初一上数学总复习
- 格式:pdf
- 大小:290.09 KB
- 文档页数:13
七年级上册数学总复习资料1第一章有理数--------------1.1正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
-------------1.4有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
初一上学期数学知识点总复习
1. 整数
- 正整数、零、负整数的概念
- 整数的加减法、乘除法
- 判断一个数的正负性
2. 分数
- 分数的概念和表示方法
- 分数的四则运算
- 分数与整数的相互转换
3. 小数
- 小数的概念和表示方法
- 小数的四则运算
- 小数与分数的相互转换
4. 百分数
- 百分数的概念和表示方法
- 百分数的换算
- 百分数与小数、分数的相互转换
5. 数据统计
- 数据的收集、整理和展示
- 平均数、中位数、众数的计算- 折线图、柱形图的绘制和分析
6. 几何图形
- 几何图形的概念和基本要素
- 直线、线段、射线的认识和绘制- 不同类型几何图形的性质和特点
7. 方程与不等式
- 方程的概念和解的意义
- 一元一次方程的解法
- 不等式的概念和解的意义
- 一元一次不等式的解法
8. 几何运动
- 直线运动与曲线运动的概念
- 单位速度、位移与时间的关系
- 运动图像的绘制和分析
9. 数据的处理
- 数据的分类和整理
- 求出简单统计指标
- 制作直方图和折线图
10. 三角形
- 三角形的概念和分类
- 三角形的性质和判定
- 三角形内角和外角的性质
以上是初一上学期数学的主要知识点总结,希望能对你的复有所帮助。
初一数学重难点总结复习初一数学重难点总结复习【4篇】复习总结还可以跨学科地进行,将不同学科的知识点联系起来,形成知识网络。
复习总结应该注重对自己的要求,不断提高自己的学术标准和道德水平。
下面就让小编给大家带来初一数学重难点总结复习,希望大家喜欢!初一数学重难点总结复习1(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.初一数学重难点总结复习2一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。
它们都是比0小的数。
0既不是正数也不是负数。
我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。
有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。
七年级数学上期期末总复习题一、选一选。
1、下列四个图中的线段(或直线、射线)能相交的是( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) 2、下列图中角的表示方法正确的个数有( )A .1个B .2个C .3个 D .4个3、如图所示,要把角钢(1)弯成120°的钢架(2),则在直钢(1)截取的缺口是( )A .45°B .60°C .90°D .120°4、如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是( )5、一个几何体是由一些大小相同的小正方块摆成的,其俯视图、主视图如图所示,则组成这个几何体的小正方块最多..有( ) A. 4个 B. 5个 C. 6个 D. 7个图① 图② A B C D俯视图主视图6、已知线段AB=6厘米,在直线AB 上画线段AC=2厘米,则BC 的长是( ) A .8厘米 B .4厘米 C .8厘米或4厘米 D .不能确定7、如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )8、下列说法中正确的是( )A.若AP=21AB ,则P 是AB 的中点 B.若AB =2PB ,则P 是AB 的中点 C .若AP =PB ,则P 为AB 的中点 D.若AP =PB=21AB ,则P 是AB 的中点9、甲看乙的方向为北偏东30°,那么乙看甲的方向是( )A .南偏东60°B .南偏西60°C .南偏东30°D .南偏西30° 10、如右图,AB 、CD 交于点O ,∠AOE=90°,若∠AOC :∠COE=5:4,则∠AOD 等于 ( ) A .120° B .130°C .140°D .150°11、下列各组数中,不相等...的一组是 ( ) A .()23-与23- B .-23-与23- C . -33-与 33- D .()33- 与33-12、《广东省重点建设项目计划(草案)》显示,港珠澳大桥工程估算总726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 13、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米14、如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 15、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( ) A .0ab > B .0a b +< C .ba<0 D .0a b -< 16、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--17、已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )ab 0A B C DA .51x --B .51x +C .131x --D .131x +18、下列变形中,正确的是( )A 、若ac=bc ,那么a=b 。
七年级上册数学总复习资料七年级上册数学总复习资料1第三章七年级上册数学总复习资料2第四章直线与角-------------4.1几何图形形状:方的、圆的等(1)①几何图形大小:长度、面积、体积等位置:相交、垂直、平行等②几何体也简称体。
包围着体的是面。
③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。
)新课标第一网④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。
(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。
(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图(从上面看)。
----------4.2直线、射线、线段1.特点与表示方法:①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大写字母或小字字母表示;②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。
③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。
2.连接两点间的线段的长度,叫做这两点之间的距离。
线段是图形,距离有大小。
3.经过两点有一条直线,并且只有一条直线。
(两点确定一条直线)。
4.经过两点的所有连线中----------线段最短(两点之间,线段最短)------------4.3线段的长短比较①线段的比较:叠合法(线段上、线段的延长线上)或度量法。
②中点:将一条线段分成两条相等的线段的点称这条线段的中点。
③线段的和、差、倍、分(整体求部分,部分求整体)可以设未知数④点在线段上、点在线段的延长线上、甚至在线段外。
-----------4.4角1、定义:有公共端点的两条射线组成的图形叫角。
角的端点为顶点,两条射线为角的两边(一条射线绕端点旋转后形成的图形)。
初一年级上册数学复习题一、数的认识与运算1. 整数的分类- 正整数- 负整数- 零2. 整数的四则运算- 加法:如 23 + 45 = 68- 减法:如 78 - 23 = 55- 乘法:如3 × 15 = 45- 除法:如48 ÷ 6 = 83. 有理数的分类- 正有理数- 负有理数- 零4. 有理数的四则运算- 加法:如 -3 + 5 = 2- 减法:如 -6 - 2 = -8- 乘法:如 -2 × 3 = -6- 除法:如 -18 ÷ 3 = -65. 绝对值- 正数的绝对值是其本身- 负数的绝对值是其相反数- 零的绝对值是零6. 有理数的大小比较- 正数大于零,零大于负数- 两个负数比较大小,绝对值大的反而小二、代数基础1. 代数式- 单项式:如 3x- 多项式:如 2x^2 + 5x - 32. 同类项- 所含字母相同,并且相同字母的指数也相同的项3. 合并同类项- 如 3x + 2x = 5x4. 代数式的值- 如当 x = 2 时,3x + 1 = 3 × 2 + 1 = 75. 代数式的简化- 如 5x^2 - 3x + 2x - 4 可以简化为 5x^2 - x - 4三、方程与不等式1. 一元一次方程- 如 2x + 5 = 112. 解一元一次方程- 如解方程 2x + 5 = 11,得 x = 33. 一元一次不等式- 如 x + 3 > 54. 解一元一次不等式- 如解不等式 x + 3 > 5,得 x > 25. 一元一次方程组- 如:\[ \begin{cases} x + y = 7 \\ x - y = 1 \end{cases} \]6. 解一元一次方程组- 如解方程组:\[ \begin{cases} x + y = 7 \\ x - y = 1 \end{cases} \] 得 x = 4, y = 3四、几何初步1. 线段、射线、直线- 线段有起点和终点,长度有限- 射线有一个起点,无限延伸- 直线无起点无终点,无限延伸2. 角的分类- 锐角:小于90°- 直角:等于90°- 钝角:大于90°小于180°- 平角:等于180°- 周角:等于360°3. 角的度量- 度(°)是角的基本度量单位4. 垂直与平行线- 垂直线:两条直线相交成90°角- 平行线:在同一平面内,且无论延伸多远都不相交的两条直线5. 三角形的分类- 按边分:等边三角形、等腰三角形、不等边三角形- 按角分:锐角三角形、直角三角形、钝角三角形6. 三角形的内角和- 三角形的内角和等于180°7. 四边形的分类- 正方形、长方形、平行四边形、梯形等8. 圆的基本概念- 圆心、半径、直径、圆周角等五、数据的收集与处理1. 数据的收集- 调查、观察、实验等方法收集数据2. 数据的整理- 制作表格、绘制图表等方法整理数据3. 数据的描述- 用平均数、。
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
七年级数学上册知识点第一章有理数1.1 正数及负数①正数:大于0的数叫正数。
〔根据需要,有时在正数前面也加上“+〞〕②负数:在以前学过的0以外的数前面加上负号“—〞的数叫负数。
及正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a 表示0时,-a仍是0。
〔如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断〕②正数有时也可以在前面加“+〞,有时“+〞省略不写。
所以省略“+〞的正数的符号是正号。
2.具有相反意义的量假设正数表示某种意义的量,那么负数可以表示具有及该正数相反意义的量,比方:零上8℃表示为:+8℃;零下8℃表示为:-8℃⑴0表示“没有〞,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界限,0既不是正数,也不是负数。
如:〔3〕 0表示一个确切的量。
如:0℃以及有些题目中的基准,比方以海平面为基准,那么0米就表示海平面。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;上下;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数〔0和正整数统称为自然数〕⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数0 正有理数正分数有理数有理数0〔0不能无视〕负整数分数负有理数负分数总结:①正整数、0统称为非负整数〔也叫自然数〕②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
初一上数学期末总复习(难点复习)第一讲 思维拓展性复习课教学目标:着重引导学生思考数到代数的变化及加强初中初等几何版块内容的认识,起到举一反三,开发思维的作用,严格贯穿初中数学中最为重要的代数思想、分类讨论思想、数形结合思想!引导篇一、 代数思想及分类讨论思想引导预热题型、已知22221123(1)(21)6n n n n +++⋅⋅⋅+=++,计算:(1)222211121319+++⋅⋅⋅+ (2)222224650+++⋅⋅⋅+变式:探索规律。
观察下面由*组成的图案和算式,解答问题: 求:(1)1+3+5+7+9+…+99 的值;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的值.例题1、计算23910133333++++⋅⋅⋅++ 变式练习:235201044444++++⋅⋅⋅+例题2、已知211211-=⨯,----=⨯,3121321则=+)1(1n n ________. 计算:)1(1431321211++---+⨯+⨯+⨯n n 探究:)12)(12(1751531311+-+---+⨯+⨯+⨯n n变式练习1:若620ab b -+-=,试求1111(1)(1)(2)(2)(2012)(2012)ab a b a b a b +++⋅⋅⋅++++++的值。
变式练习2:解下列方程2009121231232009x x x x +++⋅⋅⋅=++++++⋅⋅⋅+例题3、求12x x ++-的最小值并求此时x 的取值范围.变式练习1:若有理数p n m ,,满足1||||||=++p p n n m m ,求 =|3|2mnp mnp多少?变式练习2:若0a <,化简a a a --=例题4、如果关于字母x 的代数式22310x mx nx x -++-+的值与x 的取之无关,求mn 的值。
变式练习1:已知A=2x 2+3xy-2x-1, B= -x 2+xy-1, 且3A+6B 的值与x 无关,求y 的值.变式练习2:若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。
第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数, 正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{ } 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________ 知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0) 2、有理数的概念及分类整数和分数统称为有理数。
七年级数学上册知识归纳第一章1.点运动成线,线运动成面,面运动成体。
2.圆柱与圆锥的相同与不同相同点:底面都是圆,侧面都是曲面不同点:(1)圆柱有两个大小相同的底面,而圆锥只有一个底面(2)圆柱没有顶点, 而圆锥有一个顶点棱柱与圆柱的相同与不同相同点:都有上、下两个底面,都有侧面不同点:(1)棱柱的底面是形状和大小完全相同的多边形, 圆柱的底面是圆(2)棱柱的侧面是长方形,圆柱的侧面是曲面(3)棱柱有顶点,圆柱没有顶点3.在立体图形中,若围成的面都是平的,这样的几何体叫做多面体4.几何体的分类(1)按面“平”或“曲”分类围成几何体所有面都是平面的为一类。
如:正方体、长方体、棱柱、棱锥。
围成几何体的面中至少有一个面不是平面的为一类。
如:圆柱、圆锥、球。
(2)按“柱锥球”分类柱体包括:棱柱、圆柱。
锥体包括:棱锥、圆锥。
球体包括:球。
5.棱柱:(1)在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的上、下底面的形状相同,侧面的形状都是长方形。
(2)人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(3)长方体和正方体都四棱柱。
(4)棱柱有直棱柱和斜棱柱。
(5)n棱柱有2n个顶点,3n条棱,n+2个面。
6. 几何体的截面边数不能多于几何体的面数。
如:正方体的截面不可能为七边形。
7.我们从不同的方向观察同一物体时,把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
8.多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。
三角形、四边形、五边形、六边形等都是多边形。
n边形是由n条不在同一条直线上的线段集资依次首尾相连组成的封闭图形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成n-2个三角形。
9.圆上A,B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
初一上学期数学知识点总复习初一数学总复第一章有理数本章主要包括有理数的概念和有理数的运算两个部分。
通过数轴可以理解和认识有理数的概念,并将这些概念串联起来。
有理数的运算是本章的重点,需要注意运算法则、运算律、运算顺序和近似计算四个方面。
基础知识:1、正数:大于0的数称为正数。
2、负数:在正数前面加上负号“-”的数称为负数。
3、零:既不是正数也不是负数。
4、有理数:正整数、负整数、正分数、负分数都可以写成分数的形式,这些数称为有理数。
5、数轴:通常用一条直线上的点表示数,这条直线称为数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6、相反数:绝对值相等,符号相反的两个数称为相反数。
7、绝对值:数轴上表示数a的点与原点的距离称为数a的绝对值,记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是0.正数大于0,大于负数,正数大于负数,两个负数,绝对值大的反而小。
8、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数同0相加,仍得这个数。
加法满足交换律和结合律。
9、有理数减法法则:减去一个数,等于加这个数的相反数。
10、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.乘法分配律:a(b+c)=ab+ac解析:这是乘法分配律的表达式,符合题目要求。
2、倒数的定义是().A。
一个数与0的商B。
一个数与1的商C。
一个数与自己的商D。
1除以一个数的商答案:D解析:根据题目中的定义,倒数是1除以一个数的商。
3、有理数的乘方法则中,负数的偶次幂是().A。
初一上册数学期末重点知识点复习总结优秀11篇初一数学上册复习资料篇一有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
七年级上册数学期末复习资料篇二第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数(1) 正整数、0、负整数统称,正分数和负分数统称。
整数和分数统称。
0既不是数,也不是数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、、单位长度。
在直线上任取一个点表示数0,这个点叫做。
(3) 只有符号不同的两个数叫做互为相反数。
例:2的相反数是;-2的相反数是;0的相反数是(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的,并把绝对值相加。
②绝对值不相等的异号两数相加,取符号,并用减去较小的绝对值。
互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、有理数的乘除法(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。
例:-的倒数是;绝对值是;相反数是。
(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。
有理数除法法则2:两数相除,同号得,异号得,并把相除。
初一上册数学期末重点知识点复习总结初一上册数学期末重点知识点复习总结「篇一」一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a 应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。