多用户线性调频扩频信号特性分析
- 格式:pdf
- 大小:87.34 KB
- 文档页数:1
线性调频信号的时频分析研究随着通信技术的发展,线性调频信号(Linear Frequency Modulation,LFM)在通信系统中得到了广泛的应用。
线性调频信号是一种在一段时间内频率线性变化的信号,其具有宽带、抗多径衰落、抗高噪声等特点,因此适用于高分辨率雷达、超声定位、地震勘探等领域。
为了更好地理解和设计线性调频信号的应用系统,对其进行时频分析研究是非常重要的。
时频分析是一种将信号在时间和频率域上进行联合分析的方法,可以提供关于信号特性的更详细的信息。
对于线性调频信号而言,时频分析可以帮助我们获得信号的调频特性和调制参数。
下面将介绍几种常见的时频分析方法,以及它们在线性调频信号研究中的应用。
STFT是一种将信号在时间和频率上进行分析的方法,它通过将信号分成多个小时间窗口,并对每个窗口进行傅里叶变换,得到该窗口内信号的频谱信息。
STFT可以提供线性调频信号的瞬时频率信息,帮助我们理解信号的调频特性。
2. Wigner-Ville分布(Wigner-Ville Distribution,WVD)WVD是一种采用时频联合分析的方法,它通过计算信号的瞬时相位和瞬时幅度,得到信号在时频上的分布。
WVD可以提供线性调频信号的瞬时频率和瞬时频谱信息,有助于我们研究信号的调频参数和调频性质。
3. 希尔伯特-黄变换(Hilbert-Huang Transform,HHT)此外,还有一些其他的时频分析方法,如连续小波变换(Continuous Wavelet Transform,CWT)、自适应滤波器(Adaptive Filter),它们在线性调频信号研究中也有一定的应用。
通过将这些方法相互结合,可以更好地理解线性调频信号的时频特性和调制参数。
在线性调频信号的时频分析研究中,我们可以分析信号的频谱特性、瞬时频率变化、调制参数等。
通过这些分析,我们可以了解信号是否具有带宽限制特性、频率变化规律,以及在特定调制参数下,信号的传输性能如何。
线性调频扩频技术的研究与分析作者:庞云云来源:《人间》2016年第28期摘要:线性调频(Chirp)信号及其脉冲压缩技术长期以来被广泛的应用在雷达、声呐、生物医学、地球物理信号处理以及扩频通信中。
本文简单介绍了线性调频扩频技术(CSS)的基本原理以及CSS技术的优点。
重点研究CSS系统的BOK调制方式,及其调制下的误码率,并通过仿真对理论结果进行了验证。
关键词:线性调频信号;线性调频扩频(CSS);二进制正交键控(BOK);误码率中图分类号:TP311 文献标识码:A 文章编号:1671-864X(2016)10-0285-01一、线性调频扩频技术Chirp信号[1]即线性调频信号是研究最早且被广泛应用的一种脉冲压缩信号[2],具有良好的自相关性和匹配接收特性。
线性调频扩频(CSS)技术即Chirp超宽带扩频技术[3],其基本原理为脉冲压缩技术。
扩频系统是用Chirp信号来表示欲传输的数据,因为Chirp信号扫过一定的带宽,所以欲传输的数据被扩展到很宽的一段带宽上。
线性调频扩频技术除具有其它扩频技术的优点外,还具有自身的一些显著优点,即发射功率低、抗干扰能力强、抗多径效应能力强、抗频偏能力强等。
二、线性调频扩频系统的调制方式(一)系统的调制方式。
CSS系统存在两种基本的调制方式即BOK调制和直接调制(DM)。
本文主要讨论BOK 调制方式。
(二)BOK调制。
在BOK调制中,用SAW器件产生Chirp载波信号。
在发射端分别用UP-Chirp信号表示“1”和用DOWN-Chirp信号表示二进制信息“0”。
UP-Chirp信号和DOWN-Chirp信号具有相同的时间周期T和带宽B。
信号在信道中传输时会遇到很多的干扰,因此在接收时要用匹配滤波技术。
在接收端,根据UP-Chirp信号与DOWN-Chirp信号比较好的相关性以及匹配滤波特性,用单位幅度的UP-Chirp信号作为脉冲响应[4]与DOWN-Chirp信号相结合,进行相干解调,同理用DOWN-Chirp信号作为滤波器的脉冲响应信号与UP-Chirp信号结合进行相干解调。
多带线性调频信号具备极强的抗干扰能力作者:徐维开嵇凌俸玉祥赵志鹏来源:《中国新通信》 2020年第15期徐维开嵇凌俸玉祥赵志鹏中国电子科技集团公司第三十四研究所【摘要】线性调频扩展频谱信号以抗频偏、抗多普勒频移和抗干扰能力强,实现复杂度低,并且具备测距和定位能力成为了目前研究的热点[2]。
多载波技术能够有效解决无线信道的衰落问题,是实现高速率无线传输的重要手段[4]。
线性调频扩展频谱与多载波技术的结合形成了多带线性调频信号通信系统[5]。
多带线性调频信号相对与单带线性调频信号具备更强的抗噪声干扰能力。
【关键字】线性调频扩展频谱多带线性调频信号抗干扰能力一、发展现状扩频技术是军事通信中常用的一种抗干扰手段。
近年来,随着扩频通信技术的成熟,在民用通信领域也得到快速发展。
因为系统发现目标的能力与信号的能量成正比,所以为了提高系统的发现能力和分辨能力要求信号有大时宽带宽积。
在这种条件下,只能通过加大信号的时宽来获得大的信号能量。
但是信号往往会受到发射设备的峰值功率和数字信号处理设备的限制。
在该通信系统中,因为发射的单带Chirp信号的时宽带宽积近似等于1,所以大时宽和大带宽是相互对立的。
因此对于单带Chirp信号,高速度分辨力与测速精度与高距离分辨力与测距精度不可兼容。
多带Chirp通信信号的应用有效的解决了这个问题。
二、多带Chirp信号的信号处理过程首先对接收到的信号进行采样和量化得到离散信号。
其次对子带Chirp信号进行匹配滤波得到带内压缩的目标像,然后对匹配滤波所得数据进行排列组合得到距离-子带脉冲矩阵,对距离-子带脉冲矩阵数据进行IDFT变换实现带间压缩,最后通过图像拼接获得高分辨率的距离像。
信号处理过程如图 1所示:由于多带Chirp信号的每一个子带脉冲都是线性调频信号,为子带信号的带内压缩提供了有利的条件。
其子带Chirp信号压缩原理与单个线性调频信号的脉冲压缩方法一致(包括匹配滤波器和去斜率法)。
线性调频信号线性调频信号是一种在通信与信号处理领域中常见的信号类型,具有许多独特的特性及应用。
本文将对线性调频信号的基本概念、特征以及在实际应用中的重要性进行探讨。
1. 线性调频信号的概念线性调频信号是一种随时间呈线性变化频率的信号。
在时域中,线性调频信号的频率随时间以线性方式变化,通常可以表示为f(t)=f0+kt,其中f(t)为时刻t 的频率,f0为初始频率,k称为调频斜率。
在频域中,线性调频信号的频谱呈线性带宽,通常是一个宽度随时间线性增加的带通信号。
2. 线性调频信号的特征线性调频信号具有以下几个重要特征:•带宽随时间线性增加:线性调频信号的频谱宽度随时间线性增加,频率成比例地变化,这使得线性调频信号在频谱上呈现出一定的特殊性。
•信号分辨率高:由于频率随时间线性变化,线性调频信号在时间与频率域中具有很高的分辨率,适用于高精度的信号处理应用。
•抗干扰能力强:线性调频信号在一定的信噪比条件下具有较强的抗干扰能力,适用于复杂信道环境中的通信系统。
3. 线性调频信号的应用线性调频信号在许多领域都有着广泛的应用,主要包括:•雷达与通信系统:线性调频信号在雷达系统中用于目标距离测量和速度测量,通过分析目标回波信号来实现目标定位。
在通信系统中,线性调频信号也常用于频率调制与解调以及通信信号处理。
•医学成像:在医学成像中,线性调频信号可用于超声成像、核磁共振成像等领域,通过信号处理技术实现对生物组织的成像和诊断。
•声呐与测距系统:线性调频信号在声呐系统和测距系统中也有重要应用,用于测量目标距离和速度,实现目标探测与跟踪。
综上所述,线性调频信号作为一种特殊的信号类型,在通信、雷达、医学成像等领域具有着广泛而重要的应用。
了解线性调频信号的基本概念和特征,有助于深入理解其在实际应用中的工作原理和优势,对于相关领域的研究和开发具有重要的意义。
扩频通信的工作方式及其特点在发端输入的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。
在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。
扩频通信工作方式1.直接序列扩频轻易序列QPSK(ds-ss)就是轻易利用具备低码率的QPSK码序列使用各种调制方式在发端拓展信号的频谱,而在收端用相同的QPSK码序列回去展开解码,把拓展阔的QPSK信号转换成完整的信息。
2.跳频扩频冲频QPSK技术就是通过伪随机码的调制,并使载波工作的中心频率不断弹跳发生改变,而噪音和干扰信号的中心频率却不能发生改变。
这样,只要交、发信机之间按照紧固的数字算法产生相同的伪随机码,就可以达至同步,确定噪音和其他干扰信号。
3.跳时扩频冲时就是并使升空信号在时间轴上LBP。
先把时间轴分为许多时片。
在一帧内哪个时片升空信号由QPSK码序列展开掌控。
可以把冲时认知为:用一定码序列展开挑选的多时片的时移键控。
由于使用窄得很多的时片回去传送信号,相对说来,信号的频谱也就沉降了。
在发端,输入的数据先存储起来,由扩频码发生器的扩频码序列去控制通)断开关,经二相或四相调制后再经射频调制后发射。
在收端,由射频接收机输出的中频信号经本地产生的与发端相同的扩频码序列控制通-断开关,再经二相或四相解调器,送到数据存储器和再定时后输出数据。
只要收、发两端在时间上严格同步进行,就能正确地恢复原始数据。
冲时也可以看作就是一种时分系统,所相同的地方是它不是在一帧中紧固分配一定边线的时片,而是由QPSK码序列掌控的按一定规律LBP边线的时片。
冲时系统的处置增益等同于一帧中所分的时片数。
由于直观的冲时抗干扰性不弱,很少单独采用。
4.脉冲线性扩频升空的射频脉冲信号,在一个周期内,其载频的频率并作线性变化。
因其频率在较宽的频带内变化,信号的频宽也被沉降了。
扩频科技名词定义中文名称:扩频英文名称:frequency spread定义:利用与信息无关的伪随机码,以调制方法将已调制信号的频谱宽度扩展得比原调制信号的带宽宽得多的过程。
例如:跳频、混合扩频、直接序列扩频。
所属学科:通信科技(一级学科);通信原理与基本技术(二级学科)本内容由全国科学技术名词审定委员会审定公布扩频是一种信息处理传输技术。
扩频技术是利用同欲传输数据(信息)无关的码对被传输信号扩展频谱,使之占有远远超过被传送信息所必需的最小带宽。
特性1.扩频信号是不可预测的伪随机的宽带信号扩频2.扩频信号带宽远大于欲传输数据(信息)带宽3.接收机中必须有与宽带载波同步的副本补充传输信息时所用信号带宽远大于传输些信息所需最小带宽的一种信号处理技术。
发射端展宽频带是用独立于所传数据的码来实现,接收端用同步的相同码解扩以恢复所传数据。
扩频的基本方法有,直接序列(DS)、跳频(FH)、跳时(TH)和线性调频(Chirp)等4种,其频率时间关系如图1所示,目前人们所熟知的新一代手机标准CDMA就是直接序列扩频技术的一个应用。
而跳频、跳时等技术则主要应用于军事领域,以避免己方通信信号被敌方截获或者干扰。
扩频的主要特点为:抗干扰,抗多径衰落,低截获概率,码分多址能力,高距离分辨率和精确定时特性等。
工作原理码序列去调制数字信号以按照扩展频谱的方式不同,现有的扩频通信系统可以分为:直扩方式直接序列扩频(DirectSequenceSpreadSpectrum)工作方式,简称直扩(DS)方式直接序列扩频方式所谓直接序列(DS-DirectScquency)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的频谱。
而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。
直接序列扩频的原理如图所示。
用窄脉冲序列对某一载波进行二相相移键控调制。
如果采用平衡调制器,则调制后的输出为二相相移键控信号,它相当于载波抑制的调幅双边带信号。
扩频信号的频谱推导扩频信号的频谱推导一、什么是扩频信号?扩频信号(Spread Spectrum Signal)是指在无线通信中,通过改变信号的频率,将原始信号“扩展”到更宽的带宽上发送。
这一技术的应用极其广泛,涵盖了无线通信、传感器网络、卫星通信等领域。
二、扩频信号的特点1. 宽带传输:相比于传统的窄带信号,扩频信号在发送过程中占用更宽的频谱带宽,从而提高信号的传输速度和信息容量。
2. 抗干扰性能好:扩频信号的抗干扰能力较强,可以在复杂的电磁环境下稳定传输。
3. 隐蔽性强:由于扩频信号的频谱特点,使得其在传输过程中难以被非法窃听或干扰。
4. 高安全性:扩频信号的特有调制方式使得信号被非法解码的难度大大提高,因此具有较高的安全性。
三、扩频信号的频谱推导扩频信号的频率与原始信号的频率之间存在一定的关系,下面对扩频信号的频谱进行推导。
1. 扩频技术的基本原理扩频技术采用的是频域扩展的方式,即将窄带信号通过调制方法扩展到更宽的频带上。
在传输端,采用特定的扩频码对原始信号进行调制,然后通过无线介质传输。
在接收端,通过解调器对扩频信号进行解调,还原出原始信号。
2. 扩频信号的频谱特点扩频信号的频谱主要体现在以下两个方面:(1)频谱展宽:扩频信号的频谱宽度远大于原始信号的频带宽度。
通过采用长码序列或者快速码扩展技术,可以将原始信号展宽到几十乃至上百倍的频带宽度。
(2)带通滤波:在解调端,采用与发送端相同的扩频码对信号进行解调,因此只有具备相同扩频码的解调器才能解调出有用信号。
其他频率的信号在解调端被带通滤波器去除,从而实现了信号的隔离。
3. 扩频信号的频谱展宽过程扩频信号的频谱展宽过程可以用数学模型来描述。
假设原始信号为x(t),扩频过程中采用的扩频码为C(t),则扩频信号可以表示为y(t)=x(t)·C(t)。
通过对 y(t)进行频谱分析,可以得到扩频信号的频谱分布情况。
4. 扩频码的选择与频谱优化扩频信号的频谱分布与采用的扩频码有关。
线性调频信号线性调频信号(Linear Frequency Modulation Signal,LFM)是一种常用的单相(single-tone)通信信号,它的特点是频率发生变化,又称为线性扫频信号。
一、线性调频信号的特点:1. 频率发生变化:线性调频信号的特点是频率发生线性的变化,这种变化可以是瞬时频率的单调递增或单调递减;2. 由连续脉冲组成:线性调频信号是由连续脉冲组成,这些脉冲对应着不同频率;3. 可以传输信息:线性调频信号是一种有效的信号,它可以用来传输数字信号、声音信号和图像信号;4. 易于分析:线性调频信号是一种易于分析的信号,可以用常规的数学方法进行分析;5. 无衍射数据:线性调频信号不受衍射数据的影响,可以传输远距离,传输范围宽。
二、线性调频信号的用途:1. 卫星通信:线性调频信号是卫星通信中比较常用的信号,因为它可以确保在传输过程中数据的可靠性;2. 无线电高空数传控制:线性调频信号还被广泛应用于无线电高空数传控制中,例如,气象站、导弹等的控制;3. 遥控、车载导航:线性调频信号也可以用于遥控、车载导航系统,它可以有效地传输远距离的数据;4. 超声波连接AGV:线性调频信号也可以用于AGV(自动导航车辆)中的超声波连接,用于AGV控制车辆的运动;5. 广播信号:线性调频信号也可以用于广播,例如,电视和无线电节目的广播;6. 脉冲编码技术:线性调频信号也可以用于脉冲编码技术,用于数字信号的传输。
三、线性调频信号的优缺点:1. 优点:(1)由连续脉冲组成,可以容易地传输信息;(2)发射信号的特性比较稳定,不受干扰;(3)传输范围宽,信号可以传输到较远的距离;(4)信号可以进行精确地分析,易于识别和恢复;(5)由于信号为线性,易于模拟和数字化。
2. 缺点:(1)发射信号的特性容易受到可塑性电磁子的影响;(2)受到对象的大小和环境温度的影响,信号的变化会很快;(3)无线电信号受到巨型入侵的干扰。
摘要:扩频通信技术在发送端以扩频编码进行扩频调制,在接收端以相关解码技术进行收信,这一过程其具有诸多优良特性,即抗干扰性好、隐蔽性强、干扰小、易于实现码分多址等。
扩频调制即是将扩频码与待传输的基带数字信号进行模二叠加。
扩频调制后的信号还需要载波调制后才可以发送至信道。
在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩。
再经信息解调、恢复成原始信息输出。
由此可见,—般的扩频通信系统都要进行三次调制和相应的解调。
一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制。
本文着重介绍扩频调制的原理及其实现框图。
关键词:扩频技术,调制,PN码,simulink1、引言扩频通信,即扩展频谱通信(Spread Spectrum Communication),它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
扩频通信有如下的优点:抗干扰,抗噪音,抗多径衰落,具有保密性,功率谱密度低,具有隐蔽性和低的高精度测量等。
正是由于扩频通信技术具有上述优点,自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被应用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。
本文用MATLAB 中的simulink对扩频通信中扩频模块进行仿真, 讨论信号如何实现频谱展宽的。
以便为以后的扩频通信理论打下基础。
2、扩频通信系统2.1 扩通信系统模型按照扩展频谱的方式不同, 现有的扩频通信系统可分为直接序列( DS) 扩频、跳频( FH) 、跳时( TH) 、线性调频( chirp) 以及上述几种方式的组合。
本文主要讨论直接序列扩频系统的性能。
扩频技术的分类
扩频技术是一种将信号在频域上进行扩展的技术,主要用于增加信号的带宽,提高信号的抗干扰能力,以及实现多用户同时进行通信等。
根据扩频信号的产生方式和基带信号的调制方式,可以将扩频技术分为以下几类:
1. 直接序列扩频技术:直接将基带信号通过加扰序列进行扩频,扩频后的信号与加扰序列进行相关运算,得到被扩频的信号。
该技术简单易实现,但由于扩频信号与噪声的相关性较高,信号抗干扰能力相对较弱。
2. 分组扩频技术:将基带信号分成多个数据块,对每个数据块
进行扩频处理,然后将多个扩频信号组合起来形成一个大的扩频信号。
该技术能够提高信号的抗干扰能力和安全性,但需要多个扩频信号的同步控制。
3. 混沌扩频技术:利用混沌系统生成的非线性随机序列进行扩频,使得扩频信号具有更高的随机性和复杂性,提高了信号的抗干扰能力和安全性。
同时,混沌扩频技术还具有多用户接入的优势。
4. 频率跳变技术:将基带信号进行频率跳变,使得信号在不同
的频率上进行传输,从而增加信号的带宽和抗干扰能力。
该技术适用于高速移动通信和军事通信等领域。
5. 扩频多址技术:将多个用户的信号进行扩频后,将它们叠加
在同一个频带上进行传输,从而实现多用户同时进行通信。
该技术应用广泛,如CDMA、WCDMA等。
线性调频信号的时频分析研究摘要线性调频信号是其中一类有代表性的非平稳信号,该信号广泛存在于雷达、声纳、语音、地球物理和生物医学信号处理中。
对于这类频率随时间变化的信号,传统的时间域和频率域的分析方法都不能够全面的反映信号的特征,而时频分析是分析和处理非平稳信号的有力工具。
利用时频分布,可以对各种信号进行分析、处理,提取信号在特定时间特定频率所具有的特征信息。
文中介绍了线性调频信号的定义及特性,描述了短时傅里叶变换,Wigner—Ville 分布,Wigner—Hough分布三种时频分析方法。
通过对时频分析方法的原理介绍,运用MATLAB 中的工具箱,对一个线性调频信号进行时频分析的MATLAB仿真。
通过对几种时频分析方法比对分析和基于MATLAB信号降噪的仿真实验,验证几种分析方法的优越性。
关键词:线性调频信号时频分析短时Chirp-Fourier变换 Wigner—Ville分布Wigner—Hough分布Linear FM signal time-frequency analysisAbstractIn modern signal processing, linear frequency modulation signal is one representative of non-stationary signals, the signal is widespread in radar, sonar, speech, and geophysics, and biomedical signal processing. Such frequency time-varying signal, the traditional time domain and frequency domain analysis methods are not able to fully reflect the characteristics of the signal, but when the frequency analysis is a powerful tool for analysis and processing of non-stationary signals. Using time-frequency distribution to analyze a variety of signal processing, extract the signal characteristics with a specific frequency at a specific time.This paper introduces the definition and characteristics of the linear FM signal, describes the short-term Chirp-Fourier Transform, Gabor distribution ,Wigner-Ville distribution of two kinds of time-frequency analysis. By the principle of time-frequency analysis method, the use of the toolbox in MATLAB, MATLAB simulation of time-frequency analysis of a linear FM signal. By frequency analysis of several methods of analysis and MATLAB-based signal to noise simulation and validation of several advantages of the method.Key words: LFM signal Time-frequency analysis Wigner-Ville distribution Discrete Chirp-Fourier transform目录1 绪论 (1)1.1 课题背景及研究意义 (1)1.2 国内外发展状况 (3)1.3本论文的主要内容 (4)2 线性调频信号 (5)2.1 线性调频信号的定义 (5)2.2线性调频信号的特点 (5)2.3 线性调频信号的仿真 (6)3 线性调频信号的时频分析方法研究 (10)3.1时频分析的定义 (10)3.2时频分析基本思想 (10)3.3 时频分析方法的介绍和仿真 (10)3.3.1 短时傅里叶变换 (10)3.3.2 Winger—Ville分布变换结果 (16)3.3.3 W-H变换结果 (22)4 结论 (25)附录 (26)参考文献 (30)致谢 (32)1 绪论本章介绍了本文的研究背景和意义,概述了线性调频信号和时频分析理论及应用的研究进展和现状,给出了全文的内容安排。
扩展频谱技术是一种常用的无线通讯技术,简称展频技术。
扩展频谱(Spread Spectrum)跳频技术(FHSS)直接序列展频技术(DSSS)扩展频谱(Spread Spectrum)扩展频谱技术主要又分为「跳频技术」及「直接序列」两种方式。
跳频技术(FHSS)跳频技术(Frequency-Hopping Spread Spectrum;FHSS)在同步、且同时的情况下,接受两端以特定型式的窄频载波来传送讯号,对于一个非特定的接受器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。
FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(Dwell Time)为400ms。
扩展频谱技术又称为扩频技术是近几年来发展很快的一种技术,不仅在军事通信中发挥出了不可取代的优势,而且广泛地渗漏到了通信的各个方面,如卫星通信、移动通信、微波通信、无线定位系统、无线局域网、全球个人通信等等。
扩展频谱技术是指发送的信息带宽的一种技术。
这样的系统就称之为扩展频谱系统或扩频系统。
扩展频谱技术包括以下几种方式:●直接序列扩展频谱,简称直扩,记为DS(Direct Sequence);●跳频,记为FH(Frequency Hopping);●跳时,记为TH(Time Hopping);●线性调频,记为Chiep。
扩展频谱技术具有以下特点:l、很强的抗干扰能力由于将信号扩展到很宽的频带上,在接收端对扩频信号进行相关处理即带宽压缩,恢复成窄带信号。
对干扰信号而言,由于与扩频用的伪随机码不相关,则被扩展到一很宽的频带上,使之进入信号通频带内的干扰功率大大降低,相应的增加了相关器的输出信号/干扰比,因此具有很强的抗干扰能力。
其抗干扰能力与其频带的扩展倍数成正比,频谱扩展得越宽,抗干扰的能力越强。
2、可进行多址通信扩展频谱通信本身就是一种多址通信方式,称为扩频多址(SSMA-Spread Specrum Multiple Access),实际上是码分多址(CDMA)的一种,用不同的扩频码组成不同的网。