DS-LPC1778核心板用户手册V1.1
- 格式:pdf
- 大小:1.57 MB
- 文档页数:15
核心板规格书Revision HistoryDraft Date Revision No.Description 2020/08/10V1.5 1.更新产品订购型。
2020/06/11V1.41.更换封面。
2.完善电气特性。
3.完善机械尺寸参数。
4.更新产品订购型号。
5.优化软硬件参数。
6.删除附录A。
2018/09/07V1.3 1.修改电气特性参数。
2018/06/10V1.21.核心板更新为A2版。
2.内容勘误,修改部分参数说明。
2017/12/27V1.11.内容勘误。
2.修改电气特性参数。
2017/09/01V1.0 1.初始版本。
目录1核心板简介 (4)2典型应用领域 (5)3软硬件参数 (6)4开发资料 (11)5电气特性 (12)6机械尺寸 (12)7产品订购型号 (13)8技术服务 (14)9增值服务 (14)更多帮助 (15)1核心板简介创龙SOM-TL5728F是一款基于TI Sitara系列AM5728双核ARM Cortex-A15+浮点双核DSP C66x+Xilinx Artix-7FPGA处理器设计的高端异构多核工业级核心板。
核心板内部AM5728与Artix-7通过GPMC、I2C通信总线连接,并通过工业级高速B2B连接器引出千兆网口、PCIe、USB 3.0、SATA等接口。
核心板经过专业的PCB Layout和高低温测试验证,稳定可靠,可满足各种工业应用环境。
用户使用核心板进行二次开发时,仅需专注上层运用,降低了开发难度和时间成本,可快速进行产品方案评估与技术预研。
图1核心板正面图图2核心板背面图图3核心板斜视图图4核心板侧视图2典型应用领域✓运动控制✓测试测量✓机器视觉✓智能电力✓视频追踪✓定位导航3软硬件参数硬件框图图5核心板硬件框图图6AM572x处理器功能框图图7Artix-7特性硬件参数表1AM5728端硬件参数CPU CPU:TI Sitara AM57282x ARM Cortex-A15,主频1.5GHz2x DSP C66x,主频750MHz,支持浮点运算2x IPU(Image Processing Unit),每个IPU子系统含2个ARM Cortex-M4核心,共4个ARM Cortex-M4核心2x PRU-ICSS,每个PRU-ICSS子系统含2个PRU(Programmable Real-time Unit)核心,共4个PRU核心,支持EtherCAT等协议1x IVA-HD Video Codec,支持1路1080P60H.264视频硬件编解码2x SGX5443D GPU图形加速器1x GC3202D图形加速器ROM 4/8GByte eMMC32Kbit ATAES132A-SHEQ加密芯片RAM1/2GByte DDR32.5MByte On-Chip MemoryB2B Connector 2x180pin公座高速B2B连接器,2x180pin母座高速B2B连接器,间距0.5mm,合高5mm,共720pinLED 1x电源指示灯2x用户可编程指示灯Sensor1x TMP102AIDRLT温度传感器硬件资源3x VIP(Video Input Ports),支持10路1080P60视频输入1x TV OUTPUT,支持HDMI/DPI1080P603x LCD OUTPUT3x eHRPWM3x eCAP3x eQEP1x NMI1x PCIe Gen2,支持一个双通道端口,或两个单通道端口,每通道最高通信速率5GBaud1x USB2.01x USB3.02x10/100/1000M Ethernet3x MMC/SD/SDIO10x UART1x JTAG2x Watchdog1x SATA1x GPMC5x I2C2x DCAN8x McASP1x QSPI4x SPI备注:B2B、电源、指示灯等部分硬件资源,AM5728与Artix-7共用。
LPC-P1227LPC-P1227 development board USER’S MANUALInitial release, March 2012Designed by OLIMEX Ltd, 2011All boards produced by Olimex LTD are ROHS compliantOLIMEX© 2012LPC-P1227 User's ManualDisclaimer:© 2012 Olimex Ltd. Olimex®, logo and combinations thereof, are registered trademarks of Olimex Ltd. Other terms and product names may be trademarks of others.The information in this document is provided in connection with Olimex products. No license, express or implied or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Olimex products.Neither the whole nor any part of the information contained in or the product described in this document may be adapted or reproduced in any material from except with the prior written permission of the copyright holder.The product described in this document is subject to continuous development and improvements.All particulars of the product and its use contained in this document are given by OLIMEX in good faith. However all warranties implied or expressed including but not limited to implied warranties of merchantability or fitness for purpose are excluded. This document is intended only to assist the reader in the use of the product. OLIMEX Ltd. shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission in such information or any incorrect use of the product.Thank you for purchasing LPC-P1227 development board assembled byOLIMEX LTDOLIMEX© 2012LPC-P1227 User's ManualTable of ContentsCHAPTER 1 (5)OVERVIEW (5)1. Introduction to the chapter (5)1.1 Features (5)1.2 Organization (6)CHAPTER 2 (7)SETTING UP THE LPC-P1227 BOARD (7)2. Introduction to the chapter (7)2.1 Electrostatic warning (7)2.2 Requirements (7)2.3 Powering the board (7)2.4 Prebuilt software (8)CHAPTER 3 (9)LPC-P1227 BOARD DESCRIPTION (9)3. Introduction to the chapter (9)3.1 Layout (top view) (9)CHAPTER 4 (10)THE LPC1227FBD64 MICROCONTROLLER (10)4. Introduction to the chapter (10)4.1 The microcontroller (10)CONTROL CIRCUITY (12)5. Introduction to the chapter (12)5.1 Reset (12)5.2 Clocks (12)CHAPTER 6 (13)HARDWARE (13)6. Introduction to the chapter (13)6.1 PWR Connector (13)6.2 SWD1 connector (13)6.3 SWD2 Header (14)6.4 UEXT (14)6.5 Pads on the proto area (16)6.6 RS232 Null-modem connector (17)6.7 Jumper description (18)6.8 LCD Display (19)OLIMEX© 2012LPC-P1227 User's Manual6.9 Additional hardware components (19)CHAPTER 7 (20)MEMORY AND BLOCK DIAGRAM (20)7. Introduction to the chapter (20)7.1 Memory organization (21)CHAPTER 8 (22)SCHEMATICS (22)8. Introduction to the chapter (22)8.1 Eagle schematic (22)8.2 Physical dimensions (24)CHAPTER 9 (25)REVISION HISTORY (25)9. Introduction to the chapter (25)9.1 Document revision (25)9.2 Web page of your device (25)OLIMEX© 2012LPC-P1227 User's ManualCHAPTER 1OVERVIEW1. Introduction to the chapterThank you for choosing the LPC-P1227 development board from Olimex! This document provides a User’s Guide for the Olimex LPC-P1227 development board. As an overview, this chapter gives the scope of this document and lists the board’s features. The document’s organization is then detailed.The LPC-P1227 development board enables code development of applications running on the LPC1227 Cortex-M0 microcontroller, manufactured by NXP Semiconductors.1.1 Features•MCU: LPC1227 Cortex-M0, up to 45Mhz, 128 kB Flash, 8kB SRAM, 2 UARTs , SPI, I2C,10 bit ADC•RS232•Buzzer•NOKIA 3310 LCD•12 MHz crystal resonator•Power supply circuit•Power-on LED•Debug interface – SWD (Serial Wire Debug)•UEXT connector•Two user leds•Three user buttons•Reset button•Prototype area•FR-4, 1.5 mm, soldermask, component print•Dimensions:80x50mm (3.15 x 1.97")OLIMEX© 2012LPC-P1227 User's Manual 1.2 OrganizationEach section in this document covers a separate topic, organized as follow:–Chapter 1 is an overview of the board usage and features–Chapter 2 provides a guide for quickly setting up the board–Chapter 3 contains the general board diagram and layout–Chapter 4 describes the component that is the heart of the board: the LPC1227FBD64 microcontroller–Chapter 5 is an explanation of the control circuitry associated with the microcontroller to reset. Also shows the clocks on the board–Chapter 6 covers the connector pinout, peripherals and jumper description–Chapter 7 shows the processor diagram and memory map–Chapter 8 provides the schematics–Chapter 9 contains the revision historyOLIMEX© 2012LPC-P1227 User's ManualCHAPTER 2SETTING UP THE LPC-P1227 BOARD2. Introduction to the chapterThis section helps you set up the LPC-P1227 development board for the first time.Please consider first the electrostatic warning to avoid damaging the board, then discover the hardware and software required to operate the board.The procedure to power up the board is given, and a description of the default board behavior is detailed.2.1 Electrostatic warningLPC-P1227 is shipped in a protective anti-static package. The board must not be exposed to high electrostatic potentials. A grounding strap or similar protective device should be worn when handling the board. Avoid touching the component pins or any other metallic element.2.2 RequirementsIn order to set up and program the LPC-P1227, the following items are required:- A source of power – the board can be powered through the PWR jack or through the SWD-1 (SWD-2) interface- In order to program the board you will need a programmer that supports SWD (Serial Wire Debug) interfaceAlso, a host-based software toolchain is required in order to program/debug the LPC-P1227 board. There are also a number of ready IDEs available like IAR Embedded Workbench,Rowley CrossWorks, Code Composer Studio, etc.The only low cost Olimex option at the time writing this guide is available if you use Rowley's Crossworks IDE. You can get any of our ARM-USB debuggers + ARM-JTAG-SWD adapter. As of moment of writing this guide OpenOCD 0.5.0 doesn't support SWD flashing.2.3 Powering the board- Provide between 5V and 9V to the board's PWR jackOLIMEX© 2012LPC-P1227 User's ManualOR- Connect your SWD debugger2.4 Prebuilt softwareOn powering the board the PWR LED should turn on. LED1 and LED2 should start blinking alternatively. The LCD display shows 6 lines of text. You can connect the board to a PC via RS232 Null-modem interface. Then start your favourite terminal program at 115200, 8-N-1 and reset the board. A line with the statuses of 4 buttons (USER3, USER2, USER1, WAKE_UP) and ISP_E jumper appears. Press the buttons to see their state changing or change the jumper position. Pressing escape will disconnect the RS232.OLIMEX© 2012LPC-P1227 User's ManualCHAPTER 3LPC-P1227 BOARD DESCRIPTION3. Introduction to the chapterHere you get acquainted with the main parts of the board. Note the names used on the board differ from the names used to describe them. For the actual names check the LPC-P1227 board itself. 3.1 Layout (top view)CHAPTER 4THE LPC1227FBD64 MICROCONTROLLER4. Introduction to the chapterIn this chapter is located the information about the heart of LPC-P1227 – its microcontroller. The information is a modified version of the datasheet provided by its manufacturers.4.1 The microcontrollerMain processors features:•Processor core✗ARM Cortex-M0 processor, running at 45 MHz (one wait state from flash) or 30 MHz (zero wait states from flash). The LPC122x have a high score of over 45 in CoreMarkCPU performance benchmark testing, equivalent to 1.51/MHz.✗ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).✗Serial Wire Debug (SWD).✗System tick timer.•Memory✗8 kB SRAM.✗128 kB on-chip flash programming memory.✗In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.✗Includes ROM-based 32-bit integer division routines.•Clock generation unit✗Crystal oscillator with an operating range of 1 MHz to 25 MHz.✗12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.✗PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator or the internal RCoscillator.✗Clock output function with divider that can reflect the system oscillator clock, IRC clock, main clock, and Watchdog clock.✗Real-Time Clock (RTC).•Digital peripherals✗Micro DMA controller with 21 channels.✗CRC engine.✗Two UARTs with fractional baud rate generation and internal FIFO. One UART with RS-485 and modem support and one standard UART with IrDA.✗SSP/SPI controller with FIFO and multi-protocol capabilities.✗I2C-bus interface supporting full I2 C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode. I2C-buspins have programmable glitch filter.✗55 General Purpose I/O (GPIO) pins with programmable pull-up resistor, open-drain mode, programmable digital input glitch filter, and programmable input inverter.✗Programmable output drive on all GPIO pins. Four pins support high-current output drivers.✗All GPIO pins can be used as edge and level sensitive interrupt sources.✗Four general purpose counter/timers with four capture inputs and four match outputs (32-bit timers) or two capture inputs and two match outputs (16-bit timers).✗Windowed WatchDog Timer (WWDT); IEC-60335 Class B certified.•Analog peripherals✗One 8-channel, 10-bit ADC.✗Two highly flexible analog comparators. Comparator outputs can be programmed to trigger a timer match signal or can be used to emulate 555 timer behavior.•Power✗Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.✗Processor wake-up from Deep-sleep mode via start logic using 12 port pins.✗Processor wake-up from Deep-power down and Deep-sleep modes via the RTC.✗Brownout detect with three separate thresholds each for interrupt and forced reset.✗Power-On Reset (POR).✗Integrated PMU (Power Management Unit).•Unique device serial number for identification.• 3.3 V power supplyFor comprehensive information on the microcontroller visit the NXP web page for a datasheet.At the moment of writing the microcontroller datasheet can be found at the following link:/products/lpc1000/datasheet/lpc122x.pdfCHAPTER 5CONTROL CIRCUITY5. Introduction to the chapterHere you can find information about reset circuit, power circuit and quartz crystal locations.5.1 ResetLPC-P1227 reset circuit includes R23 (10 KΩ), R24(330 Ω), LPC1227FB064 pin PIN40 (PIO0_13/RESET) and a RESET button.5.2 Clocks12 MHz quarz crystal Q1 is found at pins 1 and 2 of the processor.Real time clock (RTC) Q2 is connected to pins 57 and 58 of the processor.CHAPTER 6HARDWARE6. Introduction to the chapterIn this chapter are presented the connectors that can be found on the board all together with their pinout. Proto area is shown. Jumpers functions are described. Notes and info on specific peripherals are presented. Notes regarding the interfaces are given.6.1 PWR Connector6.2 SWD1 connectorThe 20 pin SWD (Serial Wire Debug) connector provides the interface for SWDprogramming/debugging. The pinout can be found in the table below.6.3 SWD2 HeaderNote! It doesn't have connector mounted, if you wish to use 20 pin SWD debugger you have to mount connector yourself. Signal between the two SWD interfaces is controlled byCLK_ALT/CLK_DEF and DIO_ALT/DIO_DEF. If you set them in _ALT positions the SWD2 would be enabled.6.4 UEXTLPC-P1227 board has UEXT connector and can interface Olimex's UEXT modules.For more information on UEXT please visit:/dev/OTHER/UEXT.pdf6.5 Pads on the proto areaFor your convenience the pads are named individually near each of them. Please take extra care about the numbering but consider that there might be offset.For full list of pin functions check on the processor data sheet.6.6 RS232 Null-modem connector6.7 Jumper descriptionNote that the jumper configuration is also printed on the back of the board.ISP_EThis jumper controlls the possibility of the ISP mode via UART0 (RS232) supported by the processor. It should be moved together with RST_E.Default state is open.RST_EWhen closed together with ISP_E enables ISP programming via UART0Default state is open.CLK_ALT/CLK_DEF and DIO_ALT/DIO_DEFThese jumpers should be moved together and control whether SWD-1 or SWD-2 interface is used for programming. When in position ALT – SWD-2 will be used.Default positions are CLK_DEF and DIO_DEF.MCU_EIf open disables the supply on the processor.Default state is closed.3.3V_EIf open disables the board's 3.3V power supply.Default state is closed.6.8 LCD DisplayNokia 3310 LCD display 84x48 pixels (38x35 mm).6.9 Additional hardware componentsThe components below are mounted on LPC-P1227 but are not discussed above. They are listed here for completeness:Buzzer5 buttons + RST button2LEDs + power-on LEDCHAPTER 7MEMORY AND BLOCK DIAGRAM7. Introduction to the chapterBelow is located the block diagram of the processor and on the next page you can find a memory map for this family of processors. It is strongly recommended to refer to the original datasheet released by NXP for ones of higher quality.7.1 Memory organizationCHAPTER 8SCHEMATICS8. Introduction to the chapterIn this chapter are located the schematics describing logically and physically LPC-P1227.8.1 Eagle schematicLPC-P1227 schematic is visible for reference here. You can also find them on the web page for LPC-P1227 at our site: /dev/LPC-P1227.html. They are located in HARDWARE section.The EAGLE schematic is situated on the next page for quicker reference.8.2 Physical dimensionsNote that all dimensions are in inches.CHAPTER 9REVISION HISTORY9. Introduction to the chapterIn this chapter you will find the current and the previous version of the document you are reading. Also the web-page for your device is listed. Be sure to check it after a purchase for the latest available updates and examples.9.1 Document revision9.2 Web page of your deviceThe web page you can visit for more info on your device is /dev/LPC-P1227.html. There you can find more info and some examples.ORDER CODES:LPC-P1227 - completely assembled and testedHow to order?You can order to us directly or by any of our distributors.Check our webpage / for more info.LPC-P1227。
超前LPC1768 KIT开发板硬件手册修订历史版本日期原因Rev 1.02009/08/19 创建第 1 页目录一、 LPC1768 KIT简介 (4)二、 电路分解介绍1、电源部份: (5)2、JTAG电路: (7)3、USB 模块部份: (8)3.1Device 从机部份电路:USB3.2 USB HOST 部份OTG部份3.3USB4、SD卡部份 (11)5、串口通讯模块(ISP) (12)6、I2C 部份(用EEPROM AT24C16) (14)7、CAN 通讯部份 (15)8. 100M 以太网部份(PHY为DP83848) (16)9、DA输出放大电路—LM386 (17)10、8位LED,LCD12232图形液晶及TFT接口电路 (18)11、AD转接部份 (19)第 2 页12、CPU电路及CPU外引电路: (20)三、开发板原理图--主器件封装库(含SCH,PCB主封装)..22第 3 页一、LPC1768 KIT简介LPC1700系列芯片使用高性能的ARM Cortex-M3 V2版本 32位的RISC内核,工作频率为100 MHz。
它内置高速存储器(高达512K字节的闪存和64K字节的SRAM),丰富的增强I/O端口和联接到两条APB总线的外设。
该板包含8通道12位的ADC和10位的DAC、4个通用16位定时器、电机控制PWM接口以及多个标准和先进的通信接口:多达3个I2C、SPI、2个I2S、1个 SDIO、4个USART、一个USB Host/Device/OTG 接口和两个CAN、Ethernet MAC接口、Quadrature Encoder interface。
LPC1700系列工作于-40°C至+105°C的温度范围,供电电压为2.0V 至3.6V。
它的一系列省电模式突显出了它的低功耗的特点。
丰富的外设配置,使得LPC1700微控制器适合于多种应用领域:* 电机驱动和应用控制* 医疗和手持设备* 汽车电子等领域第 4 页支持 USB方式下载程序无需JTAG或串口,只需一根USB线即可下载程序到FLASH.方便快捷.板载资源:*处理器:LPC1768,主频:100MHz,512KB FLASH Memory(片内),64KB SRAM(片内)1、AD(热敏电阻测温)、DA(USB声卡)转换。
SOM-PH8800 CoreBoardUser ManualVersion1.1 –December 2016Copyright Statement:●The SOM-PH8800 Core Board design and related intellectual property are owned byShenzhen Embest Technology Co. Ltd.●Copyright © Shenzhen Embest Technology all rights reserved. No part of this documentshall be modified, distributed or duplicated in any way or form without the expresswritten permission of Embest Technology Co., Ltd.Disclaimer:●Shenzhen Embest Technology makes no warranty of any kind, either expressed orimplied, as to the program source code, software and documents in the CD/DVD-ROMsprovided along with the products, and including, but not limited to, warranties offitness for a particular purpose. The entire risk as to the quality or performance of thesoftware is with the user of the products.●Revision History:Version Update Date Note1.0 1.1 2016/03/152016/12/14Original Version.Corrected English grammarmistakes.Table of ContentsChapter 1 Product Overview (1)1.1Brief Introduction (1)1.1.1Packing List (1)1.1.2Product Features (1)1.2System Block Diagram (3)1.3Product Dimensions (4)Chapter 2 Introduction to Hardware System (5)2.1Overview of CPU (5)2.2Introduction to Peripheral Chips (7)2.2.1DDR3L (7)2.2.2eMMC Flash (7)2.2.3KSZ9031 (8)2.2.4EEPROM (8)2.2.5QSPI Flash (8)2.2.6LED (8)2.3Power Distribution (8)2.4Details of Interfaces (9)Technical Support and Warranty (15)Chapter 1 Product Overview 1.1 Brief IntroductionThe SOM-PH8800 has been developed by Embest Technology Co. Ltd, and is based on the Texas Instruments’ AM437x processor. Potential markets are personal healthcare devices, industrial control equipment, communications and other applications. This processor integrates the (up to) 1GHz ARM Cortex™–A9 core and provides several peripheral interfaces.The EVK-PH8800 board provides a series of expansion interfaces, including network interface, audio input and output interface, USB, TF card interface, serial interface, SPI, IIC interface, CAN interface, RS485 interface, ADC interface, TFT screen output, and touch screen and camera interface.The SOM-PH8800 has a very wide range of applications, including gaming peripherals, home and industrial automation, consumer medical devices, printers, intelligent charging systems, intelligent vending machines, weighing systems, education, toys, and many others.1.1.1 Packing List●SOM-PH8800 Core Module X1●Desiccant X1●Antistatic Bag X1●Generic Safety Leaflet X1●Packing Box X11.1.2 Product Features●Electrical Features•Operating Temperature: 0~70°C (Commercial), -40~85°C (Industrial)•Power Supply: 5V•Operating Humidity: 20% ~ 90% (No Condensation)•Main board Size: 70 mm×50 mm•PCB Specification: 8 layer design●Processor Features●1000 MHz ARM Cortex™-A9 32-Bit RISC Microprocessor⏹NEON™ SIMD Coprocessor and Vector Floating Point (VFPv3)Coprocessor⏹32KB of both L1 Instruction and Data Cache⏹256KB of L2 Cache or L3 RAM●SGX530 Graphics Engine●Programmable Real-Time Unit Subsystem and Industrial CommunicationSubsystem (PRU-ICSS)●Real-Time Clock (RTC)●Onboard Memory•1GB DDR3L SDRAM•4GB eMMC Flash•32KB EEPROM•32MB QSPI Flash●Communication Interfaces•Two 90 pin 1.27mm pitch connectors (including I2C, SPI, CAN, UART, MMC, I2S, LCD, Camera, RGMII, GPIO, power signal and so on).●Debugging Interfaces•Supports UART serial debugging1.2 System Block DiagramFigure 1-1 SOM-PH8800 System Block1.3 Product DimensionsFigure 1-2 Product Dimensions (unit: mm)Chapter 2 Introduction toHardware SystemThis chapter will introduce in detail the structure, expansion and peripheral interfaces of the SOM-PH8800 hardware system.2.1 Overview of CPUThe Texas Instruments’ AM437x contains a high performance processor based on the ARM Cortex™–A9 core. The device is essentially a “System on Chip”, or “Soc” which means that it consists of several processor cores, the behavior of which is ultimately defined by the user’s firmware.The AM437x group of processors bridges the gap which until relatively recently delineated the boundary between a “microprocessor”and a “microcontroller”. For example, the de vice has an enhanced 3D graphics accelerator function, which can be used to produce rich graphical user interfaces, and on the same die, a coprocessor for deterministicreal-time processing. The co-processor(s) also support additional interfaces for industrial communication protocols such as EtherCAT, PROFIBUS, EnDat and others. These devices offer an upgrade to systems based on lower performance ARM cores and provide updated peripherals, including memory options such as QSPI-NOR and LPDDR2.The processor contains the subsystem shown in Figure 2-1, and a brief description of each subsystem is given below.The ARM based on Cortex™-A9 core processor subsystem, POWERVR SGX graphics accelerator provides a 3D graphics acceleration function to support the display and provides for advanced user interfaces. The net result is that you can have a rich graphical interface, while running mission-critical real time functions at the same time, without additional intelligence, such as on-board FPGAs.The Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS) is separate from the ARM core, allowing independent operation and clockingfor greater efficiency and flexibility. The PRU-ICSS is essentially two (additional) 32-bit processors linked in a hierarchical arrangement. Generally speaking, the system-level processor core is to be regarded as the master, the PRU-ICSS being additional “slave” computing power, available from the master side through an interface known as the OCP (Open Core Protocol) slave port. This access portal is memory-mapped from the perspective of the system-level core. On the other hand, the PRU-ICSS has access to all the resources on the SoC via the OCP master port.The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, and others. Additionally, the programmable nature of the PRU-ICSS, along with its access to external pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing fast, real-time responses, specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other processor cores of the SoC.High-performance interconnects provide high-bandwidth data transfers for multiple initiators to the internal and external memory controllers and to on-chip peripherals. The device also offers a comprehensive clock-management scheme.An on-chip analog-to-digital converter (ADC0) can be combined with the display subsystem, providing integrated touch screen solutions. Another ADC (ADC1) can be combined with the pulse width module, to create a closed-loop motor control solution. The real-time clock (RTC) provides a clock reference on a separate power domain. The clock reference enables a battery-backed clock reference.The camera interface offers configuration for a single- or dual-camera parallel port. Cryptographic acceleration is available in every AM437x device. Secure boot is also available in some devices in the range, for anticloning and illegal software update protection.Figure 2-1Functional Block Diagram2.2 Introduction to Peripheral Chips2.2.1 DDR3LThe AM437x provides a memory controller for the expansion of external dynamic storage space. The SOM-PH8800 extends two DDR3L SDRAM devices from Micron (The part number is MT41K256M16TW-107), and can provide 1GB external RAM access space.2.2.2 eMMC FlashThe AM437x provides three MMC interfaces, which can support the memory card andeMMC memory. The SOM-PH8800 board contains a 4GB eMMC Flash, using the MMC1 bus.2.2.3 KSZ9031The KSZ9031 is low power consumption, high performance Ethernet PHY chip. It has an integrated 10/100/1000 Mbit transceiver. It is single port 10/100/1000 Mbps triple speed Ethernet PHY, and support MAC.TM RGMII interface.2.2.4 EEPROMThe SOM-PH8800 has a 32KB EEPROM, type CAT24C256W. As a non-volatile memory, the memory can be used to store important information, such as the board configuration data.2.2.5 QSPI FlashThe SOM-PH8800 has a QSPI Flash of 32MB, N25Q256A13EF840. It can be used as a high-speed storage device, and can also be used as a boot disk.If the QSPI Flash has been updated with an operating system image, the SOM-PH8800 will boot the system from the Flash by default. A detailed introduction can be found in the software manual.2.2.6 LEDThe SOM-PH8800 has three green LEDs, the D5 is 3.3V power LED, indicated that the system power on; D3 and D4 are programmable LEDs, the user can control the LED using GPIO.2.3 Power DistributionThe SOM-PH8800 board contains the TPS65218 power management chip. The chip is a high-performance PMIC launched by TI for AM437x and AM335x specifically, including multi-channel power output, used to support the various power requirements of theAM437x.Only 5V power and an RTC battery (3V) are needed to supply the SOM-PH8800 from the base (carrier) board. All other power requirements are supported by the PMIC.2.4 Details of InterfacesThe SOM-PH8800 has two 1.27mm 90Pin connectors (as shown in Figure 2-2 J1 and J2) which incorporate the connections needed for power and microprocessor peripherals.Figure 2-2 Expansion ConnectorsThe pin definitions of the two 1.27mm 90 pin connectors are as follows:Table 2-1 Expansion Connector J1 Specification #1Table 2-2Expansion Connector J1 Specification #2Table 2-3Expansion Connector J2 Specification #1Table 2-4Expansion Connector J2 Specification #2Technical Support and WarrantyEmbest Technology provides its product with one-year free technical support including:●Providing software and hardware resources related to the embedded products ofEmbest Technology;●Helping customers properly compile and run the source code provided byEmbest Technology;●Providing technical support service if the embedded hardware products do notfunction properly given that customers operate the product according to theinstructions in the documents provided by us.●Helping customers troubleshoot the products.The following conditions will not be covered by our technical support service. We will take appropriate measures accordingly:●Customers encounter issues related to software or hardware during theirdevelopment process.●Customers encounter issues caused by any unauthorized alteration to theembedded operating system.●Customers encounter issues related to their own applications●Customers encounter issues caused by any unauthorized alteration to thesource code provided by Embest Technology.1)12-month free warranty on the PCB under normal conditions of use since the sale of the product.2)The following conditions are not covered by free services. Embest Technology will charge accordingly:●Customers fail to provide valid purchase vouchers or the product identificationtag is damaged, unreadable, altered or inconsistent with the products.●Usage not in line with the user's manual operation causes damage to theproduct.●Products are damaged in appearance or function caused by natural disasters(flood, fire, earthquake, lightning strike or typhoon) or natural aging ofcomponents or other force majeure.●Products are damaged in appearance or function caused by power failure,external forces, water, animals or foreign materials.●Products malfunction as a result of disassembly or alteration of components bycustomers or, or the product is disassembled or repaired by persons ororganizations unauthorized by Embest Technology, or altered from factoryspecifications, or configured or expanded with components that are not providedor endorsed by Embest Technology and the resulting damage in appearance orfunction.●Product failures caused by the software or systems installed by customers orinappropriate settings of software or computer viruses.●Products purchased from unauthorized sales outlets.●Warranty (including verbal and written) that is not made by Embest Technologyand not included in the scope of our warranty should be fulfilled by the party whocommitted to it. Embest Technology has no responsibility for any third partywarranties.3)Within the period of warranty, the freight for sending products from customers toEmbest Technology will be paid by the customer. The freight from Embest to customers will be paid by us. The freight in any direction that occurs after the expiry of the warranty period shall be paid by the customer.4)Please contact technical support if there is any repair request.Technical SupportTel: +86-755-25635626-872/875/897Email: ***********************Sales InformationTel: +86-755-25635626-860/861/862Fax: +86-755-25616057Email: **************************Company InformationWebsite: Address: Tower B 4/F,Shanshui Building,Nanshan Yungu Innovation Industry Park,Liuxian Ave.No.1183,Nanshan District,Shenzhen,Guangdong,China。
使用产品之前请仔细阅读产品说明书K-FT2K-Core核心板说明书版本:v1.1版本更新表目录1注意事项 (1)2产品概述 (2)3产品规格 (3)4实物接口介绍 (4)4.1主板正反面图 (4)4.2主板加散热器图 (5)4.3主板尺寸图 (6)5接口功能定义 (7)5.1功能分布图 (7)5.2丝印描述 (8)5.3接口定义 (9)1注意事项商标本手册所提及的商标与名称都归其所属公司所有。
注意1. 使用前,请先详细阅读说明书,避免误操作导致产品损坏;2. 请将此产品放置在-20℃<=工作环境<=+60℃、90%RH的环境下,以免因过冷、热或受潮导致产品损坏;3 请勿将此产品做强烈的机械运动,以及在没有作好静电防护之前对此产品操作;4. 在安装任何外接卡或模组之前,請先关闭电源;5. 禁止对主板产品进行私自更改、拆焊,对此所导致的任何后果我司不承担任何责任;K-FT2K-Core是一款基于飞腾FT-2000/4处理器,采用采用COM Express Basic板型的核心板,尺寸为125*95mm。
K-FT2K-Core采用飞腾FT-2000/4四核芯处理器。
板载2条DDR4 SO-DIMM内存插槽。
K-FT2k-Core的COMe插槽,集成2路MAC,可外加PHY芯片扩展出2路千兆网口;集成1*PCIe-X16、2*PCIe-X8、2*PCIe-X1扩展资源,集成4*UART接口,可扩展RS232串口;集成I2C、LPC、HDA等总线资源。
主板特点:★飞腾FT-2000/4四核芯处理器;★COM Express Basic核心板小尺寸;★板载DDR4笔记本内存插槽;★丰富的PCIe扩展资源;4实物接口介绍4.1主板正反面图4.2主板加散热器图4.3主板尺寸图注意:上图单位统为毫米(mm)5接口功能定义5.1功能分布图5.2丝印描述5.3接口定义主板插针、跳线定义续1。
ZYNQ7000开发平台用户手册AC7Z100核心板2 / 31芯驿电子科技(上海)有限公司文档版本控制目录文档版本控制 (2)(一)简介 (4)(二)ZYNQ芯片 (5)(三)DDR3 DRAM (8)(四)QSPI Flash (14)(五)eMMC Flash (15)(六)时钟配置 (16)(七)LED灯 (19)(八)复位电路 (20)(九)电源 (20)(十)结构图 (23)(十一)连接器管脚定义 (23)3 / 314 / 31芯驿电子科技(上海)有限公司(一) 简介AC7Z100(核心板型号,下同)核心板,ZYNQ 芯片是基于XILINX 公司的ZYNQ7000系列的XC7Z100-2FFG900。
ZYNQ 芯片的PS 系统集成了两个ARM Cortex™-A9处理器,AMBA®互连,内部存储器,外部存储器接口和外设。
ZYNQ 芯片的FPGA 内部含有丰富的可编程逻辑单元,DSP 和内部RAM 。
这款核心板使用了4片Micron 的512MB 的DDR3芯片MT41J256M16HA-125,总的容量达4GB 。
其中PS 和PL 端各挂载两片,分别组成32bit 的总线宽度。
PS 端的DDR3 SDRAM 的最高运行速度可达533MHz(数据速率1066Mbps),PL 端的DDR3 SDRAM 的最高运行速度可达800MHz(数据速率1600Mbps)。
另外核心板上也集成了2片256MBit 大小的QSPI FLASH 和8GB 大小的eMMC FLASH 芯片,用于启动存储配置和系统文件。
为了和底板连接,这款核心板的4个板对板连接器扩展出了PS 端的USB 接口,千兆以太网接口,SD 卡接口及其它剩余的MIO 口;也扩展出了ZYNQ 的16对高速收发器GTX 接口;以及PL 端的几乎所有IO 口(114个3.3V IO 和48个1.8V IO ),其中BANK10和BANK11的IO 的电平可以通过更换核心板上的LDO 芯片来修改,满足用户不用电平接口的要求。
NS4158用户手册V1.2深圳市纳芯威科技有限公司2014年12月修改历史目录1功能说明 (5)2主要特性 (5)3应用领域 (5)4典型应用电路 (5)5极限参数 (6)6电气特性 (6)7芯片管脚描述 (7)7.1NS4158封装管脚分配图 (7)7.2NS4158引脚功能描述 (8)7.3芯片印章说明 (8)8NS4158典型参考特性 (9)9NS4158应用说明 (12)9.1芯片基本结构描述 (12)9.2防失真功能 (12)9.3NS4158应用参数设置 (13)9.3.1增益计算 (13)9.3.2输入电容Ci和输入电阻Ri选择 (13)9.3.3旁路电容Cb选择 (13)9.3.4电源滤波电容选择 (13)9.3.5工作模式设置 (13)9.3.6磁珠与电容 (15)9.4上电,掉电噪声抑制 (15)9.5效率 (15)9.6保护电路 (15)10芯片的封装 (16)图目录图1NS4158典型应用电路 (5)图2NS4158封装管脚分配图(top view) (7)图3印章说明 (8)图4NS4158原理框图 (12)图5假设不受电源电压限制时的音频输出信号 (12)图6普通工作模式下的音频输出信号 (13)图7防失真工作模式下的音频输出信号 (13)图8软件设置NS4158工作模式 (14)图9一线脉冲时序图 (14)图10硬件设置NS4158工作模式 (14)图11输出端加磁珠应用图 (15)图12SOP-8封装尺寸图 (16)表目录表1芯片最大物理极限值 (6)表2NS4158电气特性 (6)表3NS4158管脚描述 (8)1功能说明NS4158是一款带防失真功能,超低EMI,无需滤波器,5W高效率的单声道数字音频功放。
独特的防失真功能可以通过检测输出信号的失真,动态调整系统增益,不仅有效防止过载输出对喇叭的损坏,同时带来舒适的听觉感受。
实际应用可以通过软件或者硬件设置放大器工作在防失真模式和普通模式。
_______________________________________________________________ Maxim Integrated Products 1For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at .MAX17117 Evaluation KitEvaluates: MAX17117General DescriptionThe MAX17117 evaluation kit (EV kit) is a fully assem-bled and tested surface-mount PCB that provides the voltages and features required for active-matrix, thin-film transistor (TFT), liquid-crystal display (LCD) applica-tions. The EV kit contains a high-performance step-up regulator, a 350mA low-dropout (LDO) linear regulator, a high-speed operational amplifier (op amp), a positive charge pump for the TFT gate-on supply, a negative charge pump for the TFT gate-off supply, and a 7-output high-voltage, level-shifting scan driver with gate-shading control.The EV kit operates from a DC supply voltage of +2.3V to +5.5V. The step-up switching regulator is configured for a +8.5V output providing at least 250mA from a +2.7V input. The positive charge pump is configured to provide a +23V output providing at least 20mA. The negative charge pump is configured to provide a -6V output providing at least 10mA. The op amp is configured for +4.25V. The high-voltage, level-shifting scan driver with gate-shading control is designed to drive the TFT panel gate drivers.FeaturesS +2.3V to +5.5V Input Range S Output Voltages +8.5V Output at 250mA from a +2.7V Input (Step-Up Switching Regulator)+23V Output at 20mA (Positive Charge Pump) -6V Output at 10mA (Negative Charge Pump)+4.25V High-Current Op Amp Capable of Delivering 200mA (typ) Short-Circuit Output CurrentS Resistor-Adjustable Switching-Regulator, Op-Amp Output, and LDOO VoltagesS High-Voltage Level-Shifting Scan Driver withGate-Shading ControlS 1.2MHz Step-Up Switching Frequency S Fully Assembled and TestedOrdering InformationComponent List+Denotes lead(Pb)-free and RoHS compliant.19-5206; Rev 0; 4/10PARTTYPEMAX17117EVKIT+EV Kit DESIGNATIONQTYDESCRIPTIONC1110F F Q 10%, 10V X5R ceramic capacitor (0805)TDK C2012X5R1A106K Murata GRM21BR61A106K C2, C3, C4310F F Q 10%, 16V X5R ceramic capacitors (1206)Murata GRM31CR61C106K TDK C3216X5R1C106KC510.22F F Q 10%, 50V X7R ceramic capacitor (0805)Murata GRM21BR71H224K TDK C2012X7R1H224K C6–C11, C16, C17, C2190.1F F Q 10%, 50V X7R ceramic capacitors (0603)Murata GRM188R71H104K TDK C1608X7R1H104KDESIGNATIONQTYDESCRIPTIONC12, C1321F F Q 10%, 16V X5R ceramic capacitors (0603)Murata GRM188R61C105K TDK C1608X5R1C105K C141100pF Q 5%, 50V C0G ceramic capacitor (0603)Murata GRM1885C1H101J C15, C25, C27, C29, C31, C33, C35, C3784700pF Q 10%, 50V X7R ceramic capacitors (0603)Murata GRM188R71H472K C1811F F Q 10%, 25V X5R ceramic capacitor (0805)Murata GRM21BR71E105K TDK C2012X5R1E105KC1911000pF Q 10%, 50V X7R ceramic capacitor (0603)Murata GRM188R71H102K TDK C1608X7R1H102KMAX17117 Evaluation Kit E v a l u a t e s : M A X 171172 ______________________________________________________________________________________Component List (continued)*EP = Exposed pad.Note: Indicate that you are using the MAX17117 when contacting these component suppliers.Component SuppliersDESIGNATIONQTYDESCRIPTIONC2010.33F F Q 10%, 10V X5R ceramic capacitor (0603)Murata GRM188R61A334K TDK C1608X5R1A334KC2210.22F F Q 10%, 25V X5R ceramic capacitor (0603)Murata GRM188R61E224K TDK C1608X5R1E224K C2312.2F F Q 10%, X5R 25V ceramic capacitor (0805)Murata GRM219R61E225K TDK C2012X5R1E225KC24, C26, C28, C30, C32, C34, C36, C38, C390Not installed, ceramic capacitors (0603)DTS, LX, POS, RE, RO, SS6PCB mini test pointsD111A, 30V Schottky diode (S-Flat)Central Semi CMMSH1-40 LEAD FREENihon EP10QY03Toshiba CRS02(TE85L,Q,M)D2, D3, D43200mA, 100V dual diodes (SOT23)Fairchild MMBD4148SE (Top Mark: D4)Central Semi CMPD7000+(Top Mark: C5C)D516.2V, 200mW zener diode (SOD323)Fairchild MM3Z6V2BDESIGNATIONQTY DESCRIPTIONJU113-pin headerL1110F H, 1.85A, 74.4m I inductor (6mm x 6mm x 3mm)Sumida CDRH5D28RHPNP-100M P10Not installed, 100-position right-angle headerR11102k I Q 1% resistor (0603)R2117.4k I Q 1% resistor (0603)R3, R4, R5356.2k I Q 1% resistors (0603)R6, R1221k I Q 5% resistors (0603)R7, R15, R16,R170Not installed, resistors—short (PC trace) (0603)R8162k I Q 5% resistor (0603)R9151.1k I Q 1% resistor (0603)R10149.9k I Q 1% resistor (0603)R11129.4k I Q 1% resistor (0603)R13149.9I Q 1% resistor (0603)R14186.6I Q 1% resistor (0603)R18–R247100k I Q 5% resistors (0603)R25–R3814100I Q 1% resistors (1210)R390Not installed, resistor (0603)SW117-position, low-profile, surface-mount DIP switchU11High-voltage PWM IC with level shifters (32 TQFN-EP*)Maxim MAX17117ETJ+—1Shunt—1PCB: MAX17117 EVALUATION KIT+SUPPLIERPHONE WEBSITECentral Semiconductor Fairchild Semiconductor Murata Electronics North America, Nihon Inter Electronics Corp.847-843-7500www.niec.co.jp Sumida TDK Corp. Toshiba America Electronic Components, Inc.949-623-2900/taecMAX17117 Evaluation KitEvaluates: MAX17117_______________________________________________________________________________________ 3*Default position.Quick StartRecommended Equipment• 2.3V to 5.5V, 2A DC power supply • VoltmetersProcedureThe MAX17117 EV kit is fully assembled and tested. Follow the steps below to verify board operation. Caution: Do not turn on the power supply until all connections are completed.1) Verify that a shunt is installed across pins 1-2 of jumper JU1.2) Verify that SW1 DIP switches are in the off position.3) Connect the positive terminal of the power supply to the VIN pad. Connect the negative terminal of the power supply to the PGND pad. Set VIN to +3V.4) Turn on the power supply and verify that the step-up switching regulator output (VMAIN) is +8.5V.5) Verify that the gate-on supply (GHON) is approxi-mately +23V.6) Verify that the gate-off supply (VGL) is approximately -6V.7) Verify that the output of the high-speed op amp (VOUT) is approximately +4.25V.8) Verify that the outputs of the high-voltage scan-driver outputs are approximately -6V (= VGL).Detailed Description of HardwareThe MAX17117 EV kit contains a step-up switching regulator, a positive two-stage charge pump, a negative single-stage charge pump, a high-speed op amp, and a high-voltage, level-shifting scan driver with gate-shading control. The EV kit operates from a DC power supply between +2.3V and +5.5V.As configured, the step-up switching regulator (VMAIN) generates a +8.5V output and provides at least 250mAfrom a +2.7V input. The step-up switching-regulator output voltage can be adjusted up to +15V with different feedback resistors (see the Output-Voltage Selection section).The GHON consists of two positive charge-pump stages to generate approximately +23V and provides up to 20mA. The VGL consists of a single negative charge-pump stage configured with a shunt zener diode to generate approximately -6V and provides up to 10mA. Loading GHON and VGL reduces the available VMAIN current proportionally.The op-amp output (VOUT) is fixed to +4.25V or can be reconfigured to other voltages with changes to the volt-age-divider resistors (see the Output-Voltage Selection section).The high-voltage, level-shifting scan driver with gate-shading control is designed to drive the TFT panel gate drivers. Its seven outputs swing 40V (max) between +35V (max) and -15V (min) and swiftly drives capaci-tive loads. The driver outputs (STH, CKH1–CKH6) swing between their power-supply rails (GHON and VGL) according to the input logic levels on their correspond-ing inputs (ST, CK1–CK6) except during a gate-shading period. During a gate-shading period, a CKH_ output driver becomes high impedance, and an internal switch connected between the CKH_ output’s capacitive load and either RO or RE closes whenever the state of its cor-responding CK_ input is logic-low. This allows a portion of an output’s GHON-to-VGL transition to be completed by partially discharging its capacitive load through an external resistor attached to either RO or RE, for a dura-tion set by the gate-shading period.For further details, refer to the High-Voltage Scan Driver section in the MAX17117 IC data sheet.P1 provides an easy interface to connect external circuitry containing the ST and CK1–CK6 logic signals to the EV kit. When driving the ST and CK1–CK6 logic signals through P1, place all SW1 switches in the on position.Table 1. Jumper JU1 FunctionsSHUNT POSITIONENA PINEV KIT OUTPUTS 1-2ENA connected to LDOO through resistor R8Outputs enabled (VMAIN = +8.5V)2-3ENA connected to groundOutputs disabled (VMAIN ~ VIN)MAX17117 Evaluation Kit E v a l u a t e s : M A X 171174 ______________________________________________________________________________________Jumper Selection (JU1)The EV kit incorporates jumper JU1 to control the chip-enable control. See Table 1 for jumper JU1 functions.Output-Voltage SelectionStep-Up Switching-Regulator Output Voltage(VMAIN)The EV kit’s step-up switching-regulator output (VMAIN) is set to +8.5V by feedback resistors R1 and R2. To generate output voltages other than +8.5V (up to +15V), select different external voltage-divider resistors R1 and R2. For instructions on selecting the step-up switching regulator feedback divider resistors for other output volt-ages, refer to the Output-Voltage Selection section in the MAX17117 IC data sheet.Note that changing the VMAIN voltage setting changes the GHON and VGL charge-pump output voltages. The voltage range of VGL is limited to -15V. The volt-age range of GHON is limited to +35V. The voltage difference between GHON and VGL should not exceed +40V. If VMAIN is set for more than +11V, disconnect the GHON and VGL pins from the charge-pump outputs. If operation of the high-voltage scan driver is desired for VMAIN greater than +11V, power GHON and VGL from an external supply.Op-Amp Output Voltage (VOUT)The EV kit’s op amp is configured internally as a unity-gain buffer. The voltage at the noninverting input (POS) is set to half of VMAIN by voltage-divider resistors R4 and R5. To set VOUT to other voltages (up to VMAIN), select different divider resistors according to the follow-ing equation:VMAIN R4R51VOUT=×−MAX17117 Evaluation KitEvaluates: MAX17117 Array_______________________________________________________________________________________ 5MAX17117 Evaluation Kit E v a l u a t e s : M A X 171176 ______________________________________________________________________________________MAX17117 Evaluation KitEvaluates: MAX17117_______________________________________________________________________________________ 7Figure 1c. MAX17117 EV Kit Schematic (Sheet 3 of 3)MAX17117 Evaluation Kit E v a l u a t e s : M A X 171178 ______________________________________________________________________________________MAX17117 Evaluation KitEvaluates: MAX17117 Array_______________________________________________________________________________________ 9Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.10 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600© 2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.MAX17117 Evaluation Kit E v a l u a t e s : M A X 17117Revision HistoryREVISION NUMBERREVISION DATE DESCRIPTIONPAGES CHANGED4/10Initial release—。
KINTEX UltraScale开发平台用户手册ACKU040核心板2 / 24芯驿电子科技(上海)有限公司文档版本控制文档版本修改内容记录REV1.0创建文档目录文档版本控制 (2)一、ACKU040核心板 (4)(一)简介 (4)(二)FPGA芯片 (5)(三)DDR4 DRAM (5)(四)QSPI Flash (10)(五)时钟配置 (11)(六)LED灯 (12)(七)电源 (12)(八)结构图 (14)(九)连接器管脚定义 (14)3 / 244 / 24芯驿电子科技(上海)有限公司一、 ACKU040核心板(一) 简介ACKU040(核心板型号,下同)核心板,FPGA 芯片是基于XILINX 公司的XC7K325系列的XCKU040-2FFVA1156I 。
核心板使用了4片Micron 的1GB 的DDR4芯片MT40A512M16LY-062EIT,总的容量达4GB 。
另外核心板上也集成了2片128MBit 大小的QSPI FLASH ,用于启动存储配置和系统文件。
这款核心板的6个板对板连接器扩展出了359个IO ,其中BANK64和BANK65的104个IO 的电平是3.3V ,其它BANK 的IO 都是1.8V 。
另外核心板也扩展出了20对高速收发器GTH 接口。
对于需要大量IO 的用户,此核心板将是不错的选择。
而且IO连接部分,FPGA 芯片到接口之间走线做了等长和差分处理,并且核心板尺寸仅为80*60(mm ),对于二次开发来说,非常适合。
ACKU040核心板正面图5 / 24(二) FPGA 芯片核心板使用的是Xilinx 公司的KINTEX UltraSacale 芯片,型号为XCKU040-2FFVA1156I 。
速度等级为2,温度等级为工业级。
此型号为FFVA1156封装,1156个引脚,引脚间距为1.0mm 。
Xilinx KINTEX UltraSacale 的芯片命名规则如下图1-2-1所示:图1-2-1 KINTEX UltraSacale FPGA 型号命名规则定义其中FPGA 芯片XCKU040的主要参数如下所示:名称具体参数 逻辑单元Logic Cells 530,250 查找表(CLB LUTs) 242,400 触发器(CLB flip-flops) 484,800 Block RAM (Mb )大小 21.1 DSP 处理单元(DSP Slices )1,920 PCIe Gen3 x8 3GTH Transceiver20个,16.3Gb/s max速度等级 -2 温度等级工业级(三) DDR4 DRAM核心板上配有四片Micron(美光)的1GB 的DDR4芯片,型号为MT40A512M16LY-062EIT 。
LPC1788 OEM核心板参数
版本V1.03
概述
电子产品市场瞬息万变,对产品开发提出更高的要求,更短的研发周期,更稳定的产品质量,更少的研发投入。
传统芯片级的设计模式,软件编程起始于芯片的寄存器,需要投入大量的资金、人员和时间才有可能构建一个稳定的产品平台。
使用成熟的OEM系统核心板,可以大大减少投入,缩短研发时间,在最短的时间内最到稳定的产品,最大程度规避研发风险。
DS-LPC1788系统核心板在硬件上集成了MCU、NAND Flash、SDRAM、Clock,构成了一个完整的最小系统。
软件上,提供开源操作系统、完整的外设驱动源码,并以静态连接库形式提供稳定的中间件,包括TCP/IP网络协议栈、GUI图形用户界面库、FA T文件系统、USB标准类库,为开发者提供一个稳定的开发平台。
使用系统核心板开发产品,进行产品硬件设计时,您只要关注产品特有的一些硬件接口,而在产品软件开发时,您只要关注真正与用户相关的业务逻辑。
只有将注意力真正放在与产品的用户特性上,才能迅速开发出符合市场的稳定产品。
核心板硬件配置
LPC1788内部FLASH512K,内部RAM96K
外部SDRAM,32位64M
外部NAND FLASH 128M
12M,32.768K晶振
3.3V供电
2*80脚1.27mm间距插针结构框图Array
电器规格
产品尺寸
长90mm 宽60mm
接口定义
J1接口管脚定义
J2接口管脚定义
J1、J2接口管脚说明。
DS-9600 8600 7700 7600系列快速操作指南V2.2.0 DS-9600 8600 7700 7600系列快速操作指南V2.2.0操作准备1.确保设备已正确安装并连接稳定的电源和网络。
2.在电源打开后,检查设备的状态指示灯。
- 如果指示灯为绿色,则设备正常工作。
- 如果指示灯为红色或闪烁,则表示设备存在故障,请及时联系技术支持。
设备启动1.打开电源开关,等待设备启动。
2.在设备启动后,确认设备状态指示灯为绿色。
主界面1.设备启动后,进入主界面。
2.主界面包含以下内容:- 实时录像:显示当前正在进行的录像,可实时查看监控画面。
- 录像回放:可查看设备中存储的录像文件并进行回放。
- 配置管理:对设备进行各项配置,包括网络设置、用户管理等。
- 系统信息:显示设备的硬件和软件信息。
实时录像1.实时录像图标进入实时录像界面。
2.在实时录像界面,可以查看当前正在录制的监控画面。
3.可通过鼠标右键监控画面,进行画面放大、缩小、拖动等操作。
4.可通过实时录像界面的菜单栏,进行录像控制,包括开始录像、停止录像等操作。
录像回放1.录像回放图标进入录像回放界面。
2.在录像回放界面,可以选择回放设备中存储的录像文件。
3.可通过时间轴选择回放指定时间段的录像。
4.可通过回放界面的菜单栏,进行录像回放操作,包括播放、暂停、快进、慢放等操作。
配置管理1.配置管理图标进入配置管理界面。
2.在配置管理界面,可以对设备进行各项配置,包括网络设置、用户管理、存储设置等。
3.可根据需求进行相应的配置操作,并保存按钮保存配置。
系统信息1.系统信息图标进入系统信息界面。
2.在系统信息界面,可以查看设备的硬件和软件信息。
3.也可以查看设备的运行状态、网络状态等。
附件本文档涉及的附件详见附件目录。
法律名词及注释1.法律名词:指在法律中被使用的专门术语。
2.注释:对法律名词进行解释和说明的文字。
DS-8000系列网络硬盘录像机用户使用手册(V1.5版)一、DS-8000HS后面板说明❶❷❸❹❺❻❼❽序号物理接口连接说明1视频输入(VIDEO IN)连接(模拟)视频输入设备,标准BNC接口。
环通输出(AUDIO IN)连接监视器,视频环通输出。
2 视频输出(AUX VOUT)连接监视器,4个副口视频输出。
3 视频输出(VOUT)连接监视器,本地视频及菜单输出。
4 VGA接口连接VGA显示设备,如电脑VGA显示器等。
5 键盘接口(KEYBOARD)2个,任意选择其中一个用于连接(485)控制键盘,使用RJ45接口的3、4线(接收信号)接控制键盘的D+、D-;另外一个用于设备间的级联,级联的设备两端均使用RJ45接口的3、4线。
RS-232接口连接RS-232设备,如调制解调器、电脑等。
设备配件盒内提供了连接线。
UTP网络接口连接以太网络设备,如以太网交换机、以太网集线器(HUB)等。
6 RS-485接口连接RS-485设备,如解码器等。
使用绿色弯针的插座,4针分别是T+、T-、R+、R-,其中1、2线(发送信号)接解码器等。
7报警输入(IN)接开关量的报警输入。
报警输出(OUT)接开关量报警输出。
8 电源通过开关可以选择输入的交流电压为220V或110V。
二、DS-8000HS/HTS前面板说明❶❷❸❹❺❻❼❽序号类型名称说明1 状态灯1-16 通道1-16状态显示。
绿色表示正在录像,红色表示正在网传,橙色表示正在录像和网传。
指示灯闪烁并呈红色,表示对应序号的硬盘有错误。
2 液晶显示屏信息显示。
3 复合键MENUESCEDITAINFO 1、预览界面到菜单操作界面的切换;2、雨刷控制快捷键【WIPER】。
取消当前操作,返回到上级菜单。
1、进入编辑状态,在编辑状态下用于删除光标前字符;2、光圈控制键【IRIS+】;3、选择框状态✓与×之间的切换。
1、输入法(数字、英文、中文、符号)之间的切换;2、焦距控制键【FOCUS+】;3、本地预览界面中,显示/隐藏通道状态。
NXP LPC1778核心板
LPC1778核心板是鼎尚嵌入式推出的一款专注于过程控制的系统核心板,适用于通信、工业、医疗、安防、仪器仪表、智能家居等众多领域,对外提供LAN、USB、UART、SPI、I2C、SD、AD、DA、PWM、J-TAG、GPIO等各类外设接口。
使用核心板进行模块化的产品设计,可有效缩短产品的开发过程、降低研发风险。
核心板采用ARM Cortex-M3内核的LPC1778微控制器,芯片内置96KB片内SRAM、512KB Flash,核心板集成10/100M自适应以太网控制器、128KB 片外SRAM、4MB SPI Flash、Micro SD卡卡座。
核心板对外提供3个双排40P的排针接口,其中中间的排针接口引出了EMC总线和SD卡总线,不需要的用户可以不用连接(核心板缺省不安装该排针)。
使用核心板开发产品时,用户只需要专注开发自己的外设电路,降低研发风险,加快产品推向市场的速度。
鼎尚嵌入式为LPC1778核心板提供了快速学习和评估的开发板,开发板为各种外设接口提供了相应的硬件解决方案和应用例程代码。
专门为核心板开发了开源Bootloader程序,可方便、快速的加载各种应用例程,支持使用SD卡、U盘、USB连接电脑等多种程序升级方法。
鼎尚嵌入式也可以根据客户的应用需求提供基于核心板的产品ODM开发服务。
文档修改历史
2014-06-21 V0.9 文档创建
2014-07-10 V1.0 文档审核后发布
2014-07-21 V1.1 增加配套开发板相关描述
目录
二、简要框图 (4)
三、结构与接口 (5)
3.1尺寸图 (5)
3.2 SRAM存储器连接 (6)
3.3板间连接器接口说明 (7)
4.1 以太网接口电路 (9)
4.2 LCD屏驱动电路 (10)
4.3 USB设备接口电路 (11)
4.4 USB主机接口电路 (11)
4.5 RS232串口电路 (12)
4.6 RS485接口电路 (12)
4.7 扬声器电路 (12)
4.8 I2C接口扩展温度传感器 (13)
4.9 CAN接口电路 (13)
五、配套开发板简介 (14)
5.1 开发板规格 (14)
5.2 开发板例程 (15)
一、产品特性
◆ARM Cortex-M3内核的LPC1778微控制器,120MHz主频、96KB SRAM、512KB Flash。
◆板上扩展128KB 片外SRAM、4MB SPI-Flash、以太网控制器LAN8720。
◆板上扩展Micro SD卡卡座,可直接扩展系统存储空间。
◆板上引出3个双排2.54mm间距40P的板间连接器,可扩展丰富外设接口
◆丰富的外设接口
■1个10/100M自适应LAN接口,带PHY。
■2个USB 2.0主机/从机接口,含OTG控制器,带PHY。
■5个UART,带小数波特率发生功能。
带RS485功能支持。
■3个SSP控制器
■3个I2C接口,其中1个具有开漏输出功能,数据速率为1MBit/s的快速模式。
■1个I2S串行音频接口
■2个双通道CAN接口
■1个8通道12位ADC,转换速率高达400kHz,并具有多个结果寄存器。
■1个10位DAC
■1个Motor control PWM,支持三相电机控制。
■4个通用定时器
■1个J-TAG调试接口
■1个SD卡接口,同时支持MMC卡。
(缺省不安装)
■1个16位地址8位数据静态EMC总线接口(缺省不安装)
◆提供开源Bootloader引导程序
◆提供开发板及各种示例程序
核心板板载器件说明:
二、简要框图
三、结构与接口
3.1尺寸图
核心板左、右两侧和下方各有一个双排2.54mm间距40P的排针(下面的排针缺省不安装),核心板通过排针与用户主板连接。
除此以外,另有一个Micro SD卡插槽可以在核心板上直接扩展系统存储空间。
用户主板可以安装2.54mm排座,也可以开排孔直接将核心板焊接在主板上,排孔的直径不小于0.9mm即可。
核心板有一个直径为2mm的固定孔,用户主板在相同位置也应开一个相同的固定孔,两个固定孔通过螺柱连接,可以进一步增强连接的牢固程度。
同时,固定孔也可以作为在安装核心板时的定位孔使用,避免将核心板插反。
3.2 SRAM存储器连接
因为LPC1778FBD144的EMC总线地址线只有16根,所以通过CS0和CS1的组合控制SRAM 芯片A16地址线,CE脚接74HC1G08管脚,SRAM存储器的访问地址空间为0x8FFF 0000~0x9000 FFFF的空间。
每个空间大小为1个字节(8BIT),因此,SRAM的存储空间容量为128KB。
LPC1778集成有10M/100M以太网媒体访问控制器(MAC)。
LPC1778核心板设计时使用Microchip公司的LAN8720作为以太网PHY。
LAN8720是工业级的单端口PHY,支持MII和RMII,LAN8720与LPC1778的硬件连接如上图所示,LAN8720使用RMII接口与LPC1778连接。
3.3板间连接器接口说明
说明:
U403连接器缺省不安装,连接器中EMC管脚与核心板的SRAM复用,需要使用EMC 管脚的用户,不能再使用核心板的SRAM(不焊)。
连接器中的MCI管脚与核心板上的Micro SD卡复用,通过连接器扩展了SD卡的用户,不能再使用核心板的Micro SD卡。
管脚可以根据芯片用户手册配置成多种不同功能。
如果不需要作为功能管脚使用,一般可作为普通IO管脚使用。
四、扩展接口说明
板间连接器可扩展丰富外设接口,包括以太网、LCD 、AD、DA、UART、USB-Host、USB-Device、SPI、I2C、J-TAG、,针对一些典型外设的硬件连接,以下分别进行说明。
4.1 以太网接口电路
核心板上的以太网控制器已经包含了收发器,所以在扩展以太网接口时,仅需将核心板上以太网管脚连接到用户主板的以太网变压器。
上图中,我们选择了内置变压器的以太网端口,因此将核心板的以太网管脚直接与端口相连即可,可进一步节省线路板面积。
4.2 LCD屏驱动电路
1602液晶是一种字符型液晶屏,是一种专门用来显示字母、数字、符号等的点阵型液晶模块。
它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用。
1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符的液晶模块(显示字符和数字)。
字符液晶大多数是基于HD44780液晶芯片的,控制原理是完全相同的,因此基于HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。
在实际使用中可以用LPC1778的I/O脚模拟液晶的时序对液晶的显示进行操作。
将核心板的USB设备信号线直接接入USB设备端口USB_D+接1.5K上拉电阻。
如果用户主板独立供电(没有从USB主机接口取电),则可以使用USB CONNECT管脚产生USB_DET 信号,使主机识别出设备进行连接。
4.4 USB主机接口电路
将核心板的USB HOST接口数据线直接连接到USB端口上,使用专门的USB电源管理芯片LM3526对USB设备供电进行精确管理。
核心板一共可以引出5个串口,核心板UART信号接到RS232接口时,使用SP3232芯片将TTL电平转换成RS232电平即可。
4.6 RS485接口电路
核心板提供的5路串口都可以扩展成为485接口功能,核心板UART信号连接RS485时可以使用SP3485芯片。
将TTL信号转换成RS485信号。
4.7 扬声器电路
核心板音频信号输出后,经电容耦合到音频输出端,使用扬声器输出。
音频信号经LM386
放大器放大后输出到扬声器,可直接推动0.5W喇叭。
4.8 I2C接口扩展温度传感器
LM75是一个I2C接口的温度传感器,将核心板的I2C接口管脚接LM75芯片,可以采集当前的环境温度。
4.9 CAN接口电路
核心板提供两路CAN接口,使用时直接将核心板的CAN引脚连接到TJA1040芯片上就可以完成TTL信号和CAN信号之间的转换。
五、配套开发板简介
鼎尚嵌入式为LPC1778核心板提供了快速学习和评估的开发板,开发板为各种外设接口提供了相应的硬件解决方案和应用例程代码。
专门为核心板开发了开源Bootloader程序,可方便、快速的加载各种应用例程,可进行在线升级与维护。
使用开发板可有效提高您的产品研发效率。
开发板详细使用方法请参考【DS-LPC1778开发板用户手册】
5.1 开发板规格
◆1个10/100M自适应以太网接口
◆1个USB主机接口
◆1个USB设备接口
◆1个1602工业字符屏
◆2个RS232串口
◆1个485总线接口
◆1个CAN总线接口
◆1个I2C接口接温度传感器
◆1个AD输入电位器
◆1个DA音频输出接口
◆1个五向按键接口、1个复位按键、1个ISP按键
◆4个高亮LED灯
◆1个标准20P的J-TAG调试接口
◆1个RTC电池座
◆1个扩展14P接口(5V、3.3V、UART、SPI、I2C、GPIO)
◆4个20P排孔的测试点(板间连接器全部管脚)
5.2 开发板例程。