(OPTR,'=');
d=getchar();
while(c!='='||GetTop(OPTR)!='=')
{ for (i=1;In(d)==0;i=i*10) {c=c*i+d-48;d=getchar();f=1;}
if(f==1) {Push(OPND,c);c=d;f=0;}
else
{
c=d;
switch(Precede(GetTop(OPTR),c))
{
case'<': Push(OPTR,c); d=getchar();c=0;
break;
case'=': Pop(OPTR,t); d=getchar();c=0;// 消去括号
break;
case'>': Pop(OPTR,thera);
Pop(OPND,b); Pop(OPND,a);
Push(OPND,Operate(a,thera,b)); //求值并压栈 break;
case'\0': exit; break;
}
}
}
return GetTop(OPND);
}//EvaluateExpression
int main() //主函数
{
printf("%d\n",EvaluateExpression());
return 0;
}//main。