初中九年级中考一模数学试卷
- 格式:docx
- 大小:1.78 MB
- 文档页数:7
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 若a,b是方程x^2 - 5x + 6 = 0的两个根,则a+b的值为()A. 5B. 6C. 7D. 83. 已知函数y = 2x - 1,当x=3时,y的值为()A. 5B. 4C. 3D. 24. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°5. 若x,y满足方程组$$\begin{cases}x + 2y = 6 \\3x - y = 2\end{cases}$$则x的值为()A. 2B. 3C. 4D. 56. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 - 3x^2 + 4C. y = 3x + 2D. y = √x7. 已知一元二次方程x^2 - 4x + 3 = 0的两个根为a和b,则a^2 + b^2的值为()A. 8B. 10C. 12D. 148. 在平面直角坐标系中,点A(2,3)关于x轴的对称点为B,则点B的坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若等差数列{an}的首项a1=3,公差d=2,则第10项an的值为()A. 21B. 22C. 23D. 2410. 下列命题中,正确的是()A. 函数y = x^2在定义域内是单调递增的B. 两个等腰三角形的底边相等,则它们一定是全等三角形C. 若m+n=0,则m和n互为相反数D. 平行四边形的对角线互相平分二、填空题(本大题共10小题,每小题3分,共30分)11. 若方程x^2 - 2x + 1 = 0的解为x1和x2,则x1+x2=______。
12. 在△ABC中,∠A=30°,∠B=75°,则∠C=______。
数学一.选择题(共10小题,共30分)1. 下列有理数中最小的是()A. B. C. 3 D. 0答案:B解析:详解:解:∵,∴最小的数是;故选B.2. 下列几何体中,俯视图是三角形的是()A. B.C. D.答案:B解析:详解:解:A、俯视图圆,故本选项不合题意;B、俯视图是三角形,故本选项符合题意;C、俯视图是有圆心的圆,故本选项不合题意;D、俯视图是圆,故本选项不合题意.故选:B.3. 下列图形既是轴对称图形,又是中心对称图形的是()A. B.C. D.答案:C解析:详解:解:A选项是轴对称图形,不是中心对称图形,不合题意;B选项不是轴对称图形,也不是中心对称图形,不合题意;C选项是轴对称图形,又是中心对称图形,符合题意;D选项不是轴对称图形,也不是中心对称图形,不合题意;故选C.4. 下列计算正确的是( )A. B.C. D.答案:C解析:详解:解:A.与不能合并,故A不符合题意;B.,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故选:C.5. 关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根,则m的取值范围是()A. m<-1B. m>0C. m<1且m≠0D. m>0且m≠1答案:D解析:详解:解:关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根,(m-1)≠0,且△>0,即2-4(m-1)(-1)>0,解得m>0,m的取值范围为m>0且m≠1,m>0且m≠1时, 关于x的一元二次方程(m-1)x²+2x-1=0有两个不相等的实数根.故选D.6. 解分式方程分以下四步,其中错误的一步是( )A. 最简公分母是B. 去分母,得C. 解整式方程,得D. 原方程的解为答案:D解析:详解:解:方程两边同时乘以去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验,当时,,∴原方程无解,∴四个选项中只有D选项符合题意,故选:D.7. 下列四个选项中,不符合直线的性质与特征的是()A. 经过第一、三、四象限B. 随的增大而增大C. 与轴交于点D. 与轴交于点答案:C解析:详解:解:∵>0,﹣3<0,∴该直线经过第一、三、四象限,y随x的增大而增大,故A、B选项正确,∵当y=0时,由0=x﹣3得:x=6,∴该直线与x轴交于点(6,0),故C选项错误;∵当x=0时,y=﹣3,∴该直线与y轴交于点(0,﹣3),故D选项正确,故选:C.8. 我国古代数学著作之一《孙子算经》中记载着这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?意思是:今有若干人乘车,若每3人共乘1辆车,最终剩余2辆车;若每2人共乘1辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x辆车,根据题意所列方程正确的是()A. B. C. D.答案:B解析:详解:解:依题意得:,故选:B.9. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若,,则的度数为()A. B. C. D.答案:B解析:详解:解:∵光线平行于主光轴,∴,又,∴,∵,∴,∴,故选:B.10. 如图,已知.按如下步骤作图:①以点为圆心,适当长为半径作弧,分别交和于点;②分别以点为圆心、长为半径作弧,两弧在内交于点;③作射线;④连接.由作图可知的度数为()A. B. C. D.答案:D解析:详解:解:根据作图可知是的角平分线,,又,∴,∵,∴故选:D.二.填空题(共5小题,共15分)11. 计算:________.答案:解析:详解:解:,故答案为:.12. 如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P用坐标表示为________.答案:(6,6)解析:详解:建立平面直角坐标系,如图所示,∴熊猫馆P用坐标表示为(6,6),故答案为:(6,6).13. 有四张完全一样正面分别写有“决”“胜”“中”“考”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字不相同的概率是__________________.答案:##解析:详解:解:根据题意列表如下:决胜中考决决决胜决中决考胜胜决胜胜胜中胜考中中决中胜中中中考考考决考胜考中考考共有16种等可能的结果数,其中两次抽出的卡片上的汉字不相同的有12种情况,所以P(抽取的两张卡片上的汉字不相同).故答案为:.14. 如图,直线与x轴、y轴分别交于A、B两点,以为边在第二象限作正方形,已知双曲线过点D,则_______.答案:解析:详解:解:当时,,即,当时,,解得,,∴,∴,∵正方形,∴,如图,作轴于,∵,∴,∵,,,∴,∴,∴,将代入得,,解得,,故答案为:.15. 如图,在矩形中,,点E是边上的一个动点,将沿折叠,当点A的对应点F落在矩形一边的垂直平分线上时,的长为______.答案:或解析:详解:解:分两种情况:①如图1,过F作交于M,交于N,则直线是边的垂直平分线,∴,∵沿折叠得到,∴,∴,∴,∴,∴,解得:,∴;②如图2,过F作交于P,交于Q,连接,则直线是边的垂直平分线,∴,,又∵,∴,∴等边三角形,,∴,∴设,则,在,即,解得:或(舍去)综上所述:的长为或;故答案为:或.三.解答题(共8小题,共75分)16. (1)计算:.(2)先化简,再求值:,其中.答案:(1);(2),解析:详解:解:(1);(2)当时,原式.17. 某中学为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书本数相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了,科普书的单价与去年相同,为了普及科普知识,书店举办了每买三本科普书就赠一本文学书的优惠活动,这所中学今年计划在优惠活动期间,再购进文学书和科普书共200本,且购买文学书和科普书的总费用不超过1880元,这所中学今年最多能购进多少本文学书?答案:(1)去年购买的文学书单价为8元,科普书单价为12元;(2)110解析:详解:解:(1)设去年购买文学书的单价为x元/本,则购买科普书的单价为(x+4)元/本,根据题意得:解得:x=8,经检验:x=8是原分式方程的解,∴x+4=12.答:去年购买的文学书单价为8元/本,科普书单价为12元/本.(2)今年文学书的单价为8×(1+25%)=10(元/本).设今年购进y本文学书,则购进科普书(200-y)本,根据题意得:,解得:y≤110,∴y的最大值为110.答:今年最多能购进110本文学书.18. 4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:a.设计方案学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生及在初三年级中随机抽取部分女生进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生进行调查分析.b.收集数据:抽取的20名学生每周用于课外阅读时间的数据如下:(单位:min)30 60 81 50 40 110 130 146 80 10060 80 120 140 75 81 10 30 81 92c.整理数据按如下分段整理样本数据:课外阅读时间x0≤x<4040≤x<8080≤x<120120≤x<160(min)等级D C B A人数(人)3a8bd.分析数据绘制如下条形统计图和扇形统计图:请根据以上统计调查结果,回答下列问题:(1)抽取的样本具有代表性的方案是;(填“方案一”“方案二”或“方案三”).(2)a=,b=,c=;(3)请补全条形统计图,并求出B等级所在扇形的圆心角的度数;(4)如果每周阅读时间不低于80分钟为优秀,请估计该校800名学生优秀人数为多少?答案:(1)方案三;(2)5,4,25;(3)图见解析,;(4)480人解析:详解:解:(1)根据抽样的代表性、普遍性和可操作性可得,抽取的样本具有代表性的方案是方案三,故答案为:方案三;(2)由已知数据知a=5,b=4;c%=×100%=25%,∴c=25,故答案为:5,4,25;(3)补全条形统计图如图:B等级所在扇形的圆心角的度数是:360°×40%=144°;(4)估计该校800名学生优秀人数为:800×(40%+20%)=480(人).19. 鲜花是云南的名片,更是云南送给世界的礼物.在日新月异的技术加持下,云南鲜花为各地带去了来自高原的芬芳与绚烂.元旦前夕,某批发商购进两种类型的玫瑰花共100束,其中种类型的玫瑰花价格为每束25元,购买种类型的玫瑰花所需费用(单位:元)与购买数量(单位:束)的函数关系图象如图所示.(1)求与的函数关系式;(2)若购买种类型玫瑰花所需的数量不超过60束,但不少于种类型玫瑰花的数量,试问如何购买能使购买费用最少,并求出最少费用.答案:(1)(2)购买种类型的玫瑰花40束,购买种类型的玫瑰花60束时,购买费用最少,最少费用为元解析:小问1详解:解:由图知:当时,设函数关系式为,把点代入得到,,解得,∴.当时,设与的函数关系式为.它的图象经过点与点.,解这个方程组,得,∴,与的函数关系式为.小问2详解:设购买种类型玫瑰花的数量为束,则A种类型的玫瑰花的数量为束,总费用为元.由题知:且,解得..,随增大而减小.,当时,有最小值为元.此时,A种类型的玫瑰花:(束).答:购买种类型的玫瑰花40束,购买种类型的玫瑰花60束时,购买费用最少,最少费用为元.20. 太阳能路灯具有安全性能高、节能环保、经济实用等特点,已被广泛应用于主、次干道,工厂,旅游景点等场所.如图是太阳能板及支架部分的示意图,是太阳能板,点A与点B是支架部分与太阳能板的连接点,点C是支架部分与灯杆的连接点,点D是灯杆上一点,支架的长为,与灯杆的夹角,支架的长为,与灯杆的夹角,点A,B,C,D,E,F在同一竖直平面内,求点A和点B距地面的高度差.(结果精确到,参考数据:,,,,,)答案:点A和点B距地面的高度差约为;解析:详解:解:如答图,过点A作交的延长线于点G,过点B作交的延长线于点H,在中,,,,∵,∴,∴,在中,,,,∵,∴,∴,∴,答:点A和点B距地面的高度差约为.21. 如图,AB为的直径,点C、点D为上异于A、B的两点,连接CD,过点C作,交DB的延长线于点E,连接AC、AD.(1)若,求证:CE是的切线.(2)若的半径为,,求AC的长.答案:(1)见解析(2)4解析:小问1详解:解:连接OC,∵OC=OA,∴∠OCA=∠OAC,∴∠COB=2∠OAC,∵∠BDC=∠OAC,∠ABD=2∠BDC,∴∠COB=∠ABD,∴OC//DE,∵CE⊥DB,∠CED=90°,∴∠OCE=90°,OC⊥CE,∴CE是⊙O的切线.小问2详解:连接BC,∵∠BDC=∠BAC,∴=,∵AB是⊙O的直径,∴∠BCA=90°,∴,设BC=x,AC=2x,∴AB=,∵⊙O的半径为,∴,∴x=2,∴AC=2x=4.22. 一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米.(1)按如图所示建立的平面直角坐标系,求抛物线的解析式:(2)小明的这次投篮未能命中篮圈中心,请说明理由:(3)假设出手的角度和力度都不变,请直接回答:小明应该向前走或向后退多少米才能命中篮圈中心?答案:(1)(2)小明的这次投篮未能命中篮圈中心,理由见解析(3)小明应该向前走1米才能命中篮圈中心解析:小问1详解:解:由题意可知,抛物线的顶点坐标为,球出手时的坐标为,设抛物线的解析式为,将代入得:,解得:,;小问2详解:解:,当时,,小明的这次投篮未能命中篮圈中心;小问3详解:解:出手的角度和力度都不变,设抛物线的解析式为,将代入得:,,解得:,,向前走7米,因为原来是八米,向前七米,还剩一米呢!应该是球处于上升趋势,故舍去.小明应该向前走1米才能命中篮圈中心.23. 探究性学习(1)问题初探:在数学活动课上,张老师给出如下问题:如图,在中,.点D在外,连接,且.过A作于点E.求证:.①如图,小辉同学从结论的角度出发给出如下解题思路:在上截取,连接,将线段之间的数量关系转化为线段与之间的数量关系.②如图,小龙同学从于点E这个条件出发给出另一种解题思路:过A作交延长线于点G,将线段之间的数量关系转化为线段与之间的数量关系.请你选择一名同学的解题思路,写出证明过程.(2)类比分析:张老师发现之前两名同学都运用了转化思想,将证明三条线段的数量关系转化为证明两条线段的数量关系;为了帮助学生更好地感悟转化思想,张老师提出下面的问题,请你解答.如图,为等边三角形,是等腰直角三角形,其中是边上的中线,连接交与点F.求证:.(3)学以致用:如图,在中,,点D在边上,过B作交延线于点E,延长至点F,连接,使,连接交于点G,若,,求的面积.答案:(1)选择小辉同学的思路,证明见解析;选择小龙同学的思路,证明见解析(2)见解析(3)解析:小问1详解:解:选择小辉同学的思路,证明如下:如图:在上截取,连接.,,又,,.,,.选择小龙同学的思路,证明如下:证明:如图,过A作交延长线于G,∵,,∴.又∵于E,于G,∴,又∵,∴,∴,又∵,∴,∴,∴.小问2详解:证明:如图:在上截取,连接,为等边三角形,,即为等腰直角三角形,∴,,,.又,,.是边上的中线,平分,,∴是等边三角形,.小问3详解:解:如图:过A作于H,,,于E,,,.于,,,,又,,.,又,,.,,..。
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
九年级一模考试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c2. 下列哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 若一个等差数列的首项是3,公差是2,则第10项是多少?A. 21B. 19C. 17D. 154. 下列哪个图形不是正多边形?A. 矩形B. 正方形C. 正五边形D. 正六边形5. 若两个角的和为90度,则这两个角是什么关系?A. 补角B. 对角C. 邻角D. 同角二、判断题(每题1分,共5分)1. 任何数乘以0都等于0。
()2. 两个负数相乘的结果是正数。
()3. 一元二次方程的解一定是实数。
()4. 平行四边形的对角线互相平分。
()5. 任何数除以自己都等于1。
()三、填空题(每题1分,共5分)1. 若 a = 3,b = 4,则 |a b| = _______。
2. 一元二次方程 ax^2 + bx + c = 0 的判别式是 _______。
3. 若一个等差数列的首项是2,公差是3,则第5项是 _______。
4. 两个角的和为180度,则这两个角是 _______ 关系。
5. 若平行四边形的对角线互相垂直,则这个平行四边形是 _______。
四、简答题(每题2分,共10分)1. 请简述等差数列的定义。
2. 请简述一元二次方程的解的判别方法。
3. 请简述平行四边形的性质。
4. 请简述正弦函数的定义域和值域。
5. 请简述勾股定理的内容。
五、应用题(每题2分,共10分)1. 已知等差数列的首项是2,公差是3,求前10项的和。
2. 解一元二次方程 x^2 5x + 6 = 0。
3. 已知平行四边形的对角线互相垂直,且对角线的长度分别是10和12,求平行四边形的面积。
2024年重庆一中中考数学一模试卷一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给由了代号为A、B、C、D的四个选项,其中只有一个是正确的,请将正确答案的代号在等起卡中对应的方起内法源。
1.(4分)6的相反数是( )A.6B.﹣6C.D.﹣2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( )A.B.C.D.3.(4分)反比例函数y=的图象一定经过点( )A.(2,﹣2)B.(1,﹣2)C.(2,1)D.(﹣2,1)4.(4分)如图,直线a∥b,将三角尺直角顶点放在直线b上,若∠1=50°,则∠2的度数是( )A.20°B.30°C.40°D.50°5.(4分)如图,已知△ABC与△DEF位似,位似中心为点O,且AC:DF=3:2,则△ABC的面积与△DEF的面积之比为( )A.3:2B.3:5C.9:4D.9:56.(4分)估计×(﹣)的值应在( )A.0和1之间B.1和2之间C.2和3之间D.3和4之间7.(4分)下列图案都是由大小相同的黑点按一定的规律组成的,其中第①个图案有3个黑点,第②个图案有6个黑点,第③个图案有11个黑点,第④个图案有18个黑点,…,按此规律可知,第⑦个图案中黑点的个数为( )A.51B.50C.66D.608.(4分)如图,DE与⊙O相切于点D,交直径AB的延长线于点E,C为圆上一点,∠ACD=60°,若直径AB=8,则DE的长度为( )A.4B.6C.D.9.(4分)如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于点G,延长BG至点F,使得AG =GF,连接CF,AF.若∠BAE=α,则∠DCF一定等于( )A.2αB.60°﹣2αC.αD.45°﹣α10.(4分)在5个字母a,b、c,d,e(均不为零)中,不改变字母的顺序,在每相邻两个字母之间都添加一个“+”或者一个”﹣”组成一个多项式,且从字母a、b之间开始从左至右所添加的“+”或“﹣”交替依次出现,再在这个多项式中,任意添加两个括号(括号内至少有两个字母,且括号中不再含有括号),添加括号后仍只含有加减运算,然后再进行去括号运算.我们称为“交替去括号操作”.例如:a﹣(b+c)﹣(d+e)=a﹣b﹣c﹣d﹣e,(a+b﹣c)+(d﹣e)=a+b﹣c+d﹣e.下列说法:①存在“交替去括号操作”,使其运算结果与其未加括号之前的多项式相等;②不存在两种“交替去括号操作”,使它们的运算结果求和后为0;③所有的“交替去括号操作”共有6种不同运算结果.共中正确的个数是( )A.0个B.1个C.2个D.3个二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中时应的横线上。
九年级数学中考第一次模拟考卷一、选择题(每题4分,共40分)1. 下列选项中,既是奇数又是合数的是()A. 21B. 39C. 51D. 632. 已知a、b为实数,且a≠b,则下列等式中成立的是()A. (a+b)² = a² + b²B. (ab)² = a² b²C. (a+b)² = a² + 2ab + b²D. (ab)² = a² 2ab b²3. 下列函数中,是正比例函数的是()A. y = 2x²B. y = 3x 1C. y = x + 3D. y = 5/x4. 在三角形ABC中,a=8,b=10,cosA=3/5,则三角形ABC的面积是()A. 24B. 30C. 36D. 405. 下列关于x的不等式中,有解的是()A. x² < 0B. x² = 1C. x² > 0D. x² = 06. 已知一组数据的方差是9,那么这组数据每个数都加5后,方差是()A. 4B. 9C. 14D. 187. 下列关于圆的说法,正确的是()A. 圆的半径相等,则圆心距相等B. 圆心角相等,则弧长相等C. 弧长相等,则圆心角相等D. 圆的半径相等,则面积相等8. 下列关于概率的说法,错误的是()A. 概率的取值范围是0到1B. 必然事件的概率是1C. 不可能事件的概率是0D. 随机事件的概率大于19. 已知平行四边形ABCD的对角线交于点E,若BE=4,CE=6,则平行四边形ABCD的面积是()A. 24B. 36C. 48D. 6010. 下列关于二次函数的说法,正确的是()A. 二次函数的图像一定经过原点B. 二次函数的图像一定有最小值C. 二次函数的图像一定有最大值D. 二次函数的图像一定是一条直线二、填空题(每题4分,共40分)11. 已知等差数列的前5项和为35,第5项为15,则首项为______。
北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数 学 2024.4考生须知1. 本试卷共7页,共两部分, 28道题。
满分 100分。
考试时间120分钟。
2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束, 将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是 (A) 圆锥 (B)三棱柱 (C)三棱锥 (D)四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit)的数据. 将 10000000000用科学记数法表示应为(A )0.1×10¹¹ (B )1×10¹⁰ (C )1×10¹¹ (D) 10×10⁹3.下列图形中,既是中心对称图形也是轴对称图形的是4. 直尺和三角板如图摆放,若∠1=55°,则∠2的大小为 (A)35° (B)55° (C) 135° (D) 145°北京市西城区九年级统一测试试卷 数学2024.4 第1页 (共7页)15.如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上, 点O₁, O₂分别为两个正六边形的中心. 则tan∠O₂AC的值为.16. 将1, 2, 3, 4, 5, …, 37这37个连续整数不重不漏地填入37个空格中. 要求: 从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第 1 个空格填入 37,则第 2 个空格所填入的数为,第 37 个空格所填入的数为 .37三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|−3|−+2sin60∘−12.18.解不等式组: 2(+1)<x+5, x+23≥x−12.19. 已知x²−x−4=0,求代数式 (x−2)²+(x−1)(x+3)的值.20. 如图,点E在▱ABCD的对角线DB的延长线上,AE=AD.AF⊥BD于点F,EG∥BC交AF的延长线于点G, 连接DG.(1) 求证: 四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=12,AB=4,求菱形AEGD的面积.21.某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5), B(-2,0), 且与y轴交于点 C.(1)求该函数的解析式及点C的坐标;(2)当x<2时, 对于x的每一个值, 函数y=-3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.北京市西城区九年级统一测试试卷 数学2024.4 第3页 (共7页)24. 如图, AB 为⊙O 的直径, 弦CD⊥AB 于点H, OO 的切线CE 与BA 的延长线交于点E, AF∥CE, AF 与⊙O 的交点为F.(1) 求证: AF=CD;(2) 若⊙O 的半径为6, AH=2OH,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O,交边AB 于点P, 交边AC 于点Q. 若 AP =x,AQ =y 1,S APQ :S ABC =y 2,下表给出了x, y ₁, y ₂的一些数据 (近似值精确到0.0001).x 0.50.550.60.650.70.750.80.850.90.951y ₁10.84620.750.68420.63640.60.57140.54840.52940.51350.5y ₂0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点( x ,y ₁,x ,y ₂..请补全表格中数据的对应点,并分别画出y ₁与y ₂关于x 的函数图象;(3)结合函数图象,解决下列问题:①当△APQ 是等腰三角形时, y ₁关于x 的函数图象上的对应点记为(a ,b),请在x轴上标出横坐标为a 的点;C ②当y ₂取最大值时,x 的值为 .北京市西城区九年级统一测试试卷 数学2024.4 第5页 (共7页)5.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为(A) 14(B) 13(C) 12(D)236. 已知-2<a<-1, 则下列结论正确的是(A) a<1<-a<2 (B) 1<a<-a<2 (C) 1<-a<2<a (D) -a<1<a<27.若关于x 的一元二次方程 lnx²+x−2=0有两个实数根,则实数k 的取值范围是(A )k ≤−18 (B )k >−18且k≠0 (C )k ≥−18且k≠0 (D )k ≥−14且k≠08. 如图, 在Rt△ABC 中, ∠ACB=90°, BC=a, AC=b(其中a<b). CD⊥AB 于点D,点E 在边AB 上, BE=BC. 设CD=h, AD=m, BD=n, 给出下面三个结论:①n²+h²<(m+n)²;②2h²>m²+n²;③AE 的长是关于 x 的方程 x²+2ax−b²=0的一个实数根.上述结论中,所有正确结论的序号是(A)① (B) ①③ (C) ②③ (D) ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 若 x−3在实数范围内有意义,则实数x 的取值范围是 .10. 分解因式:x²y-12xy+36y= .11. 方程43x−1=3x−2的解为 .12.在平面直角坐标系xOy 中,若函数 y =kx(k ≠0)的图象经过点(-1,8)和(2,n), 则n 的值为.13. 如图, 在▱ABCD 中, 点E 在边AD 上, BA, CE 的延长线交于点F. 若AF=1, AB=2, 则 AEED =¯.14. 如图, 在⊙O 的内接四边形ABCD 中, 点A 是 ⌢BD 的中点,连接AC, 若∠DAB=130°, 则∠ACB= °.北京市西城区九年级统一测试试卷 数学2024.4 第2页 (共7页)23.某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m, n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.北京市西城区九年级统一测试试卷 数学2024.4 第4页 (共7页)26. 在平面直角坐标系xOy中,点A−2y₁,B2y₂,C m y₃在抛物线y=ax²+bx+3(a⟩0)上.设抛物线的对称轴为直线x=t.(1)若y₁=3,,求t的值;(2) 若当t+1<m<t+2时,都有y₁>y₃>y₂,求t的取值范围.27. 在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点 (不与点 A, B重合), 点 E 在射线 AC 上且满足.AE=AD,,过点D 作直线 BE 的垂线交直线BC于点F, 垂足为点 G, 直线BE交射线AM于点P.(1) 如图1, 若点D在线段AB上, 当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP, AB的数量关系, 并证明.北京市西城区九年级统一测试试卷 数学2024.4第6页 (共7页)28.在平面直角坐标系xOy 中,已知⊙O 的半径为1.对于⊙O 上的点 P 和平面内的直线l:y =ax 给出如下定义:点P 关于直线l 的对称点记为 P¹,,若射线OP 上的点Q 满足 OQ =PP ′,则称点Q 为点P 关于直线l 的“衍生点”.(1)当a=0时,已知⊙O 上两点 PP 2−22,在点Q ₁(1,2), QQ 3(−1,−1),Q 4(−2,−2)中,点P ₁关于直线l 的“衍生点”是 ,点P ₂关于直线l 的“衍生点”是 ;(2) P 为⊙O 上任意一点, 直线y=x+m (m≠0)与x 轴, y 轴的交点分别为点 A,B.若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3) 当-1≤a≤1时,若过原点的直线s 上存在线段 MN,对于线段 MN 上任意一点R,都存在⊙O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为D(s),对于所有的直线s ,直接写出D(s)的最小值.北京市西城区九年级统一测试试卷 数学2024.4 第7页 (共7页)北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数学答案及评分参考 2024.4一、选择题(共16分,每题2分)题号12345678答案C B D D A A C B二、填空题(共16分,每题2分)9. x≥3 10.y(x−6)² 11. x=-1 12. -413.1214. 25 15.3516. 1, 19三、解答题(共68分, 第17-22题, 每题5分, 第23-26题, 每题6分, 第27-28题,每题7分)17. 解: |−3|−+2sin60∘−12=3−5+2×32−23 4分 =-5 . 5分18.解:原不等式组为2(x+1)<x+5, x+23≥x−12.解不等式①, 得x<3. ·2分 解不等式②, 得x≤7. 4分 ∴ 原不等式组的解集为x<3. 5分19. 解: (x−2)²+(x−1)(x+3)=(x²−4x+4)+(x²+2x−3)=2x²−2x+1.…… 3分∵x²−x−4=0,∴x²−x=4.∴原式=2(x²−x)+1=9. ·5分20. (1) 证明: 如图1.∵ AE=AD, AF⊥BD于点F,∴ ∠EAG=∠DAG, EF=DF.∵ 四边形 ABCD 是平行四边形,北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第1页(共6页)①②∴ AD∥BC.∵ EG∥BC,∴ AD∥EG.∴ ∠AGE=∠DAG.∴ ∠EAG=∠AGE.∴ AE=EG.∴ AD=EG.∴ 四边形AEGD 是平行四边形.又∵ AE=AD,∴四边形AEGD是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2) 解: 在Rt△ABF中, ∠AFB=90°, AF=BF, AB=4,∴ ∠ABF=45° , AF=AB·sin45°=22.在Rt△AEF中,∠AFE=90∘,tan∠AEF=12,AF=22,∴EF=AFtan∠AEF=4 2.∵ 四边形 AEGD 是菱形,∴AG=2AF=42,DE=2EF=8 2.∴S差πAEGD =12AG×DE=12×42×82=32. …5分21.解:设购买x套围棋,y套象棋 (1)假设所购买围棋的套数能是所购买象棋套数的2倍,①则40x+30y=1000,x=2y.② 3分解得y=10011. 4分此时 y不为正整数,不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.⋯⋯⋯⋯⋯⋯⋯⋯5分22. 解: (1) ∵ 函数y=kx+b (k≠0) 的图象经过点 A(3,5), B(-2,0),∴3k+b=5,−2k+b=0.解得k=1,b=2.∴该函数的解析式为y=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分点C的坐标为C(0,2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)n≥10.……………………………………………………………………………5分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第2页 (共6页)23.解:(1)9.4,10;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①甲;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②9.3,9.6;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)76009.5×5=160(串).答:估计这些山楂共能制作160串糖葫芦.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24. (1) 证明: 如图2, 连接OC, OC与AF交于点 G.∵ CE 与⊙O 相切, 切点为C,∴CE⊥OC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ ∠OCE=90° .∵ AF∥CE,∴ ∠OGA=∠OCE=90° .∴ OC⊥AF于点 G.∴ AF=2AG.∵ CD⊥AB 于点 H,∴ ∠OHC=90° , CD=2CH .∴ ∠OGA=∠OHC.又∵ ∠AOG=∠COH, OA=OC,∴ △OAG≌△OCH.∴ AG=CH.∴AF=CD.…………………………………………………… 3分(2) 解: ∵ ⊙O的半径为6, AH=2OH,∴ OH=2, AH=4.在Rt△OCH中,∠OHC=90∘,cos∠COH=OHOC =13.在Rt△OCE中,∠OCE=90∘,cos∠COE=13,OC=6,∴OE=OCcos∠COE=18.∴AE=OE-OA=18-6=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第3页(共6页)25. 解: (1)0.5; ……………………… 1分(2)3分(3)①见图3; ·4分 ②0.5, 1. …6分26. 解: (1) 抛物线 y =ax²+bx +3与y 轴的交点的坐标为(0,3).∵ 抛物线. y =ax²+bx +3过A(-2,y ₁), y ₁=3,∴ A(-2,3)与(0,3)关于直线x=t 对称.∴t =−2+02=−1. 2分(2) ∵ a>0,∴ 当x≤t 时, y 随x 的增大而减小; 当x≥t 时, y 随x 的增大而增大.A(-2,y ₁), B(2,y ₂), C(m,y ₃).①当t≤-2时,∵ t≤-2<2,|.y₁<y₂,不合题意.②当-2<t<2时, A(-2,y ₁)关于对称轴x=t 的对称点为 A ′(2t +2,y ₁).∵ 当t+1<m<t+2时, 都有 y₁>y₃>y₂,∴t +1≥2,t +2≤2t +2.解得 t≥1.∴ 1≤t<2.③当t≥2时,A(-2,y ₁),B(2,y ₂)关于对称轴x=t 的对称点分别为 A ′(2t +2,y ₁), B ′(2t−2,y ₂).北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第4页(共6页)∵当t+1<m<t+2时, 都有. y₁>y₃>y₂,∴t +1≥2t−2,t +2≤2t +2.解得 0≤t≤3.∴ 2≤t≤3.综上所述,t 的取值范围是1≤t≤3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27. 解: (1) 如图4.∵在△ABC 中, ∠ABC=∠ACB=45° ,∴ AB=AC, ∠BAC=90° , ∠1+∠2=90°.∵ AM⊥BC 于点 M,∴∠3=∠BAC 2=45∘,BM =CM.∵ AP=AE, ∴∠2=180∘−∠32=180∘−45∘2=67.5∘.∵ DF⊥BE 于点 G,∴ ∠1+∠BDF=90°.∴∠BDF=∠2=67.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)补全图形见图5.CF =2MP +2AB.证明: 如图4, 作 CQ∥AP 交BE 于点 Q.∵ CQ∥AP, BM=CM, AM⊥BC, ∴MP CQ =BM BC =12,∠BCQ =∠AMC =90∘ ∴CQ =2MP,∠5=180°−∠ACB−∠BCQ =45°.∵∠4=∠ABC =45°,∴ ∠4=∠5.北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第5页 (共6页)∵∠DBG=∠ABE,DG⊥BE于点 G,∠BAC=90°,∴ ∠D=∠E.∵AD=AE,AB=AC,∴AD−AB=AE−AC, 即BD=CE.∴△BDF≅△CEQ.:.BF=CQ.∵CF=BF+BC,BC=2AB,∴CF=CQ+2AB=2MP+2AB. ……………… 7分28. 解: (1)Q₂,Q₃; · ·2分(2)−22≤m≤−2或 2≤m≤22; ·5分(3)2−2. 7分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第6页(共6页)。
试卷类型:C数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准正号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(C或D).3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 的相反数是()A. B. C. 4 D.答案:C2. 如图所示的几何体的左视图是()A. B. C. D.答案:B3. 如图,已知,点E在线段上(不与点A、点D重合),连接.若,,则的度数为()A. B. C. D.答案:A4. 下列计算正确的是()A. B.C D.答案:D5. 如图,在中,,是边上的高,垂足为D,点F在边上,连接,E 为的中点,连接,若,则的长为()A. 3B. 6C. 5D. 4答案:D6. 在平面直角坐标系中,将直线沿轴向左平移个单位后恰好经过原点,则的值为()A. 2B.C. 4D.答案:B7. 如图,内接于,的半径为.若,则的长为()A. 6B. 4C. 3D.答案:D8. 已知是关于的二次函数,部分y与x的对应值如表所示:…………则关于该二次函数,下列说法错误的是()A. 有最小值B. 当时,随的增大而减小C. 图象对称轴是直线D. 图象开口向上答案:C第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9. 写出一个大于3的无理数:___________.答案:π10. 叶脉绣是以树叶为载体,以传统刺绣衬托出叶脉美的刺绣工艺品,可谓自然之美与中国传统刺绣结合得相得益彰.实际上,很多叶片本身都蕴含着黄金分割的比例,在大自然中呈现出优美的样子.如图,点是的黄金分割点,如果的长为,那么的长为__________.答案:11. 如图所示的地面由正六边形和菱形(所有菱形地砖都全等)两种地砖镶嵌而成,则的度数为__________.答案:12. 已知、都在反比例函数的图象上.若,则的值为__________.答案:113. 如图,正方形的边长为4,P为平面内一点,且,E为边上的点,且,若,则线段的长为__________.答案:2或6##6或2三、解答题(共13小题,计81分.解答应写出过程)14. 计算:.答案:15. 解不等式组,并把它的解集在如图所示的数轴上表示出来.答案:,见解析解:解不等式①:,,,;解不等式②:,,,;不等式组的解集为:.将其表示在数轴上如图所示:16. 解方程:.答案:17. 如图,已知,,.请用尺规作图法,在边上求作一点P,使.(保留作图痕迹,不写作法)答案:见解析解:如图,点P即为所求.作交于P,由三角形外角性质可得,则点P即为所求.18. 如图,在菱形中,点M,N分别是边上的点,,,连接.求证:.答案:见解析解析:证明:四边形ABCD为菱形,,,,,,在和中,.19. 李白被“邀请”走进2024春晚《山河诗长安》节目,千人齐诵《将进酒》,豪放洒脱,荡气回肠,将长安城中的浪漫具象化.激发出无数中华儿女满满的自豪感,掀起了古诗词文化的新热潮.为弘扬中华传统文化,增加学生诗词底蕴,某校拟举办“诗词大赛”,每班选2名参赛学生,某班有1名男生和3名女生报名参加.(1)若要从这4名学生中随机选取1名学生参加比赛.则选取的恰好是男生的概率为__________;(2)若要从这4名学生中随机选取2名学生参加比赛,请用列表或画树状图的方法,求选取的2名学生恰好是1名男生、1名女生的概率.答案:(1)(2)【小问1详解】解:∵一共有4名学生,其中有1名是男生,且每名学生被选取的概率相同,∴从这4名学生中随机选取1名学生参加比赛,选取的恰好是男生的概率为,故答案为:;【小问2详解】解:设3名女生分别用A、B、C表示,1名男生用D表示,列表如下:A B C DA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表格可知一共有12种等可能性的结果数,其中选取的2名学生恰好是1名男生、1名女生的结果数有种,∴选取的2名学生恰好是1名男生、1名女生的概率为.20. 阳春三月,正是旅游踏青的好时机,为丰富员工业余生活,缓解工作压力,增进各部门沟通交流,增强凝聚力,某单位组织员工出游.原计划租用28座客车若干辆,但有18人没有座位,若租用同样数量的30座客车,仍有10人没有座位.其余客车都已坐满.求该单位组织出游的员工人数.答案:该单位组织出游的员工有130人解:设该单位组织出游的员工有x人,由题意可得:,解得.答:该单位组织出游的员工有130人.21. 教稼名台,位列“中国八大名台”.“关中四大名台”,为中华农耕文明肇启之圣地,誉列“武功八景”,载入《中国名胜古迹大词典》,属于省级重点文物保护单位.为了测量教稼台高度,两个数学研学小组设计了不同的方案,测量方案与数据如表:目课题测量教稼台的高度测量工具测量角度的仪器,皮尺,平面镜等测量小组第一小组第二小组测量方案示意图测量方案与测量数甲步行至点处,测得此时教稼台顶的仰角,再从处沿方向步行米至点处,此时测得教稼台顶的仰角(点、、在同一条直线上,)在处放一个平面镜,乙在处刚好在平面镜中看到教稼台顶,测得乙的眼睛到地面的高度米,乙到平面镜的距离米,米(点,、在同一条直线上,,,平面镜大小忽略不计)参考,数据请选择其中一个方案及其数据计算教稼台的高.答案:教稼台的高为米解:选择第一小组解答如下:设,在中,,,在中,,,,,解得,答:教稼台的高为米.选择第二小组解答如下:由题意知,,,,即,解得:,答:教稼台的高为米.22. 人在运动时的心跳速率通常和人的年龄有关,一个人在运动时所能承受的每分钟心跳的最高次数y(次/分)是这个人年龄x(岁)的一次函数.正常情况下,年龄15岁和55岁的人在运动时所能承受的每分钟心跳的最高次数分别为164次和132次.(1)求在正常情况下,y关于x的函数关系式;(2)在正常情况下,若一位60岁的老人在运动,医生在途中测得他的心跳为120次/分,他此时的心跳是否超过运动时所能承受的每分钟心跳的最高次数?答案:(1)(2)他此时的心跳没有超过运动时所能承受的每分䖵心跳的最高次数【小问1详解】解:设y关于x的函数关系式为:,根据题意可知该函数经过,两点,将两点坐标代入函数关系式可得:解得与x之间的函数关系式为.【小问2详解】当时,,,他此时的心跳没有超过运动时所能承受的每分䖵心跳的最高次数.23. 家务劳动是劳动教育的一个重要方面,为强化劳动观念,弘扬劳动精神.某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识.提高劳动技能.该学校为了解同学们周末家务劳动时间的大致情况,随机调查了部分学生.并用得到的数据绘制了两幅统计图,请你根据图中信息,解答下列问题:(1)将条形统计图补充完整,本次抽查的学生周末家务劳动时间的众数是__________小时.中位数是__________小时;(2)求本次抽查的学生周末家务劳动的平均时间;(3)若该校共有1000名学生.请你估计该校学生周末家务劳动的时间不少于小时的学生有多少名?答案:(1)见解析,1,1(2)本次抽索的学生周末家务劳动的平均时间为1.18小时(3)该校学生周末家务劳动的时间不少于1.5小时的学生有400名【小问1详解】一共调查的人数为(人),周末劳动时间为小时的人数为(人),补全条形统计图如图:由条形统计图可知,本次抽查的学生周末劳动时间的众数是1小时,将抽查的学生周末劳动时间按照从小到大的顺序排列,排在第25和26位的都为1小时,∴中位数为(小时);故答案为:1,1;【小问2详解】(小时).答:本次抽索的学生周末家务劳动的平均时间为小时.【小问3详解】(名),答:该校学生周末家务劳动的时间不少于小时的学生有400名.24. 如图,是的内接三角形,边上的中线经过点O,过点D作交的延长战于点P.(1)求证;是的切线;(2)若的半径为3,,求的长.答案:(1)详见解析(2)【小问1详解】证明:如图,连接,,点C为的中点,,即,.是的切线.【小问2详解】解:点C为的中点,,,,,,,,即,.25. 如图1,将一个大老碗放在水平桌面上,从正面看碗体部分近似于一条抛物线(碗体厚度不计),如图2,以碗底所在直线为x轴,的垂直平分线为y轴,点O为原点建立平面直角坐标系,若碗口直径,碗深,抛物线的最低点到桌面的距离.(1)求此抛物线的函数表达式;(2)当所盛面汤的深度为时,面汤表面所在圆的直径长为多少?(结果保留根号)答案:(1)(2)【小问1详解】根据题意可知点B的坐标为:,设抛物线的函数表达式为:,将代入抛物线的函数表达式得:,解得,抛物线的函数表达式为.【小问2详解】,,,令,则,解得,,,面汤表面所在圆的直径长为.26. 【问题提出】(1)如图1,,A、D在上,B、C在上,,若,则的长为__________;【问题探究】(2)如图2,已知是等边三角形,D、E分别为上的点,且,连接.求证:;【问题解决】(3)如图3是某公园一块四边形空地,其中,米,米,,P、Q分别在上,且,是平行于的一条绿化带,E、F是线段上的两个动点(点E在点F的左侧),米,M在线段上运动(不含端点),且保持,管理人员计划沿铺设两条笔直的水管,为了节省费用,公园负责人要求这两条水管的长度之和(即的值)最小,求这两条水管的长度之和的最小值.(绿化带、水管宽度均忽略不计)答案:(1)5(2)见解析(3)390米解:(1)∵,A、D在上,B、C在上,∴,∵∴四边形是平行四边形,∴故答案为:5;(2)证明:∵为等边三角形,∴,在与中,,∴,∴;(3)解:连接,过点D作于H,∵,∴,设,则,∵米,,∴,解得(负值舍去),∴米,米,∵,∴,∴,∵,∴,∴,在上截取米,连接,∵,∴四边形是平行四边形,∴,∴,∵,∴的最小值为的长,∵(米),∴(米),∴这两条水管的长度之和的最小值为390米.。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001……2. 如果 |x| = 5,那么 x 的值为()A. 5B. -5C. ±5D. 03. 在直角坐标系中,点 P(-3, 4) 关于 x 轴的对称点坐标为()A. (-3, -4)B. (3, -4)C. (-3, 4)D. (3, 4)4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 45. 若 a > b,且 c > d,那么下列不等式中正确的是()A. a + c > b + dB. a - c > b - dC. ac > bdD. a/c > b/d6. 下列图形中,是轴对称图形的是()A. 等边三角形B. 长方形C. 平行四边形D. 梯形7. 已知 a、b、c、d 是正数,且 a + b = c + d,那么下列结论正确的是()A. a > cB. b > dC. ac > bdD. a^2 + b^2 > c^2 + d^28. 若 a、b、c、d 是等差数列的前四项,且 a + c = 10,那么 b + d 的值为()A. 10B. 8C. 6D. 49. 下列方程中,有唯一解的是()A. x^2 - 2x - 3 = 0B. x^2 + 2x - 3 = 0C. x^2 - 4x + 4 = 0D. x^2 + 4x + 4 = 010. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=6,b=8,c=10,则角B 的度数为()A. 30°B. 45°C. 60°D. 90°二、填空题(每题5分,共25分)11. 若 |x| = 3,那么 x 的值可以是 _______ 或 _______。
2023年甘肃庆阳市九年级中考数学一模试题卷一、选择题:本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项.1.在实数﹣3.5,﹣2,0,2中()A.﹣3.5B.﹣2C.0D.22.下列计算正确的是()A.a2+a2=a4B.a3⋅a3=2a3C.a6÷a3=a3D.(﹣2a2)3=﹣6a63.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.已知是方程组的解()A.﹣1B.2C.3D.45.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一对直角三角形,有一组斜边和直角边对应相等,则这两个直角三角形全等6.如图,在△ABC中,点D在边AB上,DE∥BC交AC于点E,若线段DE=4()A.7.5B.10C.12D.157.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.8.如图,在⊙O中,AB为弦,∠BOD=53°,过点A作⊙O的切线,则∠C=()A.27°B.37°C.43°D.53°9.如图,这是一农村民居侧面截图,屋坡AF,C处,且AB=AC,则∠A=()A.70°B.110°C.125°D.135°10.如图,正方形ABCD的边长为2cm,动点P,在正方形的边上,分别按A→D→C,都以1cm/s的速度运动,到达点C运动终止,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x 的函数关系的是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.11.计算的结果是.12.分解因式:b3﹣b=.13.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=40°时°.14.某公司10名职工的3月份工资统计如下,该公司10名职工3月份工资的中位数是元.工资/元5000520054005600人数/人134215.关于x的一元二次方程x2+x+k=0有两个实数根,则k的取值范围是.16.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数(m为常数,且m≠0)的图象上,则y1,y2,y3的大小关系是.17.如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m m.18.如图,在菱形ABCD中,对角线AC、BD相交于点O,tan∠ABD=,则线段AB的长为.三、解答题(一):本大题共5小题,共26分,解答应写出必要的文字说明,证明过程或演算步骤. 19.(4分)解方程:x(2x﹣5)=2x﹣5.20.(4分)化简:.21.(6分)如图,在△ABC中,AB=AC.(1)尺规作图:在BC边上求一点P,使得PA=PC.(保留作图痕迹,不写作法)(2)求证:△ABC∽△PAC.22.(6分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在其南偏西22°方向上,观测到灯塔P在其南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin44°≈0.6947,sin22°≈0.3746).23.(6分)为落实国家“双减”政策,某学校在课后服务活动中开设了A书法、B剪纸、C足球、D乒乓球这四门课程供学生选择,每门课程被选到的机会均等.(1)小军选择的课程是篮球这一事件是;A.随机事件B.必然事件C.不可能事件(2)若小军和小贤两位同学各计划选修自己喜欢的一门课程,请用列表法或画树状图法求他们两人恰好同时选修球类课程的概率.四、解答题(二):本大题共5小题,共40分,解答应写出必要的文字说明,证明过程或演算步骤. 24.(7分)为了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果调查结果统计表:组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a+b=,m%=%;(2)求扇形统计图中扇形C的圆心角的度数;(3)若该校共有学生1000人,请估计每月零花钱的数额x在30≤x<90范围的人数.25.(7分)如图,一次函数的图象y=kx+b与反比例函数的图象在第一象限交于点A(4,3),且OA=OB.(1)求一次函数y=kx+b与反比例函数的表达式;(2)请直接写出不等式的解集.26.(8分)如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.27.(8分)如图,在▱ABCD中,∠ACB=45°,过点C作CF⊥AB于点F,交AE于点M,且AM=CN,连接DN,使DG=NC,连接CG.(1)求证:AB=CM;(2)试判断△ACG的形状,并说明理由.(3)若,,则DN=.28.(10分)如图,过点的抛物线y=ax2+bx的对称轴是直线x=2,点B是抛物线与x轴的一个交点,点C在y轴上,设点P在直线OA下方且在抛物线y=ax2+bx上,过点P作y轴的平行线交OA于点Q.(1)求a、b的值;(2)求PQ的最大值;(3)当△BCD是直角三角形时,求△OBC的面积.参考答案一、选择题:本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项.1.在实数﹣3.5,﹣2,0,2中()A.﹣3.5B.﹣2C.0D.2【解答】解:∵|﹣3.5|>|﹣7|,∴﹣3.5<﹣7,∴﹣3.5<﹣8<0<2,∴最小的数是﹣3.5,故选:A.2.下列计算正确的是()A.a2+a2=a4B.a3⋅a3=2a3C.a6÷a3=a3D.(﹣2a2)3=﹣6a6【解答】解:A、∵a2+a2=2a2,∴a2+a4=a4错误,不符合题意;B、∵a3⋅a8=a3+3=a5,∴a3⋅a3=8a3错误,不符合题意;C、∵a6÷a6=a6﹣3=a8,∴a6÷a3=a7正确,符合题意;D、∵(﹣2a2)6=﹣8a6,∴(﹣6a2)3=﹣3a6错误,不符合题意.故选:C.3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.4.已知是方程组的解()A.﹣1B.2C.3D.4【解答】解:∵是方程组,∴,两个方程相减,得a﹣b=5,故选:D.5.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一对直角三角形,有一组斜边和直角边对应相等,则这两个直角三角形全等【解答】解:A选项,矩形的对角线相互平分,故A选项错误;B选项,方程x2=14x的解为x=4,x2=14,故B选项错误;1C选项,六边形内角和为180°×(6﹣4)=720°,不符合题意;D选项,直角三角形全等的判定方法是“斜边直角边”,符合题意;故选:D.6.如图,在△ABC中,点D在边AB上,DE∥BC交AC于点E,若线段DE=4()A.7.5B.10C.12D.15【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BD=2AD,∴=,∵DE=4,∴=,∴BC=12.故选:C.7.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【解答】解:解不等式①得:x≥5,解不等式②得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.8.如图,在⊙O中,AB为弦,∠BOD=53°,过点A作⊙O的切线,则∠C=()A.27°B.37°C.43°D.53°【解答】解:连接OA,∵OD⊥AB于D,OA=OB,∴∠AOC=∠BOD=53°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠C=90°﹣53°=37°,故选:B.9.如图,这是一农村民居侧面截图,屋坡AF,C处,且AB=AC,则∠A=()A.70°B.110°C.125°D.135°【解答】解:∵四边形BDEC为矩形,∴∠CBD=90°,∴∠ABC=180°﹣∠FBD﹣∠CBD=180°﹣55°﹣90°=35°,∵AB=AC,∴∠ABC=∠ACB=35°,∴∠A=180°﹣2∠ABC=180°﹣3×35°=110°.故选:B.10.如图,正方形ABCD的边长为2cm,动点P,在正方形的边上,分别按A→D→C,都以1cm/s的速度运动,到达点C运动终止,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x 的函数关系的是()A.B.C.D.【解答】解:①当0≤x≤2时,∵正方形的边长为7cm,∴y=S=AQ•AP=x2;△APQ②当3<x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×4﹣(4﹣x)2﹣×2×(x﹣2)﹣=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,只有A选项图象符合.故选:A.二、填空题:本大题共8小题,每小题3分,共24分.11.计算的结果是2.【解答】解:法一、=|﹣5|=2;法二、==2.故答案为:3.12.分解因式:b3﹣b=b(b﹣1)(b+1).【解答】解:b3﹣b=b(b2﹣7)=b(b﹣1)(b+1),故答案为:b(b﹣3)(b+1).13.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=40°时50°.【解答】解:由题意可得,直尺的上下两边平行,故∠2=∠3,∵∠2=40°,∴∠3=40°,∵∠3+∠3=90°,∴∠1=50°,故答案为:50.14.某公司10名职工的3月份工资统计如下,该公司10名职工3月份工资的中位数是5400元.工资/元5000520054005600人数/人1342【解答】解:这组数据按照从小到大的顺序排列为:5000,5200,5200,5400,5400,5600,则中位数为:.故答案为:5400.15.关于x 的一元二次方程x 2+x +k =0有两个实数根,则k 的取值范围是k ≤.【解答】解:∵a =1,b =1,而方程有两个实数根∴Δ=b 2﹣4ac =1﹣6k ≥0,∴k ≤.16.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在反比例函数(m 为常数,且m ≠0)的图象上,则y 1,y 2,y 3的大小关系是y 3<y 1<y 2.【解答】解:∵比例函数(m 为常数,k =﹣m 2<3,∴图象在第二、四象限,当x <0时,图象在第二象限,函数值随自变量的增大而增大,∴在点(﹣2,y 7),(﹣1,y 2)中,2<y 1<y 2,当x >5时,图象在第四象限,函数值随自变量的增大而增大,∴在点(﹣1,y 2),(4,y 3)中,,,综上所述,y 3<7<y 1<y 2,∴y 2<y 1<y 2,故答案为:y 2<y 1<y 2.17.如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m 2.6m.【解答】解:连接OA;Rt△OAD中,AD=;设⊙O的半径为R,则OA=OC=R;由勾股定理,得:OA3=AD2+OD2,即:R4=(5﹣R)2+42,解得R=2.5(米);故答案为:2.6.18.如图,在菱形ABCD中,对角线AC、BD相交于点O,tan∠ABD=,则线段AB的长为5.【解答】解:∵四边形ABCD为菱形,BD=8,∴BO=OD=BD=4,∴∠AOB=90°,∵tan∠ABD==,∴OA=OB=3,在Rt△ABC中,AO=3,∴AB===5,故答案为:6.三、解答题(一):本大题共5小题,共26分,解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解方程:x (2x ﹣5)=2x ﹣5.【解答】解:∵x (2x ﹣5)﹣(5x ﹣5)=0,∴(8x ﹣5)(x ﹣1)=7,∴2x ﹣5=6或x ﹣1=0,∴x 8=,x 3=1.20.(4分)化简:.【解答】解:原式=÷=•=x ﹣8.21.(6分)如图,在△ABC 中,AB =AC .(1)尺规作图:在BC 边上求一点P ,使得PA =PC .(保留作图痕迹,不写作法)(2)求证:△ABC ∽△PAC .【解答】(1)解:如图.点P 为所求作的点,(2)证明:∵AB =AC ,∴∠B =∠C ,∵PA =PC ,∴∠C =∠PAC ,∴∠PAC =∠B .又∵∠C =∠C ,∴△PAC ∽△ABC .22.(6分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在其南偏西22°方向上,观测到灯塔P在其南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin44°≈0.6947,sin22°≈0.3746).【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠PMA=22°,∠PNA=44°,∴∠MPN=∠PNA﹣∠PMA=44°﹣22°=22°,∴∠PMN=∠MPN,∴△MPN是等腰三角形,即MN=PN=60海里,∵∠PNA=44°,∴PA=PN sin∠PNA≈60×0.6947≈41.682(海里).答:此时轮船离灯塔的距离41.682海里.23.(6分)为落实国家“双减”政策,某学校在课后服务活动中开设了A书法、B剪纸、C足球、D乒乓球这四门课程供学生选择,每门课程被选到的机会均等.(1)小军选择的课程是篮球这一事件是C;A.随机事件B.必然事件C.不可能事件(2)若小军和小贤两位同学各计划选修自己喜欢的一门课程,请用列表法或画树状图法求他们两人恰好同时选修球类课程的概率.【解答】解:(1)∵学校在课后服务活动中没有开设篮球这门课程,∴小军选择的课程是篮球这一事件是不可能事件,故选:C;(2)画树状图如下:共有16种等可能的结果,其中小军和小贤两位同学恰好同时选修球类课程的结果有4种,∴小军和小贤两人恰好同时选修球类课程的概率是.四、解答题(二):本大题共5小题,共40分,解答应写出必要的文字说明,证明过程或演算步骤. 24.(7分)为了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果调查结果统计表:组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)这次被调查的同学共有50人,a+b=28,m%=8%;(2)求扇形统计图中扇形C的圆心角的度数;(3)若该校共有学生1000人,请估计每月零花钱的数额x在30≤x<90范围的人数.【解答】解:(1)调查的总人数是16÷32%=50(人),则a+b=50﹣4﹣16﹣2=28(人),m%=×100%=8%,则m=8,故答案为:50,28,4;(2)D组的人数有50×16%=8人,则C组的人数有28﹣8=20人,扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在30≤x<90范围的人数是1000×=720(人).25.(7分)如图,一次函数的图象y=kx+b与反比例函数的图象在第一象限交于点A(4,3),且OA=OB.(1)求一次函数y=kx+b与反比例函数的表达式;(2)请直接写出不等式的解集.【解答】解:(1)∵点A(4,3)在反比例函数,∴k=8×3=12,∴反比例函数解析式为;∵,OA=OB,∴点B(0,﹣5).把点A(2,3),﹣5)代入y=kx+b中,得,解得:,∴一次函数的解析式为y=2x﹣7;(2)令y=2x﹣5中y=6,则x=,∴D(,0),由图象可知,不等式<x<4.26.(8分)如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.【解答】(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.4°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=6∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.27.(8分)如图,在▱ABCD中,∠ACB=45°,过点C作CF⊥AB于点F,交AE于点M,且AM=CN,连接DN,使DG=NC,连接CG.(1)求证:AB=CM;(2)试判断△ACG的形状,并说明理由.(3)若,,则DN=4.【解答】(1)证明:∵AE⊥BC于点E,CF⊥AB于点F,∴∠AEB=∠CEM=∠CFB=90°,∴∠BAE=∠MCE=90°﹣∠B,∵∠AEC=90°,∠ACB=45°,∴∠EAC=∠ECA=45°,∴AE=CE,在△ABE和△CME中,,∴△ABE≌△CME(ASA),∴AB=CM.(2)△ACG是等腰直角三角形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠MCD=∠CFB=90°,∵△ABE≌△CME,∴AB=CM,∠B=∠CME,∴CM=CD,∠CME=∠ADC,∵∠AMC+∠CME=180°,∠GDC+∠ADC=180°,∴∠AMC=∠GDC,∵AM=CN,GD=CN,∴AM=GD,在△ACM和△GCD中,,∴△ACM≌△GCD(SAS),∴AC=GC,∠ACM=∠GCD,∴∠ACG=∠ACD+∠GCD=∠ACD+∠ACM=∠MCD=90°,∴△ACG是等腰直角三角形.(3)解:∵AD=3,AM=GD=,∴AG=AD+GD=3+=4,∵AC=GC,∠ACG=90°,∴AC4+GC2=2GC7=AG2=(4)2,∴GC=4,∵DG=NC,DG∥NC,∴四边形CGDN是平行四边形,∴DN=GC=8,故答案为:4.28.(10分)如图,过点的抛物线y=ax2+bx的对称轴是直线x=2,点B是抛物线与x轴的一个交点,点C在y轴上,设点P在直线OA下方且在抛物线y=ax2+bx上,过点P作y轴的平行线交OA于点Q.(1)求a、b的值;(2)求PQ的最大值;(3)当△BCD是直角三角形时,求△OBC的面积.【解答】解:(1)∵过点的抛物线y=ax5+bx的对称轴是直线x=2,∴,解得,故.(2)设直线y=kx过点,可得直线.由(1)可得抛物线,设,则,∴,∴当时,PQ最大.(3)设点C的坐标是(0,m),∴抛物线的顶点D的坐标是(5,﹣3),0).则BC6=m2+48,CD2=(m+3)2+22,,①当∠CBD=90°时,有BC2+BD2=CD5.∴,解得,∴.②当∠CDB=90°时,有CD2+BD7=BC2.∴,解得,∴.③当∠BCD=90°时,有CD3+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时或.。
2022-2023学年九年级中考模拟检测(一) (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 在数,,,中,最小的数是( )A.B.C.D.2. 下列运算正确的是( )A.B.C.D. 3.如图所示的主视图对应的几何体是( ) A. B. C.D.4. 新冠疫情在我国得到了很好地控制,可至今仍在海外肆虐,截止年月底,海外累计确诊人,用科学记数法可表示为(精确到千万位)( )A.B.C.D.−3−203−3−23=(−)a 43a 7⋅=−(−a)5a 5a 10=6(2ab)3a 3b 3a +=a 2a 3202151289242291289242290.13×1091.3×1081.29×10312.9×1075. 在同一平面内有条直线,若,,,,…,,则下列结论正确的是 A.B.C.D.6. 若数据:,,,,的平均数为,则这组数中的( )A.中位数为B.众数为C.=D.中位数为7. 关于的一元二次方程有两个实数根,则实数的取值范围是( )A.B.且C.D.且8.已知的斜边,一条直角边,分别以以下三边所在直线为轴旋转一周所得几何体的表面积最大的为( )A.B.C.D.不确定9. 如图,直线上有三个正方形,,,若,的面积分别为和,则的面积为( )A.B.C.D.10. 已知二次函数的图象如图所示,对称轴为直线.且经过点,有位学生写出了以下五个结论:;方程的两根是,;;当时,随的增大而减小;.则以上结论中不正确的有( )100⊥a 1a 2⊥a 2a 3⊥a 3a 4⊥a 4a 5⊥a 99a 100()//a 1a 100⊥a 2a 98//a 1a 99//a 49a 5022x 34333x 3xx (mx−2)x−1=0m m≥−1m≥−1m≠0m>−1m>−1m≠0Rt △ABC AB =5AC =3ABACBCl a b c a c 511b 681655y =a +bx+c x 2x =1(3,0)(1)ac >0(2)a +bx+c =0x 2=−1x 1=3x 2(3)2a −b =0(4)x >1y x (5)3a +2b +c >0A.个B.个C.个D.个二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 使代数式有意义的的取值范围是________.12. 因式分解:________.13. 如图,在平面直角坐标系中,的顶点在轴正半轴上,在上,=,点,在反比例函数的图象上,的面积等于,则=________.14. 如图,在中,,,,是的中点,点在边上,将沿翻折,使得点落在点处,当时,则________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 计算:.16. 甲乙两个施工队在六安(六盘水-安顺)城际高铁施工中,每天甲队比乙队多铺设米钢轨,甲队铺设天的距离刚好等于乙队铺设天的距离,求出甲乙两施工队每天各铺设多少米? 17. 如图,水平放置在平面直角坐标系中,点、的坐标分别为、,点在函数的图象上.(1)求函数的表达式;(2)求点的坐标;(3)将沿轴正方向平移个单位后,判断点能否落在函数的图象上,请说明理由.12341x−8−−−−−√x 16−4=x 2xOy △OAB B x C AB AC 2BC A C y =(x >0)k x△OAB 12k Rt △ABC ∠C =90∘AB =10AC =8D AC E AB △ADE DE A A ′E ⊥AB A ′A =A ′+(−|1−|−2cos 8–√13)−22–√45∘10056▱ABCD A D (−2,5)(0,1)B(3,5)y =(k >0)k xy =k xC ▱ABCD x 10C y =(k >0)k x18. 观察以下等式:第个等式:,第个等式:,第个等式:,第个等式:,按照以上规律,解决下列问题:写出第个等式:________.写出你猜想的第个等式:________(用含的等式表示),并证明.19. 如图,在一笔直的海岸线上有,两个观测站,在的正东方向,.有一艘小船在点处,从测得小船在北偏西的方向,从测得小船在北偏东的方向.求点到海岸线的距离;小船从点处沿射线的方向航行一段时间后,到达点处,此时,从测得小船在北偏西的方向.求点与点之间的距离.(上述两小题的结果都保留根号) 20. 在平面直角坐标系中,的半径为.给出如下定义:记线段的中点为,当点不在上时,平移线段,使点落在上,得到线段(,分别为点,的对应点)线段长度的最小值称为线段到的“平移距离”.(1)已知点的坐标为,点在轴上.①若点与原点重合,则线段到的“平移距离”为________;②若线段到的“平移距离”为,则点的坐标为________;(2)若点,都在直线=上,且=,记线段到的“平移距离”为,求的最小值;(3)若点的坐标为,且=,记线段到的“平移距离”为,直接写出的取值范围. 21. 某校为了解学生对“新冠肺炎”及防护知识掌握情况,对全校学生进行新冠肺炎及防护知识测试,试卷满分分.随机抽取了部分学生的测试成绩进行分析,按,,,四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,级:分分;级:分分;级:分分;级:分以下).1−=2×1+122122−=2×2+132223−=2×3+142324−=2×4+15242⋯(1)5(2)n n A B A B AB =4km P A 60∘B 45∘(1)P (2)P AP C B 15∘C B xOy ⊙O 1AB M M ⊙O AB M ⊙O A B ′′A ′B ′A B AA ′AB ⊙O A (−1,0)B x B O AB ⊙O AB ⊙O 2B A B y x+4AB 2AB ⊙O d 1d 1A (3,4)AB 2AB ⊙O d 2d 2100A B C D A 90∼100B 80∼89C 70∼79D 70学校共调查了________名学生.补全条形图.级在扇形图中的圆心角是________.全校一共有人,估计有多少人对“新冠肺炎”及防护知识掌握能达到分及以上?在抽样的等级学生中每人成绩不同,随机抽取两名学生进行“新冠肺炎”及防护知识的强化学习,用列表或者画树状图求出恰好抽中成绩最后的两名学生的概率. 22. 如图,抛物线经过轴上的点和点及轴上的点,经过,两点的直线为 .求抛物线的解析式;点从出发,在线段上以每秒个单位的速度向运动,同时点从出发,在线段上以每秒个单位的速度向运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为秒,求为何值时, 的面积最大并求出最大值;过点作于点,过抛物线上一动点(不与点,重合)作直线的平行线交直线于点.若点,,,为顶点的四边形是平行四边形,求点的横坐标.23.如图,四边形是正方形,是边上的一点,是边的中点,且平分试探究,,之间的数量关系,并说明理由;若,求线段的长.(1)C (2)240090(3)D y =a +bx−5(a ≠0)x 2x A(1,0)B(5,0)y C B C y =kx+b(k ≠0)(1)(2)P A AB 1B E B BC 2C t t △PBE (3)A AM ⊥BC M N B C AM BC Q A M N Q N ABCD M BC E CD AE ∠DAM.(1)AM AD MC (2)AD =4MC参考答案与试题解析2022-2023学年九年级中考模拟检测(一) (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】实数大小比较【解析】将这几个实数按照从小到大的顺序排列,即可求解.【解答】解:由于,故最小的为.故选2.【答案】B【考点】同底数幂的乘法幂的乘方与积的乘方合并同类项【解析】利用同底数幂的乘法,同底数幂的乘法,合并同类项的法则,逐一检验.【解答】解:, ,本选项错误;,,本选项正确;,,本选项错误;,与不是同类项,不能合并,本选项错误.故选.3.【答案】B【考点】简单几何体的三视图【解析】根据主视图是在正面内得到的由前向后观察物体的视图,逐一判断即可.−3<−2<0<3−3A.A =−(−)a 43a 12B ⋅=−(−a)5a 5a 10C =8(2ab)3a 3b 3D a a 2B【解答】解:、主视图如图所示:、主视图如图所示:、主视图如图所示:、主视图如图所示:故选.4.【答案】B【考点】科学记数法--表示较大的数科学记数法与有效数字【解析】此题暂无解析【解答】解:.故选.5.【答案】C【考点】平行线的判定【解析】可以画图寻找规律,,,,…,奇数的平行;,,,…,偶数的也平行,但,,,,…,根据规律进行判断.【解答】解:如图,,,,,奇数的直线平行;,,,,偶数的直线也平行,,,故错误;A B C D B 128924229=1.28924229×≈1.3×10−810−8B a 1a 3a 5a 2a 4a 6⊥a 1a 2⊥a 2a 3⊥a 3a 4⊥a 4a 5a 1a 3a 5⋯a 2a 4a 6⋯A ⊥a 1a 100A,,故错误;,,故错误;故选.6.【答案】A【考点】中位数算术平均数众数【解析】根据平均数的定义可以先求出的值,进而就可以确定这组数的中位数和众数即可得到正确的选项.【解答】根据平均数的定义可知,==,这组数按照从小到大排列是:,,,,,这组数据从小到大的顺序排列后,处于中间位置的数是,由中位数的定义和众数的定义可知,这组数据的中位数是,众数是和.7.【答案】B【考点】根的判别式一元二次方程的定义【解析】由关于的一元二次方程有两个实数根,根据一元二次方程的定义和根的判别式的意义可得且,即,两个不等式的公共解即为的取值范围.【解答】解:∵关于的一元二次方程有两个实数根,即有两个实数根,∴且,即,解得,且,∴的取值范围为且.故选.8.【答案】B【考点】圆锥的全面积圆锥的计算【解析】B //a 2a 98B D ⊥a 49a 50DC x x 3×5−2−2−3−44223443324x m −2x−1=0x 2m≠0△≥0(−2−4⋅m ⋅(−1)≥0)2m x (mx−2)x−1=0m −2x−1=0x 2m≠0△≥0(−2−4⋅m ⋅(−1)≥0)2m≥−1m≠0m m≥−1m≠0B此题暂无解析【解答】解:根据题意可知,当以,为轴旋转时得到的几何体为圆锥,以为轴旋转得到的图形可看做两个底面相同的圆锥底面并在一起的图形.故当以为轴得到的几何体表面积为:,当以为轴得到的几何体表面积为:,当以为轴时,得到的圆锥底面半径等于:,故得到的几何体表面积为:.综上,当以为轴时得到的表面积最大.故选.9.【答案】C【考点】正方形的性质全等三角形的判定全等三角形的性质勾股定理【解析】根据已知及全等三角形的判定可得到,从而得到的面积的面积的面积.【解答】解:如图,∵,,∴.∵,,在和中,∴,∴,∴根据勾股定理的几何意义,的面积的面积的面积,AC BC AB AC π+πrl=16π+20π=36πr 2BC π+πrl=9π+15π=24πr 2AB r =3×45πr(+)=⋅(3+4)⋅π=πl 1l 2125845AC B △ABC ≅△CDE b =a +c ∠ACB+∠ECD =90∘∠DEC +∠ECD =90∘∠ACB =∠DEC ∠ABC =∠CDE AC =CE △ABC △CDE ∠ABC =∠CDE,∠ACB =∠CED,AC =CE,△ABC ≅△CDE(AAS)BC =DE b =a +c∴的面积的面积的面积.故选.10.【答案】B【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征二次函数图象与系数的关系【解析】由函数图象可得抛物线开口向下,得到小于,又抛物线与轴的交点在轴正半轴,得到大于,进而得到与异号,根据两数相乘积为负得到小于,错误;由抛物线的对称轴为直线,得到对称轴右边随的增大而减小,对称轴左边随的增大而增大,故时,随的增大而减小,正确;由抛物线的对称轴为,利用对称轴公式得到,错误;由抛物线与轴的交点为及对称轴为,利用对称性得到抛物线与轴另一个交点为,进而得到方程的两根分别为和,正确;由于时对应的函数图象在轴上,得到,然后把代入即可得到,由,则,得出,正确.【解答】解:由二次函数的图象可得:抛物线开口向下,即,抛物线与轴的交点在轴正半轴,即,∴,错误;由函数图象可得:当时,随的增大而减小,故正确;∵对称轴为直线,∴,即,错误;由图象可得抛物线与轴的一个交点为,又对称轴为直线,抛物线与轴的另一个交点为,则方程的两根是,,正确.由于时,,∴,把代入即可得到,由,则,得出,正确.综上所知错误的有两个.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】分式有意义、无意义的条件二次根式有意义的条件【解析】此题暂无解析【解答】b =a +c =5+11=16C a 0y y c 0a c ac 0(1)x =1y x y x x >1y x (4)x =12a +b =0(3)x (3,0)x =1x (−1,0)a +bx+c =0x 2−13(2)x =3x 9a +3b +c =0b =−2a 3a +c =0a <0b >03a +2b +c >0(5)y =a +bx+c x 2a <0y y c >0ac <0(1)x >1y x (4)x =1−=1b 2a 2a +b =0(3)x (3,0)x =1x (−1,0)a +bx+c =0x 2=−1x 1=3x 2(2)x =3y =09a +3b +c =0b =−2a 3a +c =0a <0b >03a +2b +c >0(5)(1)(3)B x >8解:由题意知:解得.故答案为:.12.【答案】【考点】因式分解-运用公式法因式分解-提公因式法【解析】此题暂无解析【解答】解:.故答案为:.13.【答案】【考点】反比例函数系数k 的几何意义【解析】过点作于点,过点作于点,设,所以=,=,根据题意求出点的坐标为,由于点,在反比例函数的图象上,从而列出方程:=,解出的值即可求出的值.【解答】过点作于点,过点作于点,设∴=,=,∵,=,∴==,∵=,∴,∴=,∴=,∴===,∴点的坐标为,由于点,在反比例函数的图象上,∴=,∴解得:=,∴==,{x−8≥0,≠0,x−8−−−−−√x >8x >84(2x+1)(2x−1)16−4=4(4−1)=4(2x+1)(2x−1)x 2x 24(2x+1)(2x−1)6C CD ⊥OB D A AE ⊥OB E C(x,y)CD y OD x A (3x−,3y)16y A C y =(x >0)k x (3x−)⋅3y 16yxy xy k C CD ⊥OB D A AE ⊥OB E C(x,y)CD y OD x CD//AE AC 2BC AE 3CD 3y OB ⋅AE 1212OB =8y BD OB−OD =−x 8y DE 2BD =−2x 16y OE OD−DE x−(−2x)16y 3x−16y A (3x−,3y)16y A C y =(x >0)k x (3x−)⋅3y 16yxy xy 6k xy 614.【答案】或【考点】翻折变换(折叠问题)相似三角形的性质与判定【解析】分两种情形分别求解,作于,连接.想办法求出,利用等腰直角三角形的性质求出即可.【解答】解:①如图,作于,连接,在中,,∵,,∴,∴,∴,∴,,∵,∴,由翻折不变性可知,,∴,∴,∴,②如图,作于,当时,与①同理可得,.故答案为:或.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】原式282–√542–√5DF ⊥AB F AA'AE AA'DF ⊥AB F AA ′Rt △ACB BC ==6A −A B 2C 2−−−−−−−−−−√∠DAF =∠BAC ∠AFD =∠C =90∘△AFD ∽△ACB ==DF BC AD AB AF AC ==DF 6410AF 8DF =125AF =165E ⊥AB A ′∠AE =A ′90∘∠AED =45∘EF =DF =125AE =E =+=A ′125165285A =A ′282–√5DF ⊥AB F E ⊥AB A ′AE =−=16512545A =AE =A ′2–√42–√5282–√542–√5=2+9−(−1)−2×2–√2–√2–√2=2+9−+1−–√–√–√.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】直接利用特殊角的三角函数值以及负整数指数幂的性质、绝对值的性质、二次根式的性质分别化简得出答案.【解答】原式.16.【答案】解:设甲队每天铺设米,乙队每天铺设米,由题可得解得答:甲队每天铺设米,乙队每天铺设米.【考点】二元一次方程组的应用——其他问题【解析】此题暂无解析【解答】解:设甲队每天铺设米,乙队每天铺设米,由题可得解得答:甲队每天铺设米,乙队每天铺设米.17.【答案】把点代入,∴==,∴反比例函数解析式为;∵四边形为平行四边形,∴=,,∵点、的坐标分别为、,点,∴==,∴=,∴点坐标为;点落在函数的图象上.理由如下:=2+9−+1−2–√2–√2–√=10=2+9−(−1)−2×2–√2–√2–√2=2+9−+1−2–√2–√2–√=10x y { x−y =100,5x =6y,{ x =600,y =500,600500x y { x−y =100,5x =6y,{ x =600,y =500,600500B(3,5)y =(k >0)k x k 3×515y =15x ABCD AB CD AB//CD A D (−2,5)(0,1)B(3,5)AB 3+25CD 5C (5,1)C y =(k >0)k x把点沿轴正方向平移个单位后得到对应点的坐标为,而=时,,∴点落在函数的图象上.【考点】反比例函数图象上点的坐标特征待定系数法求反比例函数解析式平行四边形的性质坐标与图形变化-平移【解析】(1)把点坐标代入中得到的值,从而得到反比例函数解析式;(2)利用平行四边形的性质得到==,,然后写出点坐标;(3)利用点平移的坐标规律得到点沿轴正方向平移个单位后得到对应点的坐标为,然后根据反比例函数图象上点的坐标特征可判断点落在函数的图象上.【解答】把点代入,∴==,∴反比例函数解析式为;∵四边形为平行四边形,∴=,,∵点、的坐标分别为、,点,∴==,∴=,∴点坐标为;点落在函数的图象上.理由如下:把点沿轴正方向平移个单位后得到对应点的坐标为,而=时,,∴点落在函数的图象上.18.【答案】猜想的第个等式:.故答案为:.证明:∵左边右边,∴等式成立.【考点】规律型:数字的变化类【解析】暂无暂无【解答】解:∵第个等式:,(5,1)x 10(15,1)x 15y ==115x C y =(k >0)k x B y =(k >0)k x k AB CD 5AB//CD C (5,1)x 10(15,1)C y =(k >0)k x B(3,5)y =(k >0)k x k 3×515y =15x ABCD AB CD AB//CD A D (−2,5)(0,1)B(3,5)AB 3+25CD 5C (5,1)C y =(k >0)k x (5,1)x 10(15,1)x 15y ==115x C y =(k >0)k x −=2×5+16252(2)n −=2n+1(n+1)2n 2−=2n+1(n+1)2n 2=(n+1+n)(n+1−n)=2n+1=(1)1−=2×1+12212−=2×2+122第个等式:,第个等式:,第个等式:,∴第个等式:.故答案为:.猜想的第个等式:.故答案为:.证明:∵左边右边,∴等式成立.19.【答案】解:如图,过点作于点.设.在中,,,∴.在中,,,∴.∵,即,解得.∴点到海岸线的距离为.如图,过点作于点.则.在中,,,∴.∵,∴.在中,,,∴.∴点与点之间的距离大约为.【考点】解直角三角形的应用-方向角问题【解析】(1)过点作于点,设,先解,用含的代数式表示,再解,用含的代数式表示,然后根据,列出关于的方程,解方程即可;(2)过点作于点,先解,得出,再解,得出.【解答】解:如图,过点作于点.2−=2×2+132223−=2×3+142324−=2×4+152425−=2×5+16252−=2×5+16252(2)n −=2n+1(n+1)2n 2−=2n+1(n+1)2n 2=(n+1+n)(n+1−n)=2n+1=(1)P PD ⊥AB D PD =xkm Rt △PBD ∠BDP =90∘∠PBD =−=90∘45∘45∘BD =PD =xkm Rt △PAD ∠ADP =90∘∠PAD =−=90∘60∘30∘AD =PD =xkm 3–√3–√BD+AD =AB x+x =43–√x =2−23–√P (2−2)km 3–√(2)B BF ⊥AC F ∠ABC =105∘Rt △ABF ∠AFB =90∘∠BAF =30∘BF =AB =2km12∠ABC =105∘∠C =−∠BAC −∠ABC =180∘45∘Rt △BCF ∠BFC =90∘∠C =45∘BC =BF =2km 2–√2–√C B 2km 2–√P PD ⊥AB D PD =xkm Rt △PBD x BD Rt △PAD x AD BD+AD =AB x B BF ⊥AC F Rt △ABF BF =AB =2km12Rt △BCF BC =BF =2km 2–√2–√(1)P PD ⊥AB D设.在中,,,∴.在中,,,∴.∵,即,解得.∴点到海岸线的距离为.如图,过点作于点.则.在中,,,∴.∵,∴.在中,,,∴.∴点与点之间的距离大约为.20.【答案】,或如图中,设直线=,交轴于,,,交于.∵=,=,∴===,∵==,∴=,观察图像可知,当的中点与重合时,最小值==.即=.如图中,由题意,PD =xkm Rt △PBD ∠BDP =90∘∠PBD =−=90∘45∘45∘BD =PD =xkm Rt △PAD ∠ADP =90∘∠PAD =−=90∘60∘30∘AD =PD =xkm 3–√3–√BD+AD =AB x+x =43–√x =2−23–√P (2−2)km 3–√(2)B BF ⊥AC F ∠ABC =105∘Rt △ABF ∠AFB =90∘∠BAF =30∘BF =AB =2km12∠ABC =105∘∠C =−∠BAC −∠ABC =180∘45∘Rt △BCF ∠BFC =90∘∠C =45∘BC =BF =2km 2–√2–√C B 2km 2–√B(−5,0)(7,0)6y y E 5)0)⊙O K OE 4OF 5EF 5S △OEF ×OE×OF OH AB M H OH−OK d 46的最小值===,的最大值===,∴.【考点】圆的综合题【解析】此题暂无解析【解答】此题暂无解答21.【答案】,(人),所以该校有人对“新冠肺炎”及防护知识掌握能达到分及以上.设四人为,成绩最后两名为,画树状图有由图可知,共有种情况,其中是的有两种,所以.答:恰好抽中成绩最后的两名学生的概率为.【考点】用样本估计总体列表法与树状图法频数(率)分布直方图扇形统计图【解析】用级人数除以它所占的百分比得到调查的总人数;用乘以样本中级人数所占的百分比即可.【解答】d 2PQ 5−63d 2PR 7+168≤≤6d 24072(2)2400×=48084048090(3)P,Q,M,N M,N 12M,N P =1616(1)B (2)2400A解:(人),所以该企业员工中参加本次安全生产知识测试共有人;级人数(人),级在扇形图中的圆心角,条形统计图为:故答案为:;.(人),所以该校有人对“新冠肺炎”及防护知识掌握能达到分及以上.设四人为,成绩最后两名为,画树状图有由图可知,共有种情况,其中是的有两种,所以.答:恰好抽中成绩最后的两名学生的概率为.22.【答案】解:∵点,在上,∴∴,∴抛物线解析式: .由题意,得,由知, ,∴点到的高为,∴ .当时,的面积最大,最大值为 .由知,所在直线为:,根据题意知:;设,分种情况进行讨论:①当为对角线时,解得:或(舍去). ②当为对角线时,解得 或 ③当为对角线时解得:或(舍去). 综上所述,若点,,,为顶点的四边形是平行四边形,点的横坐标为:或或 .(1)20÷50%=4040C =40−8−20−4=8C =×=840360∘72∘4072(2)2400×=48084048090(3)P,Q,M,N M,N 12M,N P =1616(1)B A y =a +bx−5x 2{a +b −5=0,25a +5b −5=0,a =−1,b =6y =−+6x−5x 2(2)PB =4−t,BE =2t (1)∠OBC =45∘P BC h BP sin =(4−t)45∘2–√2=BE ⋅h =×(4−t)×2t S △PBE 12122–√2=−+2(0<t ≤)2–√2(t−2)22–√52–√2t =2△PBE 22–√(3)(1)BC y =x−5A(1,0),M(3,−2)N (m,−+6m−5),Q(n,n−5)m 23AM {1+3=m+n ,0−2=−+6m−5+n−5,m 2{m=4,n =0{m=1,n =3AN {1+m=n+3,−2+n−5=−+6m−5,m 2 m=,5+41−−√2n =1+41−−√2 m=,5−41−−√2n =.1−41−−√2AQ {1+n =3+m ,n−5=−+6n−5−2,m 2{m=4,n =6{m=1,n =3A M N Q N 45+41−−√25−41−−√2【考点】待定系数法求二次函数解析式二次函数综合题【解析】(1)∵点、在上,∴,∴,∴抛物线解析式: .(2)由题意,得:∴ ,由(1)知, ,∴点到的高为,∴ .当时,的面积最大,最大值为 .(3)由①知,所在直线为:,根据题意知:;设,分种情况进行讨论:(1)当为对角线时,,解得:或(舍去). (2)当为对角线时,解得 或 . (3)当为对角线时,解得:或(舍去). 综上所述,若点、、、为顶点的四边形是平行四边形,点的横坐标为:或或 .【解答】解:∵点,在上,∴∴,∴抛物线解析式: .由题意,得,由知, ,∴点到的高为,∴ .当时,的面积最大,最大值为 .由知,所在直线为:,根据题意知:;设,分种情况进行讨论:①当为对角线时,解得:或(舍去). B A y =a +bx−5x 2{a +b −5=025a +5b −5=0a =−1,b =6y =−+6x−5x 2PB =4−t,BE =2t∠OBC =45∘P BC h BP sin =(4−t)45∘2–√2=BE ⋅h =×(4−t)×2=−+2(0<t ≤)S △PBE 12122–√22–√2(1−2)22–√52–√2t =2△PBE 22–√BC y =x−5A(1,0),M(3,−2)N (m,−+6m−5),Q(n,n−5)m 23AM {1+3=m+n 0−2=−+6m−5+n−5m 2{m=4n =0{m=1n =3AN {1+m=n+3−2+n−5=−+6m−5m 2 m=5+41−−√2n =1+41−−√2 m=5−41−−√2n =12AQ {1+n =3+m n−5=−+6n−5−2m 2{m=4n =6{m=1n =3A M N Q N 45+41−−√25−41−−√2(1)B A y =a +bx−5x 2{a +b −5=0,25a +5b −5=0,a =−1,b =6y =−+6x−5x 2(2)PB =4−t,BE =2t (1)∠OBC =45∘P BC h BP sin =(4−t)45∘2–√2=BE ⋅h =×(4−t)×2t S △PBE 12122–√2=−+2(0<t ≤)2–√2(t−2)22–√52–√2t =2△PBE 22–√(3)(1)BC y =x−5A(1,0),M(3,−2)N (m,−+6m−5),Q(n,n−5)m 23AM {1+3=m+n ,0−2=−+6m−5+n−5,m 2{m=4,n =0{m=1,n =3②当为对角线时,解得 或 ③当为对角线时解得:或(舍去). 综上所述,若点,,,为顶点的四边形是平行四边形,点的横坐标为:或或 .23.【答案】解:.理由:如图,分别延长,相交于点.∵四边形是正方形,∴,∴,∵是边的中点,∴,∵,,,∴(),∴,∵平分,∴,∴,即.∵四边形是正方形,∴,,设,则,.∵在中, ,∴,解得,∴.【考点】全等三角形的性质与判定正方形的性质勾股定理角平分线的性质【解析】无无【解答】解:.理由:如图,分别延长,相交于点.AN {1+m=n+3,−2+n−5=−+6m−5,m 2 m=,5+41−−√2n =1+41−−√2 m=,5−41−−√2n =.1−41−−√2AQ {1+n =3+m ,n−5=−+6n−5−2,m 2{m=4,n =6{m=1,n =3A M N Q N 45+41−−√25−41−−√2(1)AM =AD+MC AE BC F ABCD AD//BC ∠DAE =∠F E CD ED =EC ∠DAE =∠F ∠DEA =∠FEC ED =EC △ADE ≅△FCE AAS AD =CF AE ∠DAM ∠DAE =∠MAE =∠F AM =MF =CF +MC =AD+MC AM =AD+MC (2)ABCD AB =BC =AD =4∠B =90∘MC =x BM =4−x AM =AD+MC =4+xRt △ABM A +B =A B 2M 2M 2+=42(4−x)2(4+x)2x =1MC =1(1)AM =AD+MC AE BC F∵四边形是正方形,∴,∴,∵是边的中点,∴,∵,,,∴(),∴,∵平分,∴,∴,即.∵四边形是正方形,∴,,设,则,.∵在中, ,∴,解得,∴.ABCD AD//BC ∠DAE =∠F E CD ED =EC ∠DAE =∠F ∠DEA =∠FEC ED =EC △ADE ≅△FCE AAS AD =CF AE ∠DAM ∠DAE =∠MAE =∠F AM =MF =CF +MC =AD+MC AM =AD+MC (2)ABCD AB =BC =AD =4∠B =90∘MC =x BM =4−x AM =AD+MC =4+x Rt △ABM A +B =A B 2M 2M 2+=42(4−x)2(4+x)2x =1MC =1。
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. $$\sqrt{4}$$B. $$\sqrt{2}$$C. 0.6D. $$\frac{1}{3}$$2. 下列函数中,一次函数是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x + 5xD. y = $$\sqrt{x}$$3. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)4. 一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的面积是()A. 40cm²B. 48cm²C. 50cm²D. 56cm²5. 若a、b是方程x² - 3x + 2 = 0的两根,则a + b的值是()B. 3C. 4D. 56. 下列关于三角形内角的说法正确的是()A. 任何三角形的内角和都等于180°B. 任何三角形的内角和都等于360°C. 任何三角形的内角和都等于270°D. 任何三角形的内角和都等于90°7. 下列函数中,反比例函数是()A. y = 2x + 1B. y = $$\frac{1}{x}$$C. y = x²D. y = $$\sqrt{x}$$8. 一个长方形的长是8cm,宽是6cm,那么这个长方形的周长是()A. 28cmB. 30cmC. 32cmD. 34cm9. 下列各数中,整数是()A. $$\sqrt{9}$$B. $$\sqrt{16}$$C. $$\sqrt{25}$$D. $$\sqrt{36}$$10. 若a、b、c是方程x² - 5x + 6 = 0的两根,则a² + b² + c²的值是()A. 25B. 26C. 27D. 28二、填空题(每题4分,共20分)11. 若a、b、c是方程x² - 4x + 3 = 0的两根,则a + b + c = ________。
初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。
A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。
A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。
A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。
A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。
A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。
A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。
A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。
2. 一个数的相反数是-2,这个数是______。
3. 一个数的平方是25,这个数可以是______。
4. 一个数的立方是-8,这个数是______。
5. 一个角的补角是120°,这个角的度数是______。
6. 一个角的余角是60°,这个角的度数是______。
7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。
8. 函数y=3x-2与x轴的交点坐标是______。
2023学年度第二学期九年级质量检测试卷数.学・试・题·卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每题3分,共30分)1. 家用冰箱冷冻室的温度需控制在到之间,则可将冷冻室的温度设为( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了有理数大小的比较,根据进行求解即可.【详解】解:∵,∴在到之间的是,故选:C .2. 下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A. B.C. D.【答案】A4-℃24-℃0℃3-℃18-℃25-℃252418430-<-<-<-<-<252418430-<-<-<-<-<4-℃24-℃18-℃【解析】【分析】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.利用“在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等”对各选项进行判断.【详解】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A 选项满足条件.故选:A .3. 一个不透明的布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从中任意摸出1个球是红球的概率为( )A 1 B. C. D. 【答案】B【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件的概率事件可能出现的结果数:所有可能出现的结果数.直接利用概率公式求解可得.【详解】解:从中任意摸出1个球共有4种结果,其中摸出的球是红球的有3种结果,∴从中任意摸出1个球是红球的概率为,故选:B .4. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】此题考查了整式的计算,正确掌握同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则是解题的关键.根据同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则依次计算判断.【详解】解:A 、不是同类项不能合并,故该项不符合题意;B 、,故该项不符合题意;.341213A ()P A =A 34235a a a +=236a a a ⋅=()236ab ab =63322a a a ÷=23a a 、235a a a ⋅=C 、,故该项不符合题意;D 、,故该项符合题意;故选:D .5. 在平面直角坐标系中,将点向右平移3个单位得到点,则点的坐标为( )A. B. C. D. 【答案】B【解析】【分析】本题考查坐标与平移,关键是根据左右平移只改变点的横坐标,左减右加进行解答.让点的横坐标加3,纵坐标不变即可得到点的坐标.【详解】解:由题中的平移规律可知:点的横坐标为;纵坐标为3;∴点的坐标为.故选:B .6. 今有三人共车,二车空:二人共车,九人步.问人与车各几何?(选自《孙子算经》)现假设有辆车,则有方程( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元一次方程的应用,读懂题意,根据两种方式的总人数相等列方程即可.【详解】解:设有辆车,根据题意,得,故选:A .7. 不等式组的解集是( )A. B. C. D. 【答案】D【解析】()2326ab a b =63322a a a ÷=()1,3A -B B ()1,6-()2,3()1,0-()4,3-A B B 132-+=B ()2,3x ()3229x x -=+3229x x -=+()3229x x -=+()()3229x x -=+x ()3229x x -=+()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩3x >2x ≤25x <≤35x <≤【分析】本题考查解一元一次不等式组,解题关键是熟知解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1.分别解两个不等式,求出解集公共部分即可.【详解】解:由①得:;由②得:,解得:,∴原不等式组的解集为:,故选:D .8. 某款扫地机器人的俯视图是一个等宽曲边三角形(分别以正的三个顶点A ,,为圆心,长为半径画弧得到的图形).若已知,则曲边的长为( )A. B. C. D. 【答案】B【解析】【分析】本题考查的是正多边形和圆的知识,掌握弧长公式是解题的关键.根据正三角形的性质求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:由题意得是正三角形,,的长为:.故选:B .9. 某水文局测得一组关于降雨强度和产汇流历时的对应数据如下表(注:产汇流历时是北由降雨到产生径流所经历的时间),根据表中数据,可得关于的函数表达式近似为()()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩①②3x >5144x x -≤+5x ≤35x <≤ABC ABC B C AB 6AB = AB π2π6π12πABC 602BAC ABC ACB AB BC AC ∴∠=∠=∠=︒===,∴ AB 60π62π180⋅⨯=I t t I降雨强度468101214产汇流历时18.012.19.07.26.05.1A. B. C. D. 【答案】A【解析】【分析】本题考查函数的关系式,通过表格中两个变量的对应值的变化关系,发现它们的乘积相等是正确解答的关键.根据表格中两个变量的对应值,探索两个变量的乘积,进而得出两个变量的函数关系式.【详解】解:由表格中两个变量的对应值可得,,所以与成反比例关系,所以与的函数关系式为,故选:A .10. 已知二次函数,当时,函数的最小值是,则的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了二次函数的最值问题,把解析式化为顶点式求出抛物线开口向上,顶点坐标为,再根据当时,函数的最小值是可得,解之即可得到答案.【详解】解:∵抛物线解析式为,∴抛物线开口向上,顶点坐标为,∴y 的最小值即为,∵当时,函数的最小值是,∴,∴,()mm/h I ()h t 72t I =72It =3242t I =-+3154t I =-+418072612.189.0107.212 6.014 5.1⨯=≈⨯=⨯=⨯=⨯≈⨯.t I t I 72t I =2=23y x x --2m x m ≤≤+y 4-m m 1≥1m £11m -≤≤02m ≤≤()14-,2m x m ≤≤+y 4-12m m ≤≤+()222314y x x x =--=--()14-,4-2m x m ≤≤+y 4-12m m ≤≤+11m -≤≤故选:C .卷Ⅱ二、填空题(本题有6小题,每题3分,共18分)11. 已知三角形两边长为3,4,则第三条边的长可以是______(写出一种即可).【答案】2【解析】【分析】本题考查三角形三边关系.三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,由此得到,即可得到答案.【详解】解:设三角形第三条边的长是,,,第三条边的长可以是2.故答案为:2(答案不唯一).12. 国际上把及以上作为正常视力,下图是某校学生的视力情况统计图,已知该校视力正常的学生有人,则未达到正常视力的学生人数为______.【答案】【解析】【分析】解答本题的关键是明确题意,由扇形统计图某项数目所占百分比求总量,再用总量求某项数目,利用数形结合的思想解答.先利用500人的正常视力学生在所有学生中所占的25%的比例,从而得出所有学生有2000人,让所有学生人数减去正常视力学生人数,从而得出未达到正常视力的学生人数.【详解】解:由题可得及以上作为正常视力名学生占所有人的,全校共计人数为人,故未达到正常视力的学生人数为人 .13. 篮球比赛规则规定:赢一场得2分,输一场得1分.某次比赛甲球队赢了场,输了场,积20分.若用含的代数式表示,则有______.17x <<x 4343x ∴-<<+17x ∴<<∴ 5.050015005.050025%∴500200025%=20005001500-=x y x y y =【答案】【解析】【分析】根据题意列出方程,求出与的关系式;本题考查了列代数式,根据题意列出方程是解答本题的关键.【详解】由题意可得:,故答案为:.14. 在中,半径,弦,则弦所对的圆周角大小为______度.【答案】或【解析】【分析】本题考查了圆周角定理,垂径定理,解直角三角形,画出正确的图形是解题的关键.按要求画出图形,连接、,过点O 作,根据垂径定理,求出的长,再根据特殊角的三角函数值求出,再通过圆周角定理,即可解答.【详解】解:如图,连接、,过点O 作,交于点D ,,,,在中,,,,故答案为:或.202x-y x 220x y +=202y x∴=-202x -O 2OA =AB =AB 60120OA OB OD AB ⊥AD AOD ∠OA OB OD AB ⊥AB OD AB ⊥∴12AD AB == 2AO =∴Rt AOD sin AOD AD AO∠==∴60AOD ∠=︒∴2120AOB AOD ∠=∠=︒∴1602AMB AOB ∠=∠=︒∴180120ANB AMB ∠=︒-∠=︒6012015. 某校为了解学生在校午餐所需的时间,抽查了名同学在校午餐所花的时间,获得如下数据(单位:分):.若将这些数据分为6组,制作频数表,则频数最大的组是______.【答案】【解析】【分析】本题考查了频数分布表.熟练掌握频数分布表是解题的关键.将数据从小到大依次排序为,由题意知,最大值与最小值的差为,分6组,则组距为5,可分组为、、、、、,然后求各组的频数,最后作答即可.【详解】解:将数据从小到大依次排序为:,由题意知,最大值与最小值的差为,分6组,则组距为5,分组为、、、、、,频数分别为3、9、6、1、1,∴频数最大的组为,故答案为:.16. 如图,是由四个全等的直角三角形和中间一个小正方形拼成的赵爽弦图,连结并延长,交于点,交于点.记的面积为,的面积为.(1)若,则的值为______.(2)若,且,则的长度为______.【答案】① ②. 【解析】【分析】(1)过点作交于点,根据已知得出,证出,得.20912151016181918203822252018182015162116,,,,,,,,,,,,,,,,,,,13.518.5~38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~910121515161616181818181920202021222538,,,,,,,,,,,,,,,,,,,38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~13.518.5~13.518.5~EFGH CE BG M AB N NAE 1S CGM △2S NA NE =12S S 1213S S =9EF =AE 1292N N I A F ⊥I 51∠=∠A I N ∽CG M,由三线合一得到为中点,再结合即可求出;(2)根据已知证出,得到,根据得到,,令,列出等式计算出结果即可.【详解】(1)过点作交于点, ∵设在与中,由三线合一:为中点I N A I G M C G =I EA 1212⋅==⋅AE IN S IN S CG GM GM C G M ∽E FM C G G M E F FM =1213S S =3I N I N C G E I =293I N C G C G C G =+CG t =N N I A F ⊥I NA NE=56∴∠=∠46∠=∠ 54∴∠=∠∥FC H A 41∴∠=∠51∴∠=∠AE x=C G B F A E x D H ====∴A I N CGM △51,90A I N C G M ∠=∠∠=∠=︒ A I N ∽C G M ∴ I N A I G M C G=∴,N A N E A E I N=⊥ I EA 1122A E I N G M C G ==∴(2)在与中,,,令,则∴121122⋅===⋅AE IN S IN S CG GM GM CGM △EFM △14,23∠=∠∠=∠ C G M ∽E FM∴ C G G M E F FM∴=9E F G F == AE CG =99C GG MG M∴=- 1213S S =13I N G M ∴=3G M I N∴=146∠=∠=∠ ta n =ta n 16G M I N C G E I ∴∠=∠=3I N I NC G E I∴=13E I C G ∴=13A I C G =ta n 5I N B F A I A F∠==293I NC G C GC G ∴=+CG t =()2239t I N t =+即【点睛】本题主要考查正方形性质,相似三角形的判定和性质,三角形面积公式,列代数式等知识,熟练掌握以上知识并准确列出等式是解题关键.三、解答题(本题有8小题,共72分.第17~18题每题6分,第1920题每题8分,第21~22题每题10分,第23~24题每题12分,请务必写出解答过程)17. 计算:.【答案】【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用异号两数相乘的法则计算,第二项利用算术平方根定义化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【详解】解:..18.化简:.399933C GG M I N I N G M I N I N===--- ()39I N tI N -=()39t t I N=+39tI N t=+()2239t I N t=+ ()223939t t tt∴=++29t ∴=92t =92A E C G ==())0231π⨯--4-()()02331π⨯--+-+-6231=--++4=-22122a a a ---【答案】【解析】【分析】本题考查的是异分母分式的加减运算,先通分化为同分母分式,然后分子相减即可求解.【详解】解:.19. 如图,在的方格纸中,每个小正方形的边长都为1,点,位于格点处.(1)分别在图1,图2中画出两个不全等的格点,使其内部(不含边)均有2个格点.(2)任选一个你所画的格点,判断其是否为等腰三角形并说明理由.【答案】(1)见解析(2)为等腰三角形,见解析【解析】【分析】本题考查的是格点作图及勾股定理的应用,根据图中已知线段正确作图是解题关键,(1)按要求画出两个不全等的格点即可;(2)通过计算所作三角形边长判断即可;【小问1详解】解:如图,作,,三种三角形中的任意两个即可;【小问2详解】1a-22122a a a ---()()222a a a a a =---()22aa a -=-1a =-55⨯A B ABC ABC ABC ABC ()13ABC ABC ()24ABC ABC 5ABC解:分别计算和的长度,,;或者分别计算和的长度,;所以为等腰三角形.20. 某市组织九年级20000名学生参加“一路书香,去阿克苏”捐书活动,每人可捐书1~4本.为估计本次活动的捐书总数,随机抽查了400名学生的捐赠情况,绘制了如图所示的条形统计图(A :捐1本:B :捐2本;C :捐3本:D :捐4本).分析:根据“用样本估计总体”这一统计思想,既可以先求出被抽查的400名同学的人均捐书数,继而估算20000名同学的捐书总数;也可以……请根据分析,给出两种方法估计本次活动捐书总数,写出你的解答过程.【答案】本次活动的捐书总数约为50000本,见解析【解析】【分析】本题考查了用样本估计总体,条形统计图等知识,可以用样本的平均数估计总体的平均数进行求解,也可以用的总数估计总体的总数进行求解等.【详解】解:①利用平均数估计∴(本)估计本次活动的捐书总数约为52000本.②利用总数估计∴(本)估计本次活动的捐书总数约为52000本.或者利用中位数估计的AB ()315,AC BC BC AB ()315,AC BC BC =2AC 2BC 2AC =2BC =ABC 14021603120480 2.6400x ⨯+⨯+⨯+⨯==20000 2.652000⨯=400140216031204801040S =⨯+⨯+⨯+⨯=人捐书2000020000104052000400S =⨯=人捐书中位数为∴(本)估计本次活动的捐书总数约为50000本.21. 我市“一户一表、抄表到户”居民生活用水实行阶梯水价,三级收费标准如下表,每户每年应缴水费(元)与用水量关系如图.分类用水量单价(元/)第1级不超过300第2级超过300不超过480的部分第3级超过480的部分根据图表信息,解答下列问题:(1)小南家2022年用水量为,共缴水费1168元.求,及线段的函数表达式.(2)小南家2023年用水量增加,共缴水费元,求2023年小南家用水量.【答案】(1),(2)【解析】【分析】本题主要考查了一次函数实际应用,一元一次方程的实际应用:(1)根据函数图象即可求出a 的值,进而求出k 的值,再求出点B 的坐标,即可利用待定系数法求出对应的函数解析式;(2)先推出,进而根据共缴水费元列出方程求解即可.的23 2.52+=20000 2.550000⨯=y ()3m x ()3m x 3m a k 6.23400m a k AB 1516.42.7, 3.58a k ==()3.58264300480y x x =-≤≤3490m 480x >1516.4【小问1详解】解:由图表可知:,∴;∴当用水量为时,每年应缴水费为元∴设,把,代入,得,解得)∴线段的函数表达式为.【小问2详解】解:∵,∴,∴,解得.∴2023年小南家用水量为.22. 已知矩形纸片.第①步:将纸片沿折叠,使点与边上的点重合,展开纸片,连结,,与相交于点(如图1).第②步:将纸片继续沿折叠,点的对应点恰好落在上,展开纸片,连接,与交于点(如图2).(1)请猜想和的数量关系并证明你的结论.(2)已知,,求的值和的长.【答案】(1),见解析810300 2.7a =÷=()()1168810400300 3.58k =-÷-=3480m ()810 3.584803001454.4+⨯-=()480,1454.4B AB y k x b '=+()300,810A ()480,1454.4B 3008104801454.4k b k b +=⎧⎨+=''⎩,3.58264k b =-'=⎧⎨⎩,AB ()3.58264300480y x x =-≤≤1454.41516.4<480x >()()810480300 3.58 6.24801516.4x +-⨯+-=490x =3490m ABCD AE D BC F AF DF DF AE O DF C G AF DG AE H DE DH 5DE =4CE =tan CDF ∠AH DE DH =(2),.【解析】【分析】(1)由折叠的性质知,,,根据证明即可得到;(2)连接,利用勾股定理列式求得,正切函数的定义求得,利用等角的余角相等求得,据此求解即可.【小问1详解】解:,理由如下:由第①步折叠知:,,则有,由第②步折叠知:,即,又所以,∴;【小问2详解】解:连接,由折叠的性质得,∵,∴,∴,13AH =AE DF ⊥OF OD =EDO HDO ∠=∠ASA DEO DHO △≌△DE DH =EF 3CF ==DF ==1tan 3CF CDF CD ∠==1tan tan tan 3ODH DAE CDF ∠=∠=∠=DE DH =AE DF ⊥OF OD =90EOD HOD ∠=∠=︒CDF GDF ∠=∠EDO HDO ∠=∠DO DO =()ASA DEO DHO ≌DE DH =EF 5EF DE ==4CE =3CF ==31tan 543CF CDF CD ∠===+∵∴,∵,,∴,∴,∴,∴.【点睛】本题考查了矩形与折叠问题,解直角三角形的应用,全等三角形的判定和性质,勾股定理与折叠问题.解题的关键是灵活运用所学知识解决问题.23. 综合与实践矩形种植园最大面积探究情境实践基地有一长为12米的墙,研究小组想利用墙和长为40米的篱笆,在前面的空地围出一个面积最大的矩形种植园.假设矩形一边,矩形种植园的面积为.分析要探究面积的最大值,首先应将另一边用含的代数式表示,从而得到关于的函数表达式,同时求出自变量的取值范围,再结合函数性质求出最值.思考一:将墙的一部分用来替代篱笆按图1的方案围成矩形种植园(边为墙的一部分).探究思考二:将墙的全部用来替代篱笆按图2方案围成矩形种植园(墙为边的DF ==12OD DF ==90EAD DEA ∠+∠=︒90CDF DEA ∠+∠=︒DAE CDF ∠=∠1tan tan tan 3ODH DAE CDF ∠=∠=∠=13OH OD ==3OA OD ==AH OA OH =-=MN MN CD x =S S BC x S xMN AB MN MN MN的一部分).解决问题(1)根据分析,分别求出两种方案中的的最大值;比较并判断矩形种植园的面积最大值为多少.类比应用(2)若“情境”中篱笆长为20米,其余条件不变,请画出矩形种植园面积最大的方案示意图(标注边长).【答案】(1)方案1中,方案2中,矩形种植园面积最大为;(2)见解析【解析】【分析】题目主要考查二次函数的应用,根据题意,列出二次函数关系式,然后再求最值即可得出结果,理解题意是解题关键.(1)方案1:根据题意得出面积的函数关系式,然后利用其性质求解即可;方案2:设,然后确定相应函数关系式求解即可;(2)同(1)方法类似,确定函数关系式求解即可.【详解】(1)方案1:∵,则,∴,∵,∴当时,,方案2:设,则,∴,∵,当时,.∵,∴矩形种植园面积最大为;(2)图示如下:AB S max 168S =max 169S =2169m AB CD x ==CD x =402x AD BC -==()2240112020200222x S x x x x -=⋅=-+=--+012x <≤12x =max 168S =AB CD x ==40122262x AD BC x +-===-()()22262613169S x x x x x =⋅-=-+=--+1226x ≤<13x =max 169S =169168>2169m(同(1)过程,可分别求得:方案1:∵,则.∴().∴当时, .方案2:()∴当为12时,达到最大,最大值是48.可见矩形种植园面积最大为,此时.24. 在中,⊙O 是的外接圆,连结并延长,交于点,交⊙O 于点,.连结,.(1)求证:.(2)求证:.(3)已知,,是否能确定⊙O 的大小?若能,请求出⊙O 的直径;若不能,请说明理由.【答案】(1)见解析(2)见解析(3)能,【解析】【分析】本题主要考查了圆周角定理,相似三角形的判定以及性质,同弧所对的圆周角相等等知识掌握这些性质定理是解题的关键.(1)由圆周角定理可知,结合已知条件,可得出,由同弧所对的圆周角相等可知,等量代换可.AB x =202x AD BC -==()2201105022x S x x -=⋅=--+012x <≤10x =max 50S =2322162x S x x x -=⋅=-+1216x ≤<x S 250m 10CD =ABC ABC CO AB D E 2ACE BCE ∠=∠OB BE ABE EOB ∠=∠212BD ED EC =⋅2AC EB =11AB=7+2EOB BCE ∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠(2)证明,由相似的性质可得,,即可得.(3)先证明,可得出,令,,则有,,结合(2)可得出,化简可得,结合已知条件即可求出直径.【小问1详解】证明:∵,∴.又,∴.【小问2详解】∵,∴,∴,即.由相似知,又,∴,∴.【小问3详解】能确定的大小.∵,,∴,∴.已知,∴令,,则有,(如图).BED OEB △∽△BE ED OE EB =BE BD OE OB=21122BD ED OE ED EC ED EC =⋅=⋅=⋅EDB ADC ∽EB ED BD AC AD CD==EB BD x ==ED y =2AC DC x ==2=AD y ()2122x y y x =+)1y x =2EOB BCE ∠=∠2ACE BCE∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠ABE EOB ∠=∠BED OEB∠=∠BED OEB △∽△BE ED OE EB=2OE EDEB =⋅BE BD OE OB=OE OB =BE BD =21122BD ED OE ED EC ED EC =⋅=⋅=⋅O EDB ADC ∠=∠E A ∠=∠EDB ADC ∽EB ED BD AC AD CD==2AC EB =EB BD x ==ED y =2AC DC x ==2=AD y由(2)知,化简得到,解得,∴.又,∴.∴直径()2122x y y x =+22220y xy x +-=(1y x ==-)1y x =-()2111AB x y x =+==1x ==+))()21117EC x y x =+==+=+。
2024北京通州初三一模数 学考生须知1.本试卷共8页,共三道大题,28个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 三棱锥C. 长方体D. 圆柱2. 2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为( )A. 110.22310⨯ B. 102.2310⨯ C. 922.310⨯ D. 822310⨯3. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°4. 已知关于x 的方程240x x n -+=有两个不相等的实数根,则n 的取值范围是( )A. 4n < B. 4n ≤ C. 4n > D. 4n =5. 如图,由5个“○”和3个“□”组成的图形关于某条直线对称,该直线是( )A. 1lB. 2lC. 3lD. 4l 6. 一个不透明的口袋中有2个红球和1个白球,这三个球除颜色外完全相同.摇匀后,随机从中摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的颜色相同的概率是( )A.34B.13C.14D. 127. 已知数轴上有A 、B 两点,点B 在点A 的右侧,若点A 、B 分别表示数a 、b ,且满足2a b +=,则下列各式的值一定为负数的是( )A. aB. a- C. 1a - D. 1b -8. 如图,在菱形ABCD 中,60ABC ∠=︒,点P 和点Q 分别在边CD 和AD 上运动(不与A 、C 、D 重合),满足DP AQ =,连接AP 、CQ 交于点E ,在运动过程中,则下列四个结论正确的是( )①AP CQ =;②AEC ∠的度数不变;③180APD CQD ∠+∠=︒;④2=⋅CP AP EP .A. ①②B. ③④C. ①②④D. ①②③④二、填空题(本题共8个小题,每小题2分,共16分)9. 在实数范围内有意义,则实数x 的取值范围是______.10. 分解因式:x 2y -4y =____.11. 分式方程2132x x=+的解是x =______.12. 在平面直角坐标系xOy 中,直线y x =与双曲线ky x=交于点(,3)P m ,则k 的值是________.13. 如图,点E 是ABCD Y 的边AD 上一点,且:1:2AE DE =,连接CE 并延长,交BA 的延长线于点F .若6AF =,则CD 的长为________.14. 为合理安排进、离校时间,学校调查小组对某一天九年级学生上学、放学途中的用时情况进行了调查.本次调查在九年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:已知该校九年级共有400名学生,请估计九年级学生上学途中用时不超过15min 的有________人.15. 我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率π的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,O 的半径为1,运用“割圆术”,以圆内接正六边形面积估计O 的面积,1612S =⨯⨯=正六边形,所以O得π,若用圆内接正十二边形估计O 的面积,可得π的估计值为________.16. 某公司筹备一场展览会,现列出筹备展览会的各项工作.具体筹备工作包含以下内容(见下表).其中,“前期工作”是指相对于某项工作,排在该工作之前需完成的工作称为该工作的前期工作.工作代码工作名称持续时间(天)前期工作A 张贴海报、收集作品7无B 购买展览用品3无C 打扫展厅1无D 展厅装饰3CE 展位设计与布置3ABDF 展品布置2EG 宣传语与环境布置2ABD H展前检查1FG(1)在前期工作结束后,完成“展厅装饰 ”最短需要________天;(2)完成本次展览会所有筹备工作的最短总工期需要________天.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:2014sin 45(3)2π-⎛⎫︒-+- ⎪⎝⎭.18. 解不等式组:2(1)21.2x x x x -<+⎧⎪⎨+<⎪⎩,19. 已知2210x x --=,求代数式4(1)(21)(21)-++-x xx x 的值.20. 2023年12月27日北京城市副中心“三大文化建筑”之一的北京城市图书馆对外开放,其总建筑面积约7.5万平方米,藏书量达800万册,建有世界最大的单体图书馆阅览室.图书馆内的功能区设置阅览坐席,方便读者使用.其中,山体阅览区、非遗文献馆、少年儿童馆的坐席总数为1900个,非遗文献馆的坐席数与少年儿童馆坐席数之比为23:,山体阅览区的坐席数是少年儿童馆坐席数的4倍多200个,求山体阅览区、非遗文献馆、少年儿童馆的坐席数量.21. 如图,ABC 中,90ACB ∠=︒,点D 为AB 边中点,过D 点作AB 的垂线交BC 于点E ,在直线DE 上截取DF ,使DF ED =,连结AE 、AF 、BF .(1)求证:四边形AEBF 是菱形;(2)若4sin 5EAF ∠=,5BE =,求AD 的长.22. 在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图象经过点()0,1A -和()4,3B ,与过点()0,3-且平行于x 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于函数()0y kx b k =+≠的值,直接写出m 的取值范围.23. 为了选出适应市场需求的小番茄秧苗,在条件基本相同的情况下,工作人员把两个品种的小番茄秧苗分别种植在甲、乙两个大棚.对两个品种的小番茄的产量进行了抽样调查,数据整理如下:a .从甲、乙两个大棚各收集了20株秧苗,将每株秧苗上的小番茄的个数做如下记录:甲:26 32 40 74 44 63 81 54 62 41 54 43 34 51 63 64 73 64 54 33乙:27 34 46 52 48 67 82 48 56 63 73 35 56 56 58 60 36 46 40 71b .对以上样本数据按如下分组整理:个数大棚2535x ≤<3545x ≤<4555x ≤<5565x ≤<6575x ≤<7585x ≤<甲44m n 21乙235631c .两组样本数据的平均数、众数、中位数和方差如下表所示:统计量大棚平均数众数中位数方差甲52.554p 228.75乙52.75654196.41(1)m =________,n =________.(2)p =________.(3)可以推断出________大棚的小番茄秧苗品种更适应市场需求,理由为_____________.(从两个不同的角度说明推断的合理性)24. 如图,AB 为O 的直径,过点A 作O 的切线AM ,C 是半圆AB 上一点(不与点A 、B 重合),连结AC ,过点C 作CD AB ⊥于点E ,连接BD 并延长交AM 于点F .(1)求证:∠=∠CAB AFB ;(2)若O 的半径为5,8AC =,求DF 的长.25. 某部门研究本公司生产某种产品的利润变化y (万元)与生产总量x (吨)之间的关系情况,产品的生产总量为x (吨)时,所获得的利润记为p (万元),公司生产x 吨产品所获得的利润与生产(1)x -吨产品获得的利润之差记为y (万元).例如:当0x =时, 1.00=-p ,当1x =时, 2.50=p .所以,当1x =时, 2.50( 1.00) 3.50=--=y ;当 1.5x =时, 6.31=p ,当 2.5x =时,16.19=p .所以,当 2.5x =时,16.19 6.319.88=-=y .记录的部分数据如下:x 00.50.751 1.5 1.752 2.533.544.555.56p 1.00-0.06- 1.04 2.50 6.318.5711.0016.1921.5026.5631.0034.4436.5036.8135.00y 3.50 6.377.53m 9.8810.5010.379.50n 5.50 2.37 1.50-根据以上数据,解决下列问题:(1)m =________,n =_______.(2)结合表中的数据,当16x ≤≤时可以用函数刻画利润的变化量y (万元)和生产总量x (吨)之间的关系,在平面直角坐标系xOy 中画出此函数的图象.(3)结合数据,利用所画的函数图象可以推断:①当生产总量约为________吨(精确到0.1),利润变化值y 最大.②当生产总量约为________吨(精确到0.1),利润开始降低.26. 在平面直角坐标系xOy 中,1(,)M m y ,2(2,)N m y +是抛物线2(0)y ax bx c a =++>上两点,且满足0m >.设抛物线的对称轴为直线x t =.(1)当12y y =时,写出m ,t 的之间的等量关系.(2)当34t <<时,均满足21>>c y y ,求m 的取值范围.27. 如图,将线段AB 绕点A 逆时针旋转α度(0180α︒<<︒)得到线段AC ,连结BC ,点N 是BC 的中点,点D ,E 分别在线段AC ,BC 的延长线上,且CE DE =.(1)EDC ∠=________(用含α的代数式表示);(2)连结BD ,点F 为BD 的中点,连接AF ,EF ,NF .①依题意补全图形;②若AF EF ⊥,用等式表示线段NF 与CE 的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,)M m n ,A 为坐标系中任意一点.现定义如下两种运动:P 运动:将点A 向右平移m 个单位长度,再向上平移n 个单位长度,得到点A ',再将点A '绕点O 逆时针旋转90︒,得到点1A ;Q 运动:将点A 绕点O 逆时针旋转90︒,得到点A '',再将点A ''向右平移m 个单位长度,再向上平移n 个单位长度,得到点2A .(1)如图,已知点(1,1)A ,(,0)M m ,点A 分别经过P 运动与Q 运动后,得到点1A ,2A .①若1m =,请你在下图中画出点1A ,2A 的位置;②若122A A =,求m 的值.(2)已知AB t =,点A ,B 分别经过P 运动与Q 运动后,得到点1A ,2A 与点1B ,2B ,连接11A B ,22A B .若线段11A B 与22A B 存在公共点,请直接写出此时线段MO 长度的取值范围(用含有t 的式子表示).参考答案一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 【答案】A【分析】本题考查了三视图的相关知识,其中主视图、左视图、俯视图是分别从物体正面、左面和上面观察物体所得到的图形,三视图的掌握程度和空间想象能力是解题关键.结合选项,根据主视图和俯视图确定是柱体,锥体还是球体,再根据左视图确定具体形状.【详解】解:由主视图和左视图为长方形可知,这个几何体是柱体,由俯视图为三角形可知,这个柱体是三棱柱,故选:A .2. 【答案】B【分析】本题考查了把绝对较大的数用科学记数法表示,关键是确定 n 与a 的值. 科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,它等于原数的整数数位与1的差.【详解】解:1022300000000 2.2310=⨯;故选:B .3. 【答案】C【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∵AB CD ∥,∴∠A =∠D=30°,故选:C .【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.4. 【答案】A【分析】本题考查了一元二次方程根的判别式;根据方程有两个不相等的实数根,则判别式为正,解不等式即可求得n 的取值范围.【详解】解:∵关于x 的方程240x x n -+=有两个不相等的实数根,∴2(4)410n ∆=--⨯⨯>,解得:4n <;故选:A .5. 【答案】C【分析】本题考查的是轴对称的性质,熟知如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称是解题的关键.根据轴对称的性质解答即可.【详解】解:由图可知,该图形关于直线3l 对称.故选:C 6. 【答案】B【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到两次摸出小球的颜色相同的结果数,最后依据概率计算公式求解即可.【详解】解:画树状图如下:由树状图可知,一共有6种,其中两次摸出小球的颜色相同的结果数有2种,∴两次摸出小球的颜色相同的概率为2163=,故选:B .7. 【答案】C【分析】本题考查了数轴,由点B 在点A 的右侧确定a b <是本题的关键.因为点B 在点A 的右侧,所以a b <,由2a b +=,可得2b a =-,所以2a a <-,化简得1a <,所以1a -一定为负数.【详解】解:由题意得,a b <,2a b += ,即2b a =-,2a a ∴<-,1a ∴<,10a ∴-<,故选:C .8. 【答案】D【分析】本题考查了菱形的性质,等边三角形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.证明ACP CDQ ≌可得APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,进而判断①;进而可得180APD CQD ∠+∠=︒,进而判断②,根据120QEP ∠=︒,进而判断③;证明APC CPE ∽△△,进而判断④;【详解】解:∵ABCD 是菱形,60ABC ∠=︒,DP AQ =,∴60,ACP D ACD ∠=∠=︒V 是等边三角形,∴AC CD =,∴ACP CDQ ≌,∴APC CQD ∠=∠,PAC DCQ ∠=∠,AP CQ =,故①正确;∵180APD APC ∠+∠=︒,∴180APD CQD ∠+∠=︒,故②正确;∵60,180D APD CQD ∠=︒∠+∠=︒,∴120QEP ∠=︒,∴120AEC QEP ∠=∠=︒,故③正确;∵PAC DCQ ∠=∠,APC EPC ∠=∠,∴APC CPE ∽△△,∴AP CP CP EP=,∴2=⋅CP AP EP ,故④正确;故选:D .二、填空题(本题共8个小题,每小题2分,共16分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】y (x +2)(x -2)【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.【详解】x 2y -4y =y (x 2-4)=y (x +2)(x -2),故答案为:y (x +2)(x -2).【点睛】提公因式法和应用公式法因式分解.11. 【答案】1【分析】根据解分式方程的步骤“先去分母化为整式方程,再解整式方程,最后进行检验”进行解答即可得.【详解】解:2132x x=+方程两边同乘2(3)x x +,得43x x =+,移项,得33x =,系数化为1,得1x =,检验:当1x =时,2(3)0x x +≠,∴原分式方程的解为1x =,故答案为:1.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法并检验.12. 【答案】9【分析】本题考查了正比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是解答本题的关键.根据反比例函数图象上点的坐标特征进行解答即可.【详解】解: 点(,3)P m 在直线y x =上,3m ∴=,()3,3P ∴,()3,3P 在反比例函数图象上,339k ∴=⨯=.故答案为:9.13. 【答案】12【分析】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由FAE CDE ∽,推出::1:2AF CD AE DE ==.由平行四边形的性质得到AB DC ,推出FAE CDE ∽,得到::1:2AF CD AE DE ==,即可求出12CD =.【详解】解: 四边形ABCD 是平行四边形,AB DC ∴ ,FAE CDE ∴∽,::1:2AF CD AE DE ∴==,6AF =Q ,12CD ∴=.故答案为:12.14. 【答案】280【分析】本题考查了从图象获取信息,用样本估计总体,熟练掌握用样本估计总体的思想是解题的关键.根据图中信息,可得上学途中用时不超过15min 的学生有14人,用总人数⨯抽取的学生中上学用时不超过15min 的学生所占比例,即可求解.【详解】解:根据图中信息可知,上学途中用时不超过15min 的学生有14人,故该校九年级学生上学途中用时不超过15min 的人数为1440028020⨯=(人).故答案为:280.15. 【答案】3【分析】过A 作AM OB ⊥于M ,求得AOB ∠的度数,根据直角三角形的性质得到AM ,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,AB 是正十二边形的一条边,点O 是正十二边形的中心,设O 的半径为1,过A 作AM OB ⊥于M ,在正十二边形中,3601230AOB ∠=︒÷=︒,1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= ∴正十二边形的面积为11234⨯=,231π∴=⨯,3π∴=,π∴的近似值为3,故答案为:3.16. 【答案】 ①. 4 ②. 13【分析】本题考查了优化问题,即如何在最短的时间内完成工作,实现最优效果.(1)根据表格知,完成“展厅装饰 ”要完成C 、D 两项工作,故可得到至少需要的天数;(2)由表格知,完成A 的时间里,可同时完成B 、C 、D 的工作,可进行E 的工作,则可进行G 、H 的工作,从而完成整个工作,从而可得最短总工作时间.【详解】解:(1)由表格知,在前期工作结束后,完成“展厅装饰 ”最短需要134+=(天);故答案为:4;(2)完成本次展览会所有筹备工作的路径为:A E G H →→→,最短总工期需要的天数为:732113+++=(天);故答案为为:13.三、解答题(本题共68分,第17-20题每题5分;第21题6分;第22题5分;第23-24题每题6分;第25题5分;第26题6分;第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】5【分析】本题考查了特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值等知识.先运用特殊角的三角函数值、二次根式的性质、负整数次幂和取绝对值对原式进行化简,然后再计算即可.【详解】解:214sin45(3)2π-⎛⎫︒++-⎪⎝⎭441=-+41=-++5=.18. 【答案】14x<<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:原不等式组为2(1)212x xxx-<+⎧⎪⎨+<⎪⎩①②解不等式①得,4x<,解不等式②得,1x>,∴原不等式组的解集为14x<<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 【答案】3【分析】本题考查了整式的乘法混合运算,涉及单项式乘多项式及平方差公式;先利用单项式乘多项式、平方差公式展开,再合并同类项;再由2210x x--=,得221x x-=,最后整体代入即可求值.【详解】解:原式224441=-+-x x x2841=--x x;2210x x--=,221x x∴-=,∴原式24(2)1=--x x3=.20. 【答案】非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个【分析】本题考查的是一元一次方程的应用,找出等量关系列方程是解题关键,设非遗文献馆的坐席数为2x个,则少年儿童馆坐席数为3x个,山体阅览区的坐席数为()12200x+个,根据坐席总数为1900个列方程解决即可.【详解】解:设非遗文献馆的坐席数为2x 个,则少年儿童馆坐席数为3x 个,山体阅览区的坐席数为()12200x +个,根据题意得:23122001900+++=x x x ,解得,100x =,答:非遗文献馆的坐席数为200个,少年儿童馆坐席数为300个,山体阅览区的坐席数为1400个.21. 【答案】(1)证明见解析(2)AD =【分析】本题考查了菱形的判定与性质、矩形的判定与性质、平行四边形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.(1)先证明四边形AEBF 是平行四边形,再由菱形的判定即可得出结论;(2)过点E 作EG AF ^于点G ,由菱形的性质得5,BE AE AF BC ==∥,再证明四边形ACEG 是矩形,得,AC EG CE AG ==,进而解直角三角形求出4,3EG AG ==,然后由勾股定理求出AB 的长,即可解决问题.【小问1详解】证明:∵点D 为AB 边中点,∴AD BD =,∵DF ED =,∴四边形AEBF 是平行四边形,∵EF AB ⊥,∴四边形AEBF 是菱形;【小问2详解】解:如图,过点E 作EG AF ^于点G ,∵四边形AEBF 是菱形,∴5,BE AE AF BC ==∥,∴EG BC ⊥,∴90GEC ∠=︒,∴90CEG GEC ACB ∠=∠=∠=︒,∴四边形ACEG 是矩形,∴,AC EG CE AG ==,∵4sin 5EG EAF AE ∠==,∴445455EG AE ==⨯=,在Rt AGE 中,由勾股定理得:AG =3==,4,3AC EG CE AG ∴====,538BC BE CE ∴=+=+=,在Rt ABC 中,由勾股定理得:AB ===∵点D 为AB 边中点,1122AD AB ∴==⨯=.22. 【答案】(1)1y x =-,()2,3C --(2)312m ≤≤【分析】(1)将A 、B 坐标分别代入函数表达式y kx b =+,即可得到一次函数解析式,然后计算函数值为3-对应的自变量的值即可得到C 点坐标;(2)分情况讨论:当直线y mx =过点C 时和当直线y mx =与直线1y x =-平行时,即可得到符合条件的m 的取值范围.【小问1详解】解:将()0,1A -、()4,3B 代入函数表达式y kx b =+可得:143b k b =-⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则函数的表达式为1y x =-,依题得,过点()0,3-且平行于x 轴的直线为3y =-,C 是该函数与过点()0,3-且平行于x 轴的直线的交点,13x ∴-=-,解得2x =-,1213y x =-=--=-,即()2,3C --.【小问2详解】解:当直线y mx =过点C 时,即把()2,3--代入y mx =,得23m -=-,32m =, 当2x >-时,对于x 的每一个值,()0y mx m =≠的值大于1y x =-的值,221m ∴-≥-- ,解得32m ≤,当y mx =与直线1y x =-平行时,1m =,此时,满足条件,且当1m <时,不满足条件,即312m ≤≤.【点睛】本题考查的知识点是待定系数法求解析式、一次函数的图象与性质,解题关键是熟练掌握数形结合的方法解题.23. 【答案】(1)4,5 (2)54(3)乙;乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好【分析】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.(1)根据收集数据进行求解;(2)根据中位线的定义进行求解即可;(3)根据平均数和方差进行求解即可.【小问1详解】解:甲大棚中4555x ≤<的有4株,5565x ≤<的有5株,∴4m =,5n =;故答案为:4,5;【小问2详解】解:将甲大棚中20株秧苗上小番茄的个数从小到大进行排序,排在第10、11位的都是54个,所以中位数为5454542+=,故答案为:54.【小问3详解】解:乙大棚的小番茄秧苗品种更适应市场需求,因为乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好;故答案为:乙,乙大棚每株秧苗上的小番茄个数的平均数高于甲大棚,且方差小,产量的稳定性更好.24. 【答案】(1)证明见解析(2)323DF =【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【小问1详解】证明:AM 是O 的切线,90BAM ∴∠=o ,CD AB ⊥ 于点E ,90CEA ∴∠= ,CD AF ∴∥,∴∠=∠CDB AFB ,CDB CAB ∠=∠ ,∴∠=∠CAB AFB .【小问2详解】解:连结AD ,CD AB ⊥ 于点E ,AB 是O 的直径,CE DE ∴=,AB ∴是CD 的垂直平分线,8AC AD ∴==,O 的半径为5,10AB ∴=,6BD =∴,AB 是O 的直径,90BDA =∴∠ ,BAD AFB ∴∠=∠,tan tan ∴∠=∠BAD AFB ,∴=ADBDDF AD ,2AD DF BD ∴=⋅,323∴=DF .25. 【答案】(1)8.50,7.88(2)见详解 (3)①3.2(答案不唯一,介于3.1 3.3:);②5.8(答案不唯一,介于5.6 5.9:)【分析】本题考查二次函数的应用,理解题意并掌握描点作图的方法是解题的关键.(1)根据题意和举例的计算方法求出m 和n 的值即可;(2)将表格中数据对(),x y 描点并连线即可;(3)①根据图象作答即可;②0y =时对应x 的值即为答案.【小问1详解】解:当2x =时,11.00p =,当1x =时, 2.50=p ,∴当2x =时,11.00 2.508.50m =-=;当 4.5x =时,34.44p =,当 3.5x =时,26.56p =,∴当 4.5x =时,34.4426.567.88n =-=.故答案为:8.50,7.88.【小问2详解】描点并作图如图所示:【小问3详解】①由图象可知,当生产总量约为3.2吨时,利润变化值y 最大;②由图象可知,当生产总量约为5.8吨时,利润变化值0y =,之后利润开始降低.故答案为:3.2,5.8.26. 【答案】(1)1t m =+(2)34m ≤≤【分析】本题考查了二次函数的性质,二次函数图像上点的坐标特征,二次函数图像的对称性等知识.(1)根据抛物线关于对称轴对待的性质,点M 、N 到对称轴的距离相等,即可求得m ,t 的之间的等量关系;(2)将点M 到对称轴的距离记为M d ,点N 到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .根据21>>c y y ,分别考虑21y y >及2>c y 时m 的范围,最后取两个范围的公共部分即可.【小问1详解】解: 点()1,M m y ,()22,N m y +是抛物线2(0)y ax bx c a =++>上两点,当12y y =时,点M 和点N 关于抛物线的对称轴直线x t =对称,2m t t m ∴+-=-,212++∴==+m m t m .【小问2详解】解:将点()1,M m y 到对称轴的距离记为M d ,点()22,N m y +到对称轴的距离记为N d ,抛物线与y 轴交点记为点()0,C c ,到对称轴的距离记为C d .0a > ,21y y >,∴点N 到对称轴的距离大于点M 到对称轴的距离,即>N M d d ,2m t m t ∴+->-,22(2)()0∴+--->m t m t ,()()220m t m t m t m t ∴+-+-+--+>,1∴>-m t ,当34t <<时,均满足21y y >,3m ∴≥,0a > ,2>c y ,∴点C 到对称轴的距离大于点N 到对称轴的距离,即>N C d d ,2t m t ∴>+-,22(2)0∴-+->t m t ,22∴<-m t ;当34t <<时,均满足2>c y ,4m ∴≤,综上,34m ≤≤.27. 【答案】(1)1902α︒-(2)①见解析;②CE =,证明见解析【分析】本题考查了根据条件画图,平行四边形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.(1)根据旋转和题意即可得出1902CDE DCE ACB α∠=∠=∠=︒-;(2)①根据题意画出图形即可;②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .证明四边形ABMD 为平行四边形,证明ACE MDE V V ≌,算出90α=︒,45ECD EDC ∠=∠=︒,结合三角形中位线定理即可求解;【小问1详解】∵A α∠=,由旋转得AB AC =,∴18019022ABC ACB αα︒-∠=∠==︒-,∵CE DE =,∴1902CDE DCE ACB α∠=∠=∠=︒-.【小问2详解】①补全图形如图:②延长AF 至点M ,使FM AF =,连接,,,BM DM EM AE .∵点F 为线段BD 中点,∴四边形ABMD 为平行四边形,,AB DM AB DM ∴=∥,180BAC ADM ∴∠+∠=︒,180ADM α∴∠=︒-,AF EF ⊥ ,AE ME ∴=,又,AB AC EC ED ==Q ,AC DM ∴=,∴()ACE MDE SSS ≌,∴1180902MDE ACE ACB α∠=∠=︒-∠=︒+,11909022ADM MDE CDE ααα⎛⎫∴∠=∠-∠=︒+-︒-= ⎪⎝⎭,180αα∴︒-=,90α∴=︒,∴45ECD EDC ∠=∠=︒,∴CD =,∵N 为BC 中点,F 为BD 中点,∴NF 是BDC 中位线,2CD NF ∴=,∴CE =.28. 【答案】(1)①见详解;②m =(2)0MO ≤≤【分析】本题考查了旋转的性质,平移的性质,全等三角形的判定与性质,熟练掌握知识点是解题的关键.(1)①根据P 运动和Q 运动的运动方式求解即可;②首先表示出点1A 的坐标为()1,1m -+,2A 的坐标为()1,1m -+,然后根据122A A =得到2=,进而求解即可;(2)由题意得:1122A B A B ∥,1122A B A B t ==设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A t =≤即可求解.【小问1详解】①作图如图所示:由P 运动知()2,1A ',由旋转得1OA OA '=,190AOA '∠=︒,而90M N ∠=∠=︒,∴11809090A OM AON '∠+∠=︒-︒=︒,90A OM OA M ''∠+∠=︒,∴1AON OA M '∠=∠,∴1A NO A OM '△≌△,∴12,1A N OM ON A N '====,∴()11,2A -;由Q 运动同理可求()1,1A ''-,再向右平移1个单位,向上平移0个单位得到()20,1A .②∵(1,1)A ,∴点A 经过P 运动后得到的点1A 的坐标为()1,1m -+点A 经过Q 运动后得到的点2A 的坐标为()1,1m -+∵122A A =2=,∴m =.【小问2详解】由题意可得:由旋转的不变性和平移的性质得:1122A B A B ∥,1122A B A B t ==,设(),A x y ,经过P 运动,则(),A x m y n '++,则()1,A y n x m --+;Q 运动后,(),A y x ''-,()2,A y m x n -++,则12A A ===,∴当12A A t ≤时,线段11A B 与22A B 存在公共点,t ≤,∴0MO ≤≤.。
2023-2024学年广东省九年级数学中考一模模拟卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填在()内)1.下列函数中,y 是x 的二次函数的是( )A .y =3xB .y =-x 2C .y =x 1+5 D .y =x 2-3x +5【答案】D2.下列图形中,既是是中心对称图形的是( )A. B. C. D.【答案】B3.下列运算正确的是( )A. xx 2+xx 3=xx 5B. ()()22x y x y x y +−=−C. (xx 4)4=xx 8D. ()222x y x y +=+【答案】B4.如图是一个正方体的展开图,则与“养”字相对的是( )A. 核B. 心C. 数D. 养【答案】C5.如图是某几何体的三视图,则该几何体的面积是( )A .16πcm 2B .(16+165)πcm 2C .165πcm 2D .(16+323)πcm 2【答案】B6.已知点A (-3,a ),()1,B b ,C (5,c )在反比例函数ky x =(k<0)的的图像上,下列结论正确的是()A. a b c <<B. a c b <<C. b<c<aD. c b a <<【答案】C 7.若△ABC ∽△DEF ,面积比为25∶9,则△ABC 与△DEF 的周长比为( )A .5∶3B .25∶9C .9∶25D .3∶5【答案】A8.如图,平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE DF 、的反向延长线交于主光轴MN 上一点P .若∠CDF=135°,∠ABE=150°,则EPF ∠的度数是( )A. 60°B. 70°C. 75°D. 80°【答案】C 9.古秤是一种人类智慧的产物,也是华夏文明的瑰宝之一.如图,我们可以用秤砣到秤纽(秤杆上手提的部分)的水平距离得出秤钩上所挂物体的重量,称重时,若秤钩所挂物重为x (斤),秤砣到秤纽的水平距离为()cm y .下表中为若干次称重时所记录的一些数据:当x 为11斤时,对应的水平距离y 为( )A. 3cmB. 3.25cmC.3.5cmD.3.75cm【答案】B 【详解】解:设y kx b =+, 把(2,1)和(6,2)代入得:2162k b k b +=+= ①②, ②−①得:41k =,解得:14k =,把14k =代入①得:1214b ×+=, 解得:12b =, 1142y x ∴=+, 把x=11代入得:y=114+12=134=3.25.10.如图,在钝角三角形ABC 中,AB=4cm,AC=10cm ,动点D 从点A 出发沿AB 以1cm/s 的速度向点B 运动,同时动点E 从点C 出发沿CA 以2cm/s 的速度向点A 运动,当以,,A D E 为顶点的三角形与ABC 相似时,运动时间约是( )A .2.2s 或4.5sB .4.2sC .3sD .2.2s 或4.2s【答案】D二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把答案直接填写在题中横线上)11.因式分解:3ab-4a 2b= .【答案】ab(3-4a)12.西太湖是苏南仅次于太湖的第二大湖泊,南接宜兴,北通长江,东濒太湖,西接长荡湖,水域面积约164000000平方米,164000000这个数用科学记数法可表示为 .【答案】1.64×10813.若反比例函数y=kk+4xx 的图象分布在第二、四象限,则k 的取值范围是 .【答案】k<-4 14. 如图,平行四边形ABCD 中以点B 为圆心,适当长为半径作弧,交AB 、BC 于F 、G ,分别以点F 、G 为圆心,大于12FG 长为半径作弧,两弧交于点H ,连接BH 并延长,与AD 交于点E ,若AB=5,CE=4,DE=3,则BE 的长为_________.【答案】4√515.在平面直角坐标系中,已知A ()0,2,B ()4,0,点P 在x 轴上,把AP 绕点P 顺时针旋转90°得到线段A P ′,连接A B ′.若A PB ′△是直角三角形时,则点P 的横坐标为____________.【答案】2或1−+或1−【详解】解:∵()0,2A ,()4,0B ,∴2OA =,4OB =,设点(),0P m ,∵点P 、B 都在x 轴上,∴点P 不能为直角顶点,①如图,当点P 在x 轴的正半轴上,且90A BP ′∠=°时,由旋转可知,PA PA =′,∴90APO BPA ∠′+∠=°,90OAP APO ∠+∠=°,∴OAP BPA ′∠=∠,∴()AAS OAP BPA ′ ≌,∴2PB OA ==,∴482OP OB PB =−=−=,∴点P 的横坐标为2;②如图,当点P 在x 轴的正半轴上,且90PA B ′∠=°,过点A ′作A D PB ′⊥于点D ,则()0OP m m =>,由旋转可知,PA PA ′=,∴90APO DPA ′∠+∠=°,90OAP APO ∠+∠=°,∴OAP DPA ′∠=∠,∴()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==,∴422BD OB PD OP m m =−−=−−=−,∵90PA B A DB A DP ′′′∠=∠=∠=°, ∴90A PB PBA ∠′+∠=′°,90A PB PA D ′′∠+∠=°,∴PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m =−,则2240m m +−=,解得:11m =−+21m =−(不合题意,舍去)∴点P 的横坐标为1−+;③如图,当点P 在x 轴的负半轴上,则90PA B ′∠=°,则OP m =−,过点A ′作A D PB ′⊥于点D ,同理可得()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==−,∴4PB OP OB m =+=−,422BD PB PD m m =−=−−=−,同理可得PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m −=−−,解得11m =−21m =−(不合题意,舍去)∴点P 的横坐标为1−−综上所述,点P 的横坐标为2或1−或1−三、解答题(本大题共8小题,共75分)16.(8分)计算(1)2sin60°-tan45°+12cos30°+tan30°(2)(1-2024π)0 + √12 + 2sin60°-(-3)【答案】(1)19√312−12 (2)5-2√3 17.(5分)解不等式方程组:()33121318x x x x − +>+ −−≤−【答案】-2≤x<118.(9分)如图,线段AB ,CD 分别表示甲、乙建筑物的高,AB ⊥MN 于点B ,CD ⊥MN 于点D ,两座建筑物间的距离BD 为35 m .若甲建筑物的高AB 为20 m ,在点A 处测得点C 的仰角α为45°,则乙建筑物的高CD 为多少 m ?【答案】解:由题意得:AB =DE =20m ,AE =BD =35m ,∠CAE =45°,∠AEC =90°,在Rt △AEC 中,CE =AE •tan45°=35(m ),∴ CD =DE+CE =20+35=55(m ),答:乙建筑物的高CD 为55m.19.(9分)2020年我国进行了第七次全国人口普查,佛山市近五次人口普直常住人口分布情况如图所示,根据第七次全国人口普查结果,佛山市常住人口年龄构成情况如图所示,(1)佛山市2020年常住人口1559−岁段的占比是_______%;(2)根据普查结果显示,2020年60岁以上的人口约99.645万人,求2020年佛山市城镇人口有多少万人,并补全条形图;(3)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,1990年佛山市的城镇化率是_____%(结果精确到1%);(4)根据佛山市近五次人口普查统计图(常住人口),用一句话描述佛山市城镇化的趋势.【答案】(1)74.4%(2)949万,补全图形见解析(3)33(4)见解析【详解】(1)解:110.5%15.1%74.4%−−=,答:佛山市2020年常住人口1559−岁段的占比是74.4%,(2)佛山市常住人口总数为99.64510.5%949÷=(万人), 由统计图可知,乡村人口为45万人,∴城镇人口为94945904−=(万人), 补全统计图如图所示;.(3)由统计图可知,1900年城镇人口有100万人,常住人口总数为300万人, ∴1990年佛山市的城镇化率是 100100%33%300×≈, (4)随着年份的增加,佛山市城镇化率越来越高.20.(10分)如图,已知OA 是O 的半径,过OA 上一点D 作弦BE 垂直于OA ,连接AB ,AE .线段BC 为O 的直径,连接AC 交BE 于点F .(1)求证:ABE C ∠=∠;(2)若AC 平分OAE ∠,求AFFC 的值【答案】(1)见解析 (2)12【详解】(1)证明:∵OA BE ⊥,∴ AB AE =,∴ABE C ∠=∠;(2)解:∵AC 平分OAE ∠,∴OAC EAC ∠=∠,∵EAC EBC ∠=∠,∴OAC EBC ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴EBC C ∠=∠,∴BF CF =,由(1)ABE C ∠=∠,∴ABE C EBC ∠=∠=∠,∵BC 为直径,∴90BAC ∠=°,∴90ABE C EBC ∠+∠+∠=°,∴30ABE ∠=°,∴12AF BF =, ∴12AF CF =, 即12AF CF =. 21.(10分)如图,反比例函数1k y x=的图象与一次函数2y k x b =+的图象交于(1,2)A −、14,2B −两点.(1)求函数1k y x =和2y k x b =+的表达式;(2)若在x 轴上有一动点C ,当S △ABC =4S △AOB 时,求点C 的坐标.【答案】(1)2y x =−,1322y x =−+(2)(3,0)−或(9,0)【详解】(1)解:将点(1,2)A −代入反比例函数1k y x =中,得,1122k =−×=−; 将点1(1,2),4,2A B−− 分别代入一次函2y k x b =+的解析式,得,222142k b k b −+= +=− ,21232k b =− ∴ = ;∴反比例函数的解析式为:2y x =−,一次函数的解析式为:1322y x =−+. (2)解:如图,设AB 与y 轴交于点D ,过点C 作CE y ∥轴交AB 于点E 设(0)C m ,,13,,22E m m ∴−+1322CE m ∴=−+ 令0x =,则2,3y = 30,,2D ∴ 32OD ∴=, ∴S △AOB=12OOOO ·(x B -x A )=12×32×[4-(-1)]=154.∵S △ABC =4S △AOB ,∴12·CE·(x B -x A )=15即12×�−12mm +32�×5=15 解得m=-9或m=15,∴点C 的坐标为(-9,0)或(15,0).22.(12分)如图,抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与y 轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【解答】解:(1) 抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,∴103b c c −−+= =, 解得:23b c = =, ∴该抛物线的表达式为223y x x =−++; (2)2223(1)4y x x x =−++=−−+ ,∴顶点(1,4)M ,设直线AM 的解析式为y kx d =+,则40k d k d += −+=, 解得:22k d = =, ∴直线AM 的解析式为22y x =+, 当0x =时,2y =,(0,2)D ∴,作点D 关于x 轴的对称点(0,2)D ′−,连接D M ′,D H ′,如图,则DH D H =′,MH DH MH D H D M ∴+=+′′ ,即MH DH +的最小值为D M ′,D M ′ ,MH DH ∴+(3)对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形.由(2)得:(0,2)D ,(1,4)M ,点P 是抛物线上一动点,∴设2(,23)P m m m −++,抛物线223y x x =−++的对称轴为直线1x =, ∴设(1,)Q n ,当DM 、PQ 为对角线时,DM 、PQ 的中点重合,∴20112423m m m n +=+ +=−+++, 解得:03m n = =, (1,3)Q ∴;当DP 、MQ 为对角线时,DP 、MQ 的中点重合,∴20112234m m m n +=+ −++=+, 解得:21m n = = , (1,1)Q ∴;当DQ 、PM 为对角线时,DQ 、PM 的中点重合,∴20112423m n m m +=+ +=−++, 解得:05m n = =, (1,5)Q ∴;综上所述,对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形,点Q 的坐标为(1,3)或(1,1)或(1,5).23.(12分)综合与实践数学活动课上,同学们用尺规作图法探究在菱形内部作一点到该菱形三个顶点的距离相等.【动手操作]如图,已知菱形ABCD ,求作点E ,使得点E 到三个顶点A ,D ,C 的距离相等.小红同学设计如下作图步骤∶①连接BD ;②分别以点A ,D 为圆心,大于12AD 的长为半径分别在AD 的上方与下方作弧:AD 上方两弧交于点M ,下方两弧交于点N ,作直线MN 交BD 于点E . ③连接AE ,EC ,则EA ED EC ==.(1)根据小红同学设计的尺规作图步骤,在题图中完成作图过程(要求∶用尺规作图并保留作图痕迹)(2)证明:EA ED EC ==.(3)当72ABC ∠=°时,求EBC 与EAD 的面积比.【详解】(1)解:根据小红同学设计,作图如下:.(2)在菱形ABCD 中,ADE CDE ∠=∠,AD DC =,∵DE DE =,∴()SAS ADE CDE ≌,∴AE EC =,∵MN 垂直平分AD ,∴AE DE =,∴AE DE EC ==;(3 )∵在菱形ABCD 中,72ABC ∠=°,∴36ABD DBC ∠=∠=°,∵AD BC ∥,∴36ADB DBC ∠=∠=°,180108DAB ABC ∠=−∠=°, ∵AE DE =,∴36EAD ADB ∠=∠=°, ∴36EAD ABD ∠=∠=°, ∵ADE BDA ∠=∠,∴ADE BDA △△∽, ∴AD DE BD AD=,即2AD BD DE =⋅, ∵72BAE BAD EAD ∠=∠−∠=°,72BEA EAD ADE ∠=∠+∠=°, ∴BAE BEA ∠=∠,∴BE AB =,设AB x BE ==,DE a =(其中,0x a >),则AD x BD BE DE x a ==+=+,,∴()2x x a a =+⋅, ∴220x ax a −−=,解得x =或x =(舍去), ∴AB DE = ∴EBC ABE EDC ADE S S BE AB S S DE DE ==== .。
初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...2. 如果一个二次函数的图像开口向上,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 03. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的高是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米4. 一个数列的前三项为1,3,5,那么它的通项公式是什么?A. an = 2n - 1B. an = 2n + 1C. an = 2nD. an = 2n - 25. 一个圆的半径为5厘米,那么它的面积是多少?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米6. 一个多边形的内角和为900度,那么这个多边形有多少条边?A. 5B. 6C. 7D. 87. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米8. 一个等差数列的前三项为2,5,8,那么它的公差是多少?A. 1B. 2C. 3D. 49. 一个函数y = 2x + 3的图像与x轴的交点坐标是什么?A. (-3/2, 0)B. (3/2, 0)C. (0, 3/2)D. (0, -3/2)10. 一个二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么它的判别式Δ的值应该满足什么条件?A. Δ > 0B. Δ = 0C. Δ < 0D. Δ ≥ 0二、填空题(每题3分,共15分)11. 一个等腰直角三角形的斜边长为10厘米,那么它的直角边长是______厘米。
12. 一个二次函数y = ax^2 + bx + c的顶点坐标为(-1, 4),那么a 的值是______。
13. 一个圆的直径为12厘米,那么它的周长是______厘米。
一.选择题(本题共16分,每小题2分) 1.下面四幅图中所作的∠AOB 不一定等于.....60°的是A .B .C .D .2.2018年4月18日,被誉为“中国天眼”的FAST 望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将用科学记数法表示应为A.B.C.D.3.数轴上的实数.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a c >B .0bc >C .0a d +>D .2b <- 4.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠ACO =50°,则∠B 的度数为A .60° B.50° C .40° D .30°5x 的取值范围是 A .3x -≥ B .0x ≠ C .30x x ≠≥-且 D .3x ≥ 6.如果0122=--a a ,那么代数式)1)(3(+-a a 的值是A.2B.2-C.4D.4-7.1978年,以中共十一届三中全会为标志,中国开启了改革开放历史征程.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.下图是1994—2017年三次产业对GDP 的贡献率统计图(三次产业是指:第一产业是指农、林、牧、渔业(不含农、林、牧、渔服务业);第二产业是指采矿业(不含开采辅助活动),制造业(不含金属制品、机械和设备修理业),电力、热力、燃气及水生产和供应业,建筑业;第三产业即服务业,是指除第一产业、第二产业以外的其他行业).下列推断不合理...的是0.005190.00519-25.1910⨯-35.1910⨯-551910⨯-651910⨯12345–1–2–3–4–50A .2014年,第二、三产业对GDP 的贡献率几乎持平;B .改革开放以来,整体而言三次产业对GDP 的贡献率都经历了先上升后下降的过程;C .第三产业对GDP 的贡献率增长速度最快的一年是2001年;D .2006年,第二产业对GDP 的贡献率大约是第一产业对GDP 的贡献率的10倍.8.右图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是A .B .C .D .二、填空题 (本题共16分,每小题2分)9.写出一个..满足317a <<的整数a 的值为 . 10.分解因式:2123m -= .11.如图,∠1是五边形ABCDE 的一个外角.若∠1=60°,则∠A +∠B +∠C +∠D 的度数为_________.第11题 第12题 12. 如图,在△ABC 中,DE ∥AB ,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =V V , AC =3,则DC= . A BCD E1AAPNBOOBM13.如图:已知Rt △ABC ,对应的坐标如图,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A 与点E 重合、点B 与点D 重合,写出一种变化的过程_________________________14.2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,滑雪轨道由AB ,BC 两部分组成,AB ,BC 的长度都为200米,一位同学乘滑雪板沿此轨道由A 点滑到了C 点,若AB 与水平面的夹角α为20°,BC 与水平面的夹角β为45°,则他下降的高度为 米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的点,记△AOB 内部(不包括边界)的整点个数为m .当m =6时,点B 的横坐标a 的取值范围是___________.三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程。
17.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =;(2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线. (1)请写出射线OP 为AOB ∠的平分线的证明过程.xyl2BAO (2)请根据你的证明过程,写出小林的画法的依据 . 18.计算:201()(7)324sin 602π---+-+︒19.解不等式2132121->-x x ,并把它的解集在数轴上表示出来.20.关于x 的一元二次方程(k -2)x 2-4x +2=0有两个不相等的实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.21.如图,点F 在 ABCD 的对角线AC 上,过点F 、 B 分别作AB 、AC 的平行线相交于点E ,连接BF ,∠ABF=∠FBC+∠FCB .(1)求证:四边形ABEF 是菱形;(2)若BE=5,AD=8,21sin =∠CBE ,求AC 的长.22.如图,在平面直角坐标系xOy 中,过点A (2,0)的直线l :3y mx =-与y 轴交于点B . (1)求直线l 的表达式; (2)若点C 是直线l 与双曲线ny x=的一个公共点, AB =3AC ,求n 的值.E FH B O DA PC23.如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ; (2)若HB =2,cos D =35,请求出AC 的长.24.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:/cm x 1 1.5 2 2.5 3 3.5 4 /cm y3.73.83.32.5(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当PBM △的面积为1时,PM 的长度约为 cm . 25.阅读下列材料:改革开放以来,我国建筑业在坚持和完善公有制为主体、多种所有制经济共同发展的基本经济制度的指引下,企业所有制呈现多元化发展,极大激发了市场活力。
建国初期,建筑业企业基本是清一色的国营建筑公司,而如今,建筑业企业类型涵盖了国有、集体、股份制、私营等内资企业,以及港澳台商投资企业、外商投资企业等多种所有制形式。
根据2018年国家统计局发布的数据显示:2017年,建筑业企业中,国有企业2187个,占全部企业比重仅为2.5%,比1996年减少6922个,占比下降19.5个百分点;年末从业人员183.0万人,占全部企业比重3.3%,比1996年减少672.9万人,占比下降37个百分点。
股份制企业32894个,占全部企业比重达到37.3%,比1996年增加31293个,占比提高33.4个百分点;年末从业人员2828万人,占全部企业比重51.1%,比1996年增加2768万人,占比提高48.2个百分点。
私营企业49645个,占全部企业比重达到56.4%,比1996年增加49110个,占比提高55.1个百分点;年末从业人员2340万人,占全部企业比重42.3%,比1996年增加2331万人,占比提高41.9个百分点。
外商投资企业218个,占全部企业比重达到0.2%,比1996年减少170个,占比下降0.7个百分点;年末从业人员8万人,占全部企业比重0.1%,比1996年减少1万人,占比下降0.3个百分点。
根据以上材料回答下列问题:(1)1996年私营企业有_________个,占全部企业比重为________.(2)请你选择统计表或统计图,将1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重表示出来.(3)请你根据以上统计表或统计图,给出一个合理的结论并说明理由.26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________;(2)当AB =2时,求抛物线M 的函数表达式以及顶点D 的坐标;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(43<x ),若当2-≤n ≤时,总有02331<-<-x x x x ,请结合函数的图象,直接写出k 的取值范围.3x 1-27. 正方形ABCD 的边长为3,点E ,F 分别在射线DC ,DA 上运动,且DE =DF .连接BF ,作EH ⊥BF 所在直线于点H ,连接CH .(1)如图1,若点E 是DC 的中点,CH 与AB 之间的数量关系是__________;(2)如图2,当点E 在DC 边上且不是DC 的中点时,(1)中的结论是否成立?若成立 给出证明;若不成立,说明理由;(3)如图3,当点E ,F 分别在射线DC ,DA 上运动时,连接DH ,过点D 作直线DH 的垂线,交直线BF 于点K ,连接CK ,请直接写出线段CK 长的最大值.28.在平面直角坐标系xOy 中,有不重合的两个点),(11y x Q 与),(22y x P .若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即点Q 与点P 之间的“折距”.例如,在右图中,点P (1,-1),点Q(3,-2),此时点Q 与点P 之间的“折距”PQ D =3.(1)①已知O 为坐标原点,点)0,1(),2,3(--B A ,则AO D =________,BO D =_________.②点C 在直线4+-=x y 上,请你求出CO D 的最小值.(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点,点F 是直线63+=x y 上以动点.请你直接写出点E 与点F 之间“折距”EF D 的最小值.。