新课标八年级数学下册二次根式单元测试题(经典好题)
- 格式:doc
- 大小:142.50 KB
- 文档页数:3
八年级数学下册二次根式单元测试题及答案(含答案)八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()。
A、3x 2B、1 4C、 aD、a 32、在二次根式,中,x的取值范围是()。
A、x≥1B、x>1C、x≤1D、x<13、已知(x-1)2+y2=0,则(x+y)2的算术平方根是()。
A、1B、±1C、-1D、44、下列计算中正确的是()。
A、2/11(x2y) 5B、3(x2)2y2C、a/323D、45/3235、化简1/23+11/23=()。
A、1/5B、30C、65D、6306、下列二次根式:12.5a,a,b,1/a,m+y2/(anx)。
其中最简二次根式的有()。
A、2个B、3个C、1个D、4个7、若等式(m3)/(m3)=1成立,则m的取值范围是()。
A、m≥1/2B、m>3C、1/2≤m<3D、m≥38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()。
A、5cmB、7cmC、5cm或7cmD、无法确定9、把二次根式x4x2y2化简,得()。
A、2x2yB、x2+xyC、1xyD、x2y210、下列各组二次根式中,属于同类二次根式的为()。
A、2和BB、2和CC、a+1/12ab和DD、a1/ab2和Da1/ab211、如果a≤1,那么化简√(a1)/(1a)=()。
A、(a+1)/(1a)B、(1a)/(a+1)C、(a+1)/√(1a)D、(1a)/√(a+1)12、下列各组二次根式中,x的取值范围相同的是()。
A、x1和x(2x3)B、x21和x2 2C、(x2)2和(x3)2D、√(x24)和√(x22x1)二、填空题:(每小题3分,共36分)13、2633;14、用“>”或“<”符号连接:(1)3(5)2(2)35;27(3)357 3.15、3的相反数是3,绝对值是3.16、如果最简二次根式3a3与72a是同类二次根式,那么a的值是2/3.17、计算:8/24=1/3;(1)2=1;(5)2=25.。
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
八年级下册数学《二次根式》单元测试卷一、单选题1.x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >5 2.下列运算正确的是( )A .(a 2)3=a 5B .(a-b)2=a 2-b 2C .-D =-3 3.下列根式中是最简二次根式的是( )A B C D4a =- 则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 5.下列计算中,正确的是( )A =B .()2=8C =3D .⨯26.下列计算:()(()(()2212;22;312;41==-==-,其中结果正确的个数为( ) A .1 B .2 C .3 D .47.下列二次根式中,与 )A B C D8.已知m =1n =1的值为 ( ) A .±3B .3C .5D .99.已知x +y -x 2y +xy 2=( )A.B.C.D.10|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27 11.下列计算正确的是()A.5=B2=C.=D=12.若m<0,m的结果是( )A.-2m B.2m C.0 D.-m二、填空题13有意义,则m的取值范围是__.14,则满足条件的最小正整数n为____.15.把二次根式(x-1__.16.已知2y=,则y x的值为_____.17.计算:112-⎛⎫⎪⎝⎭=__.18.如果m<0,化简-m|的结果是_____三、解答题19.计算:20cm cm ,求这个三角形的周长.21(22.已知:a 、b 、c 满足2(|0a c -+-=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.23.(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y 的值.利用二次根式有意义的条件分析得出答案.参考答案1.C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C.【点睛】(a≥0)(a≤0).2.D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.3.B【解析】【详解】AB是最简二次根式,故此选项正确;C,故此选项错误;D=故选B.考点:最简二次根式.4.C【解析】试题分析:一个数开方后等于它的相反数,说明这个数是负数或者等于零.故非正数在数轴上对应点都在原点或者原点的左侧.选C.考点:实数点评:本题难度较低,主要考查学生对实数和平方根等概念的掌握.5.C【解析】【分析】根据二次根式的乘除运算法则和二次根式的性质逐一计算可得.【详解】A3=,故A选项错误;B、(232=,故B选项错误;C3,故C选项正确;D、D选项错误;故答案选:C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的性质和运算法则.6.D【解析】【分析】根据二次根式的运算法则即可进行判断.【详解】()212=,正确;(22=正确;()(2312-=正确;()41=-,正确,故选D. 【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:2a =;=a .7.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;BC ,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键. 8.B【解析】 【分析】由已知可得:2,(11m n mn +==+-=-=【详解】由已知可得:2,(11m n mn +==+-=-,原式3=== 故选:B【点睛】考核知识点:二次根式运算.配方是关键.9.B【解析】【分析】把x 2y+xy 2分解因式,然后将x 、y 值代入进行计算即可得.【详解】∵x ,y∴x 2y+xy 2=xy(x+y)=+××)]=故选B .【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的混合运算,解题时灵活运用二次根式的乘法与加法法则是解题的关键.10.D【解析】30x y --=. 290,1530,12.x y x x y y ,解得-+==⎧⎧∴⎨⎨--==⎩⎩ ∴x +y =27.故选D.11.B【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】解:A、与不能合并,所以A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式= ,所以D选项错误.故选:B.【点睛】本题考查了二次根式的运算:熟练掌握二次根式的加法法则、二次根式的乘除法法则及二次根式的性质是解答本题的关键.12.A【解析】分析:由m<0,a及绝对值的性质计算即可.详解:∵m<0,∴原式=||m|﹣m|=|﹣m﹣m|=|﹣2m|=﹣2m,故选A.点睛:本题考查了二次根式的性质与化简,a=及绝对值的性质.13.m≤12.【解析】让二次根式的被开方数1-2m为非负数列式求值即可.解:由题意得:1-2m≥0,解得m≤12. 故答案为m≤12. 14.5【解析】试题解析:20n ==∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.15.【解析】【分析】根据二次根式有意义的条件可以判断x-1的符号,即可化简.【详解】解:x 1x 1=-=-=((故答案是:.【点睛】 本题主要考查了二次根式的化简,正确根据二次根式有意义的条件,判断1-x >0,从而正确化简|1-x|是解决本题的关键.16.19【解析】【分析】根据二次根式有意义的条件:被开方数是非负数,即可求得x 的值,进而求得y 的值,然后代入求解即可.【详解】解:根据题意得:3030x x -≥⎧⎨-≥⎩,解得:x 3=, ∴y 2=-, ∴2139y x -==, 故答案为19. 【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.17【解析】【分析】 按照实数的运算法则依次计算,112-⎛⎫ ⎪⎝⎭=2【详解】原式==2【点睛】此题考查的知识有:数的负指数幂,二次根式的分母有理化,熟练掌握相应的运算法则是解答此题的关键.18.-2m【解析】【分析】由m <0a =及绝对值的性质计算可得.【详解】解:∵m <0,-∴原式=m m=--m m=-2m2m=--.故答案为:2m【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质及绝对值的性质.19.(1)(2)17【解析】【分析】(1)先对二次根式化简,然后进行减法运算;(2)运用平方差公式进行计算.【详解】解:(1)原式.(2)原式2-12=18-1=17.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.cm【解析】【分析】将三边相加,化简各二次根式后合并即可得.【详解】cm),【点睛】本题主要考查二次根式的应用,解题的关键是掌握二次根式的混合运算顺序和运算法则.21.-6【解析】试题分析:按二次根式的乘除的运算法则计算即可.试题分析:原式=-=-==.22.(1)b=5,;(2)能,+5.【解析】【分析】(1)根据非负数的性质列式求解即可;(2)根据三角形的任意两边之和大于第三边进行验证即可.【详解】解:(1)根据题意得,,b-5=0,,解得,b=5,;(2)能.∵>5,∴能组成三角形,三角形的周长+5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.23.(1)a 的值为 4 或 18;(2)5.【解析】【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【详解】解:(1)根据平方根的性质得,32150a a ++-=,解得 :a=4,3215a a ,+=- 解得:a=18,答:a 的值为 4 或 18;(2)满足二次根式9090,x x -≥⎧⎨-≥⎩解得:x=9,∴y=4,32 5.==+=【点睛】此题主要考查了二次根式有意义的条件,正确得出 x ,y 的值是解题关键.。
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
二次根式单元测试题及答案题目1. 化简下列根式:$\sqrt{12}$答案:$\sqrt{12} = \sqrt{4 \cdot 3}=2\sqrt{3}$题目2. 计算下列各根式的值并化简:$\sqrt{9}+\sqrt{16}$答案:$\sqrt{9}+\sqrt{16} = 3+4=7$题目3. 计算下列各根式的值:$\sqrt{25} - \sqrt{9}$答案:$\sqrt{25} - \sqrt{9} = 5 - 3 = 2$题目4. 计算下列各根式的值:$2\sqrt{8} - 3\sqrt{18}$答案:$2\sqrt{8} - 3\sqrt{18} = 2\sqrt{4 \cdot 2} - 3\sqrt{9 \cdot 2} \\ = 2 \cdot 2\sqrt{2} - 3 \cdot 3\sqrt{2} \\= 4\sqrt{2} - 9\sqrt{2} \\= -5\sqrt{2}$题目5. 求下列各根式的值:$(\sqrt{5}+2)^2$答案:$(\sqrt{5}+2)^2 = (\sqrt{5}+2)(\sqrt{5}+2) \\= 5 + 2\sqrt{5} + 2\sqrt{5} + 4 \\= 9 + 4\sqrt{5}$题目6. 将下列各根式化为最简根式:$\sqrt{72}$答案:$\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{6^2 \cdot 2} \\= 6\sqrt{2}$题目7. 将下列各根式化为最简根式:$2\sqrt{50}$答案:$2\sqrt{50} = 2 \cdot \sqrt{25 \cdot 2} = 2 \cdot 5\sqrt{2} \\ = 10\sqrt{2}$题目8. 将下列各根式化为最简根式:$3\sqrt{27}$答案:$3\sqrt{27} = 3\sqrt{9 \cdot 3} = 3 \cdot 3\sqrt{3} \\= 9\sqrt{3}$题目9. 求解下列方程:$x^2 - 4 = 0$答案:$x^2 - 4 = 0 \\(x - 2)(x + 2) = 0 \\x - 2 = 0 \quad \text{或} \quad x + 2 = 0 \\x = 2 \quad \text{或} \quad x = -2$题目10. 求解下列方程:$2x^2 - 16 = 0$答案:$2x^2 - 16 = 0 \\2(x^2 - 8) = 0 \\x^2 - 8 = 0 \\(x - \sqrt{8})(x + \sqrt{8}) = 0 \\x - \sqrt{8} = 0 \quad \text{或} \quad x + \sqrt{8} = 0 \\x = \sqrt{8} \quad \text{或} \quad x = -\sqrt{8} \\x = 2\sqrt{2} \quad \text{或} \quad x = -2\sqrt{2}$题目11. 求解下列方程:$x^2 + 5x + 6 = 0$答案:$x^2 + 5x + 6 = 0 \\(x + 2)(x + 3) = 0 \\x + 2 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -2 \quad \text{或} \quad x = -3$题目12. 求解下列方程:$2x^2 + 7x + 3 = 0$答案:$2x^2 + 7x + 3 = 0 \\(2x + 1)(x + 3) = 0 \\2x + 1 = 0 \quad \text{或} \quad x + 3 = 0 \\x = -\frac{1}{2} \quad \text{或} \quad x = -3$题目13. 解方程组:$$\begin{cases}x^2 + y^2 = 25 \\x + y = 7\end{cases}$$答案:将第二个方程展开得到 $y = 7-x$,代入第一个方程得到:$$x^2 + (7-x)^2 = 25 \\x^2 + 49 - 14x + x^2 = 25 \\2x^2 - 14x + 24 = 0 \\x^2 - 7x + 12 = 0 \\(x - 3)(x - 4) = 0 \\x - 3 = 0 \quad \text{或} \quad x - 4 = 0 \\x = 3 \quad \text{或} \quad x = 4$$代入第二个方程可得:当 $x = 3$ 时,$y = 7 - 3 = 4$;当 $x = 4$ 时,$y = 7 - 4 = 3$。
⼋年级下册数学第16章《⼆次根式》单元测试题(含答案)⼋年级下册数学第16章《⼆次根式》单元测试题(含答案)⼀、选择题(共13⼩题)1.下列式⼦⼀定是⼆次根式的是()A. B. C. D.2.若在实数范围内有意义,则x的取值范围是()A.x>﹣4B.x≥﹣4C.x>﹣4且x≠1D.x≥﹣4且x≠﹣13.若是⼆次根式,则a,b应满⾜的条件是()A.a,b均为⾮负数B.a,b同号C.a≥0,b>0D.4.已知是正整数,则满⾜条件的最⼤负整数m为()A.﹣10B.﹣40C.﹣90D.﹣1605.已知是整数,正整数n的最⼩值为()A.0B.1C.6D.366.已知x、y为实数,,则y x的值等于()B.4C.6D.167.实数a、b在数轴上对应点的位置如图所⽰,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b8.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>59.化简:x的结果是()A. B. C.﹣ D.﹣10.下列⼆次根式;5;;;;。
其中,是最简⼆次根式的有()A.2个B.3个C.4个D.5个11.如果a=2+,b=,那么()A.a>bB.a<bC.a=b12.下列⼆次根式化成最简⼆次根式后不能与合并的是()A. B. C. D.13.如图,在长⽅形ABCD中⽆重叠放⼊⾯积分别为16cm2和12cm2的两张正⽅形纸⽚,则图中空⽩部分的⾯积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2⼆、填空题(共6⼩题)14.若=2﹣x,则x的取值范围是.15.如图,数轴上点A表⽰的数为a,化简:a+=.16.化简:=;=;=;=.17.若与最简⼆次根式是同类⼆次根式,则a=.18.要使式⼦在实数范围内有意义,则实数x的取值范围是.19.实数a、b在数轴上位置如图,化简:|a+b|+=.三、解答题(共6⼩题)(1)﹣(2)(2﹣3)÷.21.已知x=,y=,求x2y+xy2的值.22.如果与都是最简⼆次根式,⼜是同类⼆次根式,且+=0,求x、y的值.23.在进⾏⼆次根式的化简与运算时,我们有时会碰上如,,⼀样的式⼦,其实我们还可以将其进⼀步化简:;;.以上这种化简的步骤叫做分母有理化.(1)化简:=;=.(2)填空:的倒数为.(3)化简:.24.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.⽅形,现将塑料容器内的⼀部分⽔倒⼊⼀个底⾯半径2cm的圆柱形玻璃容器中,玻璃容器⽔⾯⾼度上升了3cm,求长⽅形塑料容器中的⽔下降的⾼度.(注意:π取3).参考答案⼀、选择题(共13⼩题)1.下列式⼦⼀定是⼆次根式的是()A. B. C. D.【分析】根据⼆次根式的被开⽅数是⾮负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,⽆意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,⽆意义,此选项错误;C、当x=﹣1时,⽆意义,此选项错误;D、∵x2+2≥2,∴符合⼆次根式定义,此选项正确;故选:D.2.若在实数范围内有意义,则x的取值范围是()A.x>﹣4B.x≥﹣4C.x>﹣4且x≠1D.x≥﹣4且x≠﹣1【分析】直接利⽤⼆次根式的定义结合分式有意义的条件得出答案.【解答】解:若在实数范围内有意义,则x+4≥0且x+1≠0,解得:x≥﹣4且x≠﹣1.故选:D.3.若是⼆次根式,则a,b应满⾜的条件是()A.a,b均为⾮负数B.a,b同号C.a≥0,b>0D.【分析】根据⼆次根式的定义得出根式有意义的条件,再逐个判断即可.【解答】解:∵是⼆次根式,∴≥0,A、a、b可以都是负数,故本选项错误;B、a=0可以,故本选项错误;C、a、b可以都是负数,故本选项错误;D、≥0,故本选项正确;故选:D.4.已知是正整数,则满⾜条件的最⼤负整数m为()A.﹣10B.﹣40C.﹣90D.﹣160【分析】直接利⽤⼆次根式的定义分析得出答案.【解答】解:∵是正整数,∴满⾜条件的最⼤负整数m为:﹣10.故选:A.5.已知是整数,正整数n的最⼩值为()A.0B.1C.6D.36【分析】因为是整数,且,则6n是完全平⽅数,满⾜条件的最⼩正整数n为6.【解答】解:∵,且是整数,∴是整数,即6n是完全平⽅数;∴n的最⼩正整数值为6.故选:C.6.已知x、y为实数,,则y x的值等于()C.6D.16【分析】根据⼆次根式的性质和分式的意义,被开⽅数⼤于等于0,求得x、y的值,然后代⼊所求求值即可.【解答】解:∵x﹣2≥0,即x≥2,①x﹣2≥0,即x≤2,②由①②知,x=2;∴y=4,∴y x=42=16.故选:D.7.实数a、b在数轴上对应点的位置如图所⽰,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b【分析】直接利⽤数轴得出a<0,a+b<0,进⽽化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.8.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.9.化简:x的结果是()A. B. C.﹣ D.﹣【分析】根据⼆次根式的性质由题意可知x<0,我们在变形时要注意原式的结果应该是个负数,然后根据⼆次根式的性质化简⽽得出结果.【解答】解:原式=x=x=x=﹣故选:D.10.下列⼆次根式;5;;;;.其中,是最简⼆次根式的有()A.2个B.3个C.4个D.5个【分析】根据最简⼆次根式的定义即可判断.【解答】解:=,=,=211.如果a=2+,b=,那么()A.a>bB.a<bC.a=bD.a=【分析】根据分母有理化先化简b,再⽐较a与b的⼤⼩即可.【解答】解:b===2+,∵a=2+,∴a=b,故选:C.12.下列⼆次根式化成最简⼆次根式后不能与合并的是()A. B. C. D.【分析】各项化简得到最简,利⽤同类⼆次根式定义判断即可.【解答】解:A、原式=3,不符合题意;B、原式=,不符合题意;C、原式=3,符合题意;D、原式=,不符合题意,故选:C.13.如图,在长⽅形ABCD中⽆重叠放⼊⾯积分别为16cm2和12cm2的两张正⽅形纸⽚,则图中空⽩部分的⾯积为()cm2.B.﹣12+8C.8﹣4D.4﹣2【分析】根据正⽅形的⾯积求出两个正⽅形的边长,从⽽求出AB、BC,再根据空⽩部分的⾯积等于长⽅形的⾯积减去两个正⽅形的⾯积列式计算即可得解.【解答】解:∵两张正⽅形纸⽚的⾯积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空⽩部分的⾯积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.⼆、填空题(共6⼩题)14.若=2﹣x,则x的取值范围是x≤2.【分析】根据已知得出x﹣2≤0,求出不等式的解集即可.【解答】解:∵=2﹣x,∴x﹣2≤0,x≤2则x的取值范围是x≤2故答案为:x≤2.15.如图,数轴上点A表⽰的数为a,化简:a+=2.【分析】直接利⽤⼆次根式的性质以及结合数轴得出a的取值范围进⽽化简即可.【解答】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)故答案为:2.=;=;=;=.【分析】根据⼆次根式的性质化简即可.【解答】解:=,==,=,=,故答案为:;;;.17.若与最简⼆次根式是同类⼆次根式,则a =2.【分析】根据同类⼆次根式的概念求解可得.【解答】解:∵=2,∴a =2,故答案为:2.18.要使式⼦在实数范围内有意义,则实数x 的取值范围是x >1.【分析】根据被开⽅数⼤于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得x ﹣1>0,解得x >1.故答案为:x >1.19.实数a 、b 在数轴上位置如图,化简:|a +b |+=﹣2a.【分析】根据绝对值与⼆次根式的性质即可求出答案.【解答】解:由题意可知:a <0<b ,∴a +b <0,a ﹣b <0,∴原式=﹣(a +b )﹣(a ﹣b )=﹣a ﹣b ﹣a +b故答案为:﹣2a三、解答题(共6⼩题)20.计算:(1)﹣(2)(2﹣3)÷.【分析】(1)⾸先化简⼆次根式,进⽽合并求出即可;(2)⾸先化简⼆次根式,进⽽合并,利⽤⼆次根式除法运算法则求出即可.【解答】解:(1)﹣=3﹣2=;(2)(2﹣3)÷=(8﹣9)÷=﹣=﹣.21.已知x=,y=,求x2y+xy2的值.【分析】⾸先将原式提取公因式xy,进⽽分解因式求出答案.【解答】解:∵x═2﹣,y=,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+)]×1=4.22.如果与都是最简⼆次根式,⼜是同类⼆次根式,且+=0,求x、y的值.【分析】根据同类⼆次根式的概念列式求出a,根据算术平⽅根的⾮负性计算即可.【解答】解:由题意,得3a﹣11=19﹣2a,解得,a=6,∴+=0,∵≥0,≥0,∴24﹣3x=0,y﹣6=0,解得,x=8,y=6.23.在进⾏⼆次根式的化简与运算时,我们有时会碰上如,,⼀样的式⼦,其实我们还可以将其进⼀步化简:;;.以上这种化简的步骤叫做分母有理化.(1)化简:=;=.(2)填空:的倒数为﹣.(3)化简:.【分析】(1)利⽤分母有理化得到化简的结果;(2)把分母有理化即可;(3)先分母有理化,然后合并后利⽤平⽅差公式计算.【解答】解:(1)==;==;(2)=﹣,即的倒数为﹣;故答案为,,﹣;(3)原式=+++…+)(+1)=(﹣1)(+1)=(2n+1﹣1)=n.24.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.【分析】(1)利⽤分母有理化求解可得;(2)将化简后的a、b的值代⼊原式=(a﹣b)2﹣2ab计算可得.【解答】解:(1)a====﹣2,b====+2;(2)原式=(a﹣b)2﹣2ab=(﹣﹣2)2﹣2×(﹣2)(+2)=(﹣4)2﹣2×(5﹣4)=16﹣2=14.25.⼀个长⽅体的塑料容器中装满⽔,该塑料容器的底⾯是长为4cm,宽为3cm的长⽅形,现将塑料容器内的⼀部分⽔倒⼊⼀个底⾯半径2cm的圆柱形玻璃容器中,玻璃容器⽔⾯⾼度上升了3cm,求长⽅形塑料容器中的⽔下降的⾼度.(注意:π取3).【分析】根据倒出的⽔的体积不变列式计算即可.【解答】解:设长⽅形塑料容器中⽔下降的⾼度为h,根据题意得:4×3h=3×(2)2×3,解得:h=2,所以长⽅形塑料容器中的⽔下降2cm.。
八年级数学第十六章二次根式测试题时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是52.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .03.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若ba 是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥b a 5.已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -6.把mm 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -7.下列各式中,一定能成立的是( )。
A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( ) A .022=-y x B .033=+y xC .022=-y xD .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22 C .55 D .5 10.已知1018222=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若5-x 不是二次根式,则x 的取值范围是 。
12.已知a<2,=-2)2(a 。
13.当x= 时,二次根式1+x 取最小值,其最小值为 。
14.计算:=⨯÷182712 ;=÷-)32274483( 。
二次根式单元测试一、填空题:(每题2分,共24分)1.函数1-=x x y 的自变量x 的取值范围是______. 2.当x ______时,x x -+-31有意义.3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______.8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______. 10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(. ______. 12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ;(2)若25,21==b a ,则23≤ab ; (3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab . 根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______.二、选择题:(每题2分,共24分)13.已知xy >0,化简二次根式2xy x -的正确结果为( ) (A)y (B)y - (C)y - (D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a (D)2a 或-2a 15.下列二次根式中,最简二次根式为( ) (A)x 9 (B)32-x (C)x y x - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3 (B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0 (B)1 (C)-1 (D)31 18.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( ) (A)4 (B)2x +2 (C)-2x -2 (D)-420.不改变根式的大小,把a a --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --121.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( ) (A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y三、解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++(2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy y x y xy y x y x+-+的值,其中23=x ,27=y .29.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.30.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案:1、10≠≥x x 且2、31≤≤x3、b a -4、15、1≥x6、17、68、3;91-9、31≤≤a 10、21)1(21++=++n n n n 11、200612、4169 13、C14、B15、B16、D17、C18、C19、B20、D21、C22、D23、B24、D 25、(1)34242++;(2)x 319;(3)2;(4)11-;(5)x x )212(+;(6)a ab 325 26、327、11328、229,--xy 29、8530、11)1(111)2(;15441544)1(22223232-+=-+-=-+-=-=-+=n n n n n n n n n n n n n n n n。
⋯ ⋯ ⋯ ⋯ ⊙ : ⋯ 号 ⋯ 座 ⋯ ⋯ ⋯ ⊙ ⋯ ⋯ ⋯ ⋯ ⋯ ⊙ ⋯⋯: 〕名⋯姓 答 ⋯⋯要 ⊙不 ⋯⋯ 装内⋯⋯八年级数学下册二次根式单元测试题一、 : 〔每小 3 分,共 36 分〕1.如果x 1 有意 ,那么x 的取 范 是〔〕A . x 1B . x ≥ 1C . x ≤ 1D . x 12. 2 的相反数是〔〕A .2 B .2C . 222D .23.以下根式中属最 二次根式的是〔〕A . a21B .1 C . 8D .1224.以下 算 的是 ()..A . 14 7 7 2B . 60 30 2C .9a25a8 a D . 322310 . a11 〕10 , a的 〔aaA . 2 2B . 8C .6D .611 .1a 1 a, a 的取 范 是〔〕a 2aA . a ≤ 0B . a 0C . 0 a ≤ 1D . a 012. k 、 m 、 n 三整数,假设=k,=15,=6, k 、 m 、n 的大小关系是〔 〕A . k <m=nB.m=n < k C. m < n < kD. m <k < n二、填空 :〔每小 3 分,共18 分〕13 . a2 , 代数式 a 21的 是.14 .假设 m 3 ( n 1)20 , m - n 的.15.比 大小 :10 3;2 2 ______ .16 .如果最 二次根式1 a 与4a 2 是同 根式,那么 a .⋯封 ⊙⋯ 密 ⋯ 〔 封⋯ : ⋯⋯班⊙ ⋯ ⋯ ⋯ 密 ⋯ ⋯ ⊙ ⋯ ⋯ ⋯ ⋯ ⊙ ⋯:⋯校 ⋯ 学⋯5.直角三角形的一条直角9,斜10, 另一条直角 〔〕17. 察以下各式:①11 21 ,②2 11 1 1333③ 34 ,⋯⋯A . 1B . 19C .19D . 294455用含 n 〔n ≥1〕的式子写出你猜测的 律:.6.假设 75n 是整数, 正整数n 的最小 是〔 〕18.当 1< x < 4 , | x -4| + x 22 x 1 = ______.A . 2B . 3C .4D . 5三、解答 : 〔共 9 小 ,共66 分〕7. a= 19- 1, a 在两个相 整数之 , 两个整数是〔〕 19. 算:〔每小 3 分,共 12 分〕A . 1 和 2B . 2 和 3C . 3 和 4D . 4 和 58.如 ,一只 从 、 都是4,高是 6 的 方体B〔 1〕24286 ;3 2 ;箱的 A 点沿 箱爬到 B 点,那么它所行的最短〔 2〕 2 124路 的 是〔 〕A . 9B . 10C . 42D . 2 17〔 3〕 2 36 2 36 ;〔 4〕 2 48 3 276 .9.假设 x3 , 12A1 x等于〔 〕A . 1B . - 1C . 3D . - 320.〔 5 分〕当x 5 1时,求代数式x25x 6 的值.21.〔 6 分〕先化简,再求值:3x42x2,其中 x2 .x 21x 1x 22x 13x 6y1022.〔 6 分〕解方程组,并求xy 的值.6x 3y8y123.〔 6 分〕假设实数x, y 满足y x 1 1 x 1,求的值.y124、〔 6 分〕实数a,b在数轴上的位置如下图, 化简a2b2(a b) 2.a b-1o125. 〔 8 分〕一个三角形的三边长分别为x1545,20x, x.5245x(1〕求它的周长〔要求结果化简〕;(2〕请你给出一个适当的x的值,使它的周长为整数,并求出此时三角形周长的值.26. 〔 8 分〕a, b为等腰三角形的两条边长,且a, b 满足b 3 a2a 6 4 ,求此三角形的周长.27.〔 10 分〕阅读下面问题:11( 21)21;21(21)(21)113232;32(32)(3 2 )11525 2 .52(52)(52)试求:〔 1〕1的值;〔2〕1〔 n 为正整数〕的值.n 1n76〔 3〕11111的值 .122334989999100·2 ·。
人教新版八年级下册《第16章二次根式》单元测试卷(2)一.选择题。
1.下列式子中二次根式有()①;②;③﹣;④;⑤;⑥;⑦;⑧(x>1).A.2个B.3个C.4个D.5个2.已知a为实数,则下列式子一定有意义的是()A.B.C.D.3.小明做了四道题:①(﹣)2=2②=﹣2③=±2④=4,做对的有()A.①②③④B.①②④C.②④D.①④4.若等腰三角形的两边长分别为和,则这个三角形的周长为()A.9B.8或10C.13或14D.145.若x﹣y=,xy=,则代数式(x﹣1)(y+1)的值等于()A.2B.C.D.26.化简:×+的结果是()A.5B.6C.D.57.把化成最简二次根式,结果是()A.B.8C.D.8.下列各数中与2+的积是有理数的是()A.2+B.2C.D.2﹣9.下列计算正确的是()A.+=B.2+=2C.3﹣=2D.=6 10.规定a※b=,则※的值是()A.5﹣2B.3﹣2C.﹣D.二.填空题。
11.若有意义,则m能取的最小整数值是.12.下列二次根式:,,,,.其中最简二次根式有个.13.若x,y都为实数,且y=2020+2021+1,则x2+y=.14.已知a、b满足=a﹣b+1,则ab的值为.15.设a=,且b是a的小数部分,则a﹣的值为.16.如图,将1,,,,…,按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,2)表示的两数之积是.三.解答题。
17.计算:(1)(﹣2)×﹣6;(2)(﹣4).18.已知y=,求x2﹣xy+y2的值.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2﹣y2.(2).20.先化简再求值:,其中a=.21.在一条长为56米的传输带上,有一件物品随传输带在3秒时间内匀速前进了12米,求传输带的速度和该物品在传输带上停留的时间.22.观察、思考、解答:(﹣1)2=()2﹣2×1×+12=2﹣2+1=3﹣2反之3﹣2=2﹣2+1=(﹣1)2∴3﹣2=(﹣1)2∴=﹣1(1)仿上例,化简:;(2)若=+,则m、n与a、b的关系是什么?并说明理由;(3)已知x=,求(+)•的值(结果保留根号)人教新版八年级下册《第16章二次根式》单元测试卷(2)参考答案与试题解析一.选择题。
二次根式测试题一、选择题(每小题3分,共30分)1.下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个.A . 1 个 B. 2个 C 。
3个 D 。
4个2.若3962=+-+b b b ,则b 的值为( )A .0B .0或1C .b ≤3D .b ≥33. 是整数,则满足条件的最小正整数n 的值是( )A .0B .1C .2D .34. 已知xy >0,化简二次根式 ) A 。
B 。
C 。
D.5=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C 。
2xD 。
2x ≥ 6。
小明做了以下四道题:①24416a a =;②a a a 25105=⨯;③a a a a a=•=112; ④ a a a =-23。
做错的题是( )A .①B .②C .③D .④7. 化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 8.下列各式中,一定能成立的是( )A .3392-•+=-x x xB .22)(a a =C .1122-=+-x x xD .22)5.2()5.2(=-9.化简)22(28+-得( )A .—2B .22-C .2D . 224-10.如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为2)(b a b a ++-( )A .b 2-B .b 2C .a 2D .a 2-二、填空题(每小题3分,共30分)11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31-x 有意义的条件是 。
13.若m<0,则332||m m m ++= 。
14.已知233x x +=-x 3+x ,则x 的取值范围是 。
15.比较大小:-152。
16.=•y xy 82 ,=•2712 。
17. 计算3393a a a a-+= . 18.若35-=x ,则562++x x 的值为 。
八年级下册数学《二次根式》单元测试卷一、单选题1.说法错误的个数是( )①只有正数才有平方根;②8是64的一个平方根2=;④与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个2.若x≤0,则化简|1﹣x|)A.1﹣2x B.2x﹣1 C.﹣1 D.13.若最简二次根式m是可以合并的,则m、n的值为( )A.m=0,n=2 B.m=1,n=1C.m=0,n=2或m=1,n=1 D.m=2,n=04.二次根式√2−x中x的取值范围是( )A.x>2 B.x≥2C.x<2 D.x≤25.下列式子中,属于最简二次根式的是( )DA B C6.下列各式中:( )个. A.1 B.2 C.3 D.47.下列计算结果正确的是( )A B.=3C D=8=( )A .-1B .1C D9.把a a 移到根号内得( )AB C D10x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <011.如果3a =成立,那么实数a 的取值范围是( )A .0a ≤B .3a ≤C .3a ≥-D .3a ≥12.一个长方形的长和宽分别是、 )A .B .2(C .D .二、填空题13.计算:2= .14=________.15有意义的条件是________.16=_____.17.当x 取________的值最小,最小值是________;当x 取________时,2-的值最大,最大值是________.18.已知,,则x 3y+xy 3=________.19.若x 、y 都是实数,且则x+y=_____.20有意义的x 的取值范围是________.211的倒数为________.22.比较大小(填“>”,“=”,“<”号)三、解答题23.(1)计算:)2) (2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:22 1a a --÷(a﹣1﹣211aa-+),其中a2﹣a﹣6=0.24.若x、y都是实数,且,求x+y的值.25.已知9,求代数式参考答案1.B【解析】①∵正数和零都有平方根,∴①错误;②∵(-8)2=64,∴-8是64的一个平方根,∴②正确;③∵a<0时,2无意义,∴③错误;④∵与数轴上的点一一对应的数是实数,∴④正确;故选B.2.D【解析】试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0(0){0(0)(0)a aa aa a><===-可求解为|1﹣x|故选:D 3.A 【解析】当m=0,n=2时,m====m=1,n=1时,2m==6==,不符合要求;当m=2,n=0时,0m====不符合要求,故选A.点睛:本题考查了同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.4.D【解析】由题意得,2-x ≥0,∴x ≤2.故选D.5.B【解析】试题分析:判断一个二次根式是最简二次根式的条件是:1、被开方数不含分母;2、被开方数中不含能开得尽方的因数或因式.据此判断,A 项中被开方数4,可以写成22,能被开方,不是最简二次根式,B 项中的被开方数5,符合条件,所以是最简二次根式,C 项中的被开方数是分数,不符合条件,D 项中的根式作分母,不符合条件,故选B.考点:最简二次根式的定义.6.B【解析】∵3>0, 220x y +≥,∴是二次根式;∵当a <-1时,a +1<0,不是二次根式;∵-2<0, ∴3,∵211x --≤-,故选B.)0a ≥的式子叫做二次根式,根据定义判断即可,一看根指数是否是2,二看被开方数是否非负数. 7.C【解析】选项A. .A错误.选项B. 错误.选项C. 正确.选项D.,D错误.故选C.8.D【解析】0,=故选D.9.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)性质得到【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=故选C .【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.10.A【解析】【详解】由题意得,x ≥0 .故选A.11.B【解析】【详解】 23,a a +-=3a =-,33a a =-=-, 30a ∴-≤,3.a ∴≤故选B.12.C【解析】由题意得,×==.故选C. 点睛:本题考查了矩形的面积公式和二次根式的乘法,熟练掌握二次根式的乘法公式)0,0a b ≥≥是解答本题的关键.13.28.【解析】试题分析:原式=222⨯=28.故答案为28.考点:二次根式的乘除法.14.【解析】试题解析:原式==故答案为15.x≥﹣3【解析】【分析】根据二次根式定义:被开放式大于等于零时根式有意义即可解题.【详解】解:有意义,∴x+3≥0,解得:x≥﹣3.【点睛】本题考查了根式有意义的条件,属于简单题,熟悉二次根式的概念是解题关键.16.【解析】【分析】根据二次根式的性质,通过化简即可得到答案.【详解】=故答案为:【点睛】本题考查了二次根式的性质,解题的关键是用二次根式性质准确化简. 17.-5 0 5 2【解析】0,∴1020x += 取得的最小值0,∴x=-5;0≥,∴0≤,∴2≤2,∴当5-x =0时,2取的值最大值2,∴x =5.故答案为 -5 , 0 ; 5, 2.18.10.【解析】【详解】解:3x y =+=1.x y xy ∴+==()()233222,x y xy xy x y xy x y xy ⎡⎤+=+=+-⎣⎦ ()112210.=⨯-=故答案为10.19.11【解析】根据题意得,x-3≥0,且3-x≥0,所以x=3,则y=8,所以x+y=3+8=11,故答案为11. 20.x 是实数【解析】∵20x ≥,∴211x +≥,∴x 总有意义.故答案为x 是实数.21【解析】114==..的分母有理化是解答本题的关键.22.>【解析】试题解析:,,180>147,所以故答案为.>23.(1)11﹣;(2)(x﹣y)(3a+2b)(3a﹣2b);(3)21a a-,1 6【解析】试题分析:(12运用完全平方公式计算,()()运用平方差公式计算,然后合并同类项或同类二次根式;(2)先提公因式(x-y),再运用平方差公式进行二次分解;(3)先把括号内通分,再把除法转化为乘法,然后把分子、分母分解因式约分化简;把a2﹣a﹣6=0变形为a2﹣a=6,整体代入求值.解:(1)原式=(2)2﹣2××+()2+(2)2﹣()2=2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==21a a-,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.11【解析】试题分析:根据被开方数大于等于0列式求出x,再求出y,然后相加即可得解.试题解析:由题意得,x−3⩾0且3−x⩾0,解得x⩾3且x⩽3,所以,x=3,y=8,x+y=3+8=11.25.-1【解析】试题分析:由x﹣4≥0,4﹣x≥0,求出x的值,把x的值代入y,求出y的值,然后把求得的x和y到计算即可.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1点睛:本题考查了二次根式有意义的条件和利用二次根式的性质化简,根据二次根式的定义:)0a≥的式子叫做二次根式,得到x﹣4≥0,4﹣x≥0,是解答本题的关键.。
新课标2013-2014学年度(下)八年级数学
二次根式单元测试题
班级_______姓名_________
一、选择题(每小题3分,共30分)
1.下列各式中①a ;②1+b ; ③2
a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。
A . 1 个 B. 2个 C. 3个 D. 4个
2.若3962=+-+b b b ,则b 的值为( )
A .0
B .0或1
C .b ≤3
D .b ≥3
3. 已知已知:20n 是整数,则满足条件的最小正整数n 的值是(
) A .0 B .1 C .2 D .3
4. 已知xy >0,化简二次根式2y
x x -的正确结果为( ) A. y B. y - C. y - D. y --
5.能使等式22x x
x x =--成立的x 的取值范围是( )
A. 2x ≠
B. 0x ≥
C. 2x
D. 2x ≥
6. 小明做了以下四道题:①24416a a =;②a a a 25105=⨯; ③a a a a a =∙=1
1
2 ④ a a a =-23。
做错的题是( )
A .①
B .②
C .③
D .④
7. 化简61
51
+的结果为( )
A .3011
B .33030
C .30330
D .1130
8.下列二次根式中,可以合并的是( )
A .2
3a a a 和
B .232a a 和
C .a a a a 132和
D .2423a a 和
9.化简)22(28+-得( )
A .—2
B .22-
C .2
D . 224-
10.如果数轴上表示a 、b 两个数的点都在原点的左侧,且a 在b 的左侧,则的值为2)(b a b a ++-( )A .b 2- B .b 2 C .a 2 D .a 2-
二、填空题(每小题分,共40分)
11.=-2)3.0( ;。
12.二次根式31
-x 有意义的条件是 。
13.若m<0,则332||m m m +
+= 。
14.已知233x x +=-x 3+x ,则x 的取值范围是 。
15.比较大小:73- 152-。
16.=∙y xy 82 ,=∙2712 。
17. 计算3
393a a a a -+= 。
18.若35-=
x ,则562++x x 的值为 。
19.把号内得中根号外的因式移到根1
1)1(---a a 。
20.已知: ,5
14513,413412,312311=+=+=+
当1≥n 时,第n 个等式可表示为 。
三、解答题(共30分)
21.计算:(每小题5分,共20分)
(1)2484554+-+
(2)
(3)22)25()25(--+ (4)
)1(932x x
x x +-
22.若的值,求小数部分是的整数部分是2
2,1710b ab b a --。
(10分)
加试题(满分15分)
.先化简再求1-2a+a 2
a -1
- a 2-2a+1 a 2-a
的值,其中a =2-- 3。