第1课时解一元一次不等式组
- 格式:doc
- 大小:172.00 KB
- 文档页数:5
9.2 一元一次不等式第1课时解一元一次不等式【知识与技能】1.掌握一元一次不等式的解法.2.列一元一次不等式解决简单的实际问题.【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式.【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心.【教学重点】一元一次不等式的解法.【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式.一、情境导入,初步认识问题 1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________.当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________.(3)在乙店花费小,列不等式:__________________.问题 2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果.二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1.注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向.三、运用新知,深化理解1.解下列不等式,并在数轴上表示解集.(1)256x-≤314x+;(2)10.5x--210.75x+≥18.2.当x取什么值时,3x+2的值不大于732x-的值.3.一次知识竞赛共30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了___道题.4.已知方程组2315x y ax y a-=⎧⎨+=-⎩,的解x与y的和为正数,求a的取值范围.5.已知关于x的不等式52x+-1>22ax+的解集是x<1/2,求a的值.6.已知不等式4x-3a>-1与不等式2(x-1)+3>5的解集相同,求a的值.7.当k是什么自然数时,方程2/3x-3k=5(x-k)+6的解是负数?8.当x取什么值时,代数式546x+的值不小于7/8-13x-的值,并求出此时x的最小值.【教学说明】题1可由两名学生在黑板上板书解题过程.其它学生在草稿纸上解答,教师巡视,适时指导有困难的学生;板书完后,教师给予点评,加深印象:题2~3,教师给予提示,帮助学生理解题意,寻找不等关系;题4~8,先让学生自主思考,交流,寻找解题思路.然后,师生共同完成解答.教师可根据实际情况选取部分习题来讲解.【答案】1.解:(1)去分母得:2(2x-5)≤3(3x+1),4x-10≤9x+3,-5x≤13,x≥-13/5.解集在数轴上表示为:(2)化简得:2(x-1)-4/3(2x+1)≥18, 6(x-1)-4(2x+1)≥54,6x-6-8x-4≥54,-2x≥64,x≤-32.解集在数轴上表示为:2.解:由题意得:73 322xx-+≤6x+4≤7x-3-x≤-7.x≥73.24 解析:设小明答对了x道题,则4x-(30-x)≥90,5x≥120,x≥24.即小明至少答对了24道题.4.解:将两个方程相加得2x+2y=1-3a.∴x+y= 123a -.∵x+y>0,∴123a->0,∴a<1/3.5.解:化简不等式得(1-a)x>-1.∵x<1/2,∴1-a<0.∴x<1 1a --∴11a--=1/2,∴a=3.6.解:解不等式4x-3a>-1得,4x>3a-1,x>31 4a-;解不等式2(x-1)+3>5得,2x-2+3>5,2x>4,x>2;由于上述两个不等式的解集相同,∴314a-=2,∴a=3.7.解:解方程得x=61813k-<0,6k-18<0,k<3,故自然数可取k=2,1,0.8.解:依题意:546x+≥78-13x-,解得x≥-1/4,即当x≥-1/4时,代数式546x+的值不小于78-13x-的值,此时x的最小值为-14.四、师生互动,课堂小结1.解一元一次不等式的一般步骤与解一元一次方程相同,只是在系数化为1时,若遇到运用不等式性质3,一定要改变不等号方向.2.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.1.布置作业:从教材“习题9.2”中选取.2.完成练习册中本课时的练习.本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( ) A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.一元一次方程的解法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程变形是移项的是( )A.由3=x得,9=8xB.由x=-5+2x,得x=2x-5C.由2x-3=x+5,得x-=+D.由y-1=y+2,得y-y=2+1【解析】选D.A是根据等式性质2,两边同乘以3得到的,B是利用了加法交换律得到的,C是将方程两边同除以2得到的,D中变形是移项.2.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1,②移项,得4x+x-2x=1+4,③合并同类项,得3x=5,④两边都除以3,得x=,经检验,x=不是原方程的解,说明解题的四个步骤中有错误,其中开始出现错误的一步是( )A.①B.②C.③D.④【解析】选B.步骤②中等号左边的-x没有移动,不能变号.3.(2013·淄博中考)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )A.70 cmB.65 cmC.35 cmD.35 cm或65 cm【解析】选 A.设一段木棍长为xcm,则另一段长为(2x-5)cm,根据两段木棍共长100cm,可列方程x+(2x-5)=100,解得x=35,2x-5=65,因为这两段没有顺序,所以锯出的木棍的长可能为65cm或35cm.二、填空题(每小题4分,共12分)4.(2013·贵阳中考)方程3x+1=7的解是.【解析】移项,得3x=7-1,合并同类项,得3x=6,方程两边同除以3,得x=2.答案:x=25.若单项式-4x m-1y n+1与x2m-3y3n-5是同类项,则m= ,n= .【解析】根据同类项的概念可得m-1=2m-3,n+1=3n-5,由m-1=2m-3,移项,得m-2m=-3+1,合并同类项得-m=-2,两边都除以-1,得m=2.由n+1=3n-5,移项,得n-3n=-5-1,合并同类项,得-2n=-6,两边都除以-2,得n=3.答案:2 36.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.【解析】设鸡有x只,则兔有(33-x)只,根据题意可得2x+4(33-x)=88,解得x=22,33-x=11,即鸡有22只,兔有11只.答案:22 11三、解答题(共26分)7.(8分)解方程:(1)2(y-2)-(4y-1)=9(1-y).(2)4(y-7)-2[9-4(2-y)]=22.【解析】(1)去括号,得2y-4-4y+1=9-9y,移项,得2y-4y+9y=9+4-1,合并同类项,得7y=12,两边都除以7,得y=.(2)去小括号,得4y-28-2[9-8+4y]=22,去中括号,得4y-28-18+16-8y=22,移项,得4y-8y=22+28+18-16,合并同类项,得-4y=52,两边都除以-4,得y=-13.8.(8分)关于x的方程4x+2m=3x+1和3x+2m=4x+1的解相同,求m的值和方程的解. 【解析】解两个方程得x=1-2m和x=2m-1.因为它们的解相同,所以1-2m=2m-1,解得m=.将m=代入x=1-2m或者x=2m-1,得x=0.所以m=,方程的解为x=0.【培优训练】9.(10分)当m取何值时,关于x的方程2mx=(m+1)x+6的解是正整数?【解析】2mx=(m+1)x+6,去括号,得2mx=mx+x+6,移项,合并同类项,得(m-1)x=6,当m-1=0时,原方程无解,当m-1≠0时,两边都除以m-1,得x=(m-1≠0).因此当m-1=1或2或3或6时,方程的解是正整数,因此,m的值为2或3或4或7.。
浙教版八年级上册数学《3.3一元一次不等式第1课时认识一
元一次不等式》教案
第3章
一元一次不等式
3.3
一元一次等式
第1课时
认识一元一次不等式
1.会解简单的一元一次不等式,并能在数轴上表示其解集.
2.通过对一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣.掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来.一元一次不等式的解法
复习提问:
(1)不等式的三条基本性质是什么?
(2)运用不等式基本性质把下列不等式化成x>a或x
②2x>x-5
③x-4<6
④x≥x
(3)什么叫一元一次方程?解一元一次方程的步骤是什么?
【教学说明】通过问题,让学生回顾一元一次方程的概念和解一元一次方程的步骤,以及不等式的意义,不等式的基本性质和不等式的解集,为后面归纳一元一次不等式的概念及解法提供条件.同时让学生体会等式与不等式之间所蕴含的特殊与一般的关系.探究1:一元一次不等式的概念
观察下列不等式:
这些不等式有哪些共同点?
【归纳结论】左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式,叫做一元一次不等式.例:5x+6≤4,7x +10>5是一元一次不等式么?
解:上述两个不等式都是一元一次不等式,因为左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1的不等式什么是一元一次不等式。
8.3 一元一次不等式组
教学目标
本节通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念,教会学生怎样解一元一次不等式组,并通过具体实例让学生经历知识的拓展过程,也重视不等式与不等式组的解集在数轴上的表示,让学生进一步感受数形结合的作用,逐步熟悉和掌握这一重要的思想方法。
本节中还通过具体实例的解决让学生体会到对题意的分析和理解是建立数学模型的基础,并认识到现实生活中的数量关系是错综复杂的。
知识与能力
1.通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。
2.通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。
3.通过对具体实例的分析让学生感受现实生活中错综复杂的数量关系,让学生认识到现在学习的不等式和方程知识是认识客观世界的基础。
4.通过对例题的学习掌握解一元一次不等式组的方法及其应用。
过程与方法
1.创设情境,通过实例引导学生考虑多个不等式联合的解法。
2.通过例题总结解一元一次不等式组的方法,并总结一元一次不等式组的解与一元一次不等式的解之间的关系。
3.通过对典型例题的分析加深对结一元一次不等式组的认识。
4.通过练习进一步巩固解一元一次不等式。
情感、态度与价值观
1.通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方
法。
2.在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。
3.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。
4.通过对例题的解决,提高学生的数学说理能力。
教学重、难点及教学突破
重点1.理解一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。
2.掌握一元一次不等式组的解法。
难点1.弄清一元一次不等式的解集与一元一次不等式组的解集之间的关系。
2.灵活运用一元一次不等式组的知识解决问题。
教学突破
本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。
另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,利用观察法、归纳法即可掌握求不等式解集的办法。
第1课时解一元一次不等式组
教学目标:1.了解一元一次不等式组及其解集的概念。
2.探索不等式组的解法及其步骤。
教学过程:
一.复习引入:
1.不等式2+3x <9的正整数解是_______,不等式3-4x <8的负整数解是_______。
2.已知03)242(2=--+-k b a a ,当k 取什么值时,b 为负数?
二.新课探究:(课本P50)问题3及分析
概括:几个不等式的解集的公共部分,叫做由它们所组成的
不等式组的解集。
解一元一次不
等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分。
利用数轴可以直观地帮助我们求出不等式组的解集。
例1:解不等式组:(1)⎩⎨
⎧>+>-821213x x x ;(2)⎩⎨⎧<-<-x x x 332312 例2:解不等式组:(1)⎪⎩⎪⎨⎧-≤-+>-x x x x 23712
1)1(325;(2)⎩⎨⎧>-<+423532x x 归纳得口决:同大取大,同小取小,大小取中,矛盾无解。
三.基础训练:课内练习P52练习第1、2题。
四.能力拓展:1.若不等式组⎩⎨
⎧<-≥-001m x x 无解,求m 的取值范
围。
2.解不等式组⎪⎩⎪⎨⎧->-+-<--)3(4)4(316125x x x x ,并将解集在数轴上表示出来。
3.解不等式组:(1)⎪⎩⎪⎨⎧<->+>-04302012x x x ;(2)⎪⎩
⎪⎨⎧+>-+≤-≤-823323
46x x x x x
五.引申提高:解不等式:(1)65
)31(31≤+≤-x ;(2)835≤-x 六.小结:1.不等组的解集的意义:(略)
2.数形结合,借助数轴来确定解集。
七.作业:P54习题8.3第1、2、3题。
课外作业:
1.若关于x 的不等式组327x x a -<⎧⎨<⎩
的解集是3x <,则下列结论正确的是 ( )
A .3a =
B .3a <
C .3a >
D .3a ≥
2.若方程组323
x y x y a -=⎧⎨+=-⎩的解是负数,则a 的取值范围是 ( )
A .36a -<<
B .6a <
C .3a <-
D .无解
3.若142x ≤<,则x 为
( )
A .142x ≤<
B .142x -<≤-
C .142x ≤<或142
x -<≤- D .1,2,3x =±±±
4.已知方程组256217x y m x y +=+⎧⎨-=-⎩
的解为负数,求m 的取值范围.
5.若解方程组212x y x y m +=⎧⎨-=⎩
得到的x ,y 的值都不大于1,求m 的取值范围.
6.解不等式(1)521x x --+< (2)3050
90x x x +>⎧⎪->⎨⎪->⎩
7.若不等式组2123x a x b -<⎧⎨->⎩
的解集为11x -<<,求(1)(1)a b +-的值.
8.已知方程组31331x y m x y m +=+⎧⎨+=-⎩
的解满足0x y +>,求m 的取值范围.
9.在223x y t x y t =-⎧⎨+=-⎩
中,已知9y >,试求x 的取值范围.
10.解不等式组3(1)2(4)2321531
x x x x x +<-⎧⎪-⎪≤+⎨⎪+>⎪⎩ 11.解不等式组746232(2)
8574y y y y y y -<-⎧⎪+<+⎨⎪->-⎩。