高三物理一轮复习专题 法拉第电磁感应定律知识点总结
- 格式:pdf
- 大小:498.32 KB
- 文档页数:11
电磁感应中的法拉第电磁感应定律知识点总结法拉第电磁感应定律是描述电磁感应现象的定律之一,由英国物理学家迈克尔·法拉第于1831年提出。
它是电磁感应理论的基础,对于理解电磁感应现象以及应用于电磁场中的各种设备具有重要意义。
本文将对法拉第电磁感应定律的相关知识点进行总结。
一、法拉第电磁感应定律的表述法拉第电磁感应定律的表述有两种形式,分别为积分形式和微分形式。
1. 积分形式:当一个闭合回路中的磁通量发生变化时,该回路中会产生感应电动势,其大小等于磁通量的变化率。
数学表达为:ε = -ΔΦ/Δt其中,ε表示感应电动势,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。
2. 微分形式:当回路中的导线运动时,感应电动势的大小等于磁感应强度与导线长度的乘积与运动速度的乘积再乘以负号。
数学表达为:ε = -B * l * v其中,ε表示感应电动势,B表示磁感应强度,l表示导线长度,v表示导线的运动速度。
二、导体中的感应电流根据法拉第电磁感应定律,当导体中存在感应电动势时,就会产生感应电流。
感应电流的大小与感应电动势以及导体的电阻有关。
感应电流的方向满足右手定则,即当手指指向导线的运动方向时,拇指指向的方向即为感应电流的方向。
三、电磁感应的应用法拉第电磁感应定律在现实生活中有着广泛的应用,以下是几个应用示例:1. 发电机:发电机利用电磁感应原理将机械能转化为电能。
当导体在磁场中运动时,感应电动势产生,从而产生电流,实现电能的转换。
2. 变压器:变压器也是基于电磁感应原理工作的。
通过交变电压在一组线圈中产生交变磁场,从而在另一组线圈中感应出电动势,实现电能的输送和转换。
3. 感应加热:利用电磁感应加热的原理,可实现对金属材料的快速加热。
当金属材料处于变化的磁场中时,感应电流在其内部产生摩擦,从而产生热能。
四、感应电动势的影响因素1. 磁感应强度:磁感应强度越大,感应电动势越大。
2. 磁场的变化率:磁场变化越快,感应电动势越大。
第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
(2).感应电动势产生的条件:穿过电路的磁通量发生变化。
闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。
磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
高中物理 电知识总结8法拉第电磁感应定律、自感知识要点:一、基础知识1、电磁感应、感应电动势ε、感应电流I 电磁感应是指利用磁场产生电流的现象。
所产生的电动势叫做感应电动势。
所产生的电流叫做感应电流。
要注意理解: 1)产生感应电动势的那部分导体相当于电源。
2)产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。
3)产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线运动与穿过闭合电路中的磁通量发生变化等效。
2、电磁感应规律 感应电动势的大小: 由法拉第电磁感应定律确定。
ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。
如图所示。
设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。
t 为所用时间。
而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。
∴ε=BIv ,M 点电势高,N 点电势低。
此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。
εφ=n t·∆∆,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。
如上图中分析所用电路图,在∆t 回路中面积变化∆∆S Lv t =·,而回路跌磁通变化量∆∆∆φ==B S BLv t ··,又知ε=BLv 。
∴εφ=∆∆t如果回路是n 匝串联,则εφ=n t∆∆。
公式一: εφ=n t ∆∆/。
注意: 1)该式普遍适用于求平均感应电动势。
2)ε只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
高中物理知识点总结-法拉第电磁感应定律.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.。
物理总复习:法拉第电磁感应定律【考点梳理】考点一、法拉第电磁感应定律一、感应电动势1、感应电动势在电磁感应现象中产生的电动势叫感应电动势。
产生感应电动势的那部分导体相当于电源。
只要穿过回路的磁通量发生改变,在回路中就产生感应电动势。
2、感应电动势与感应电流的关系感应电流的大小由感应电动势和闭合回路的总电阻共同决定,三者的大小关系遵守闭合电路欧姆定律,即E I R r=+。
二、法拉第电磁感应定律要点诠释:1、法拉第电磁感应定律感应电动势的大小跟穿过这一闭合电路的磁通量的变化率成正比。
E nt φ∆=∆,其中n 为线圈匝数。
2、法拉第电磁感应定律内容的理解(1)感应电动势的大小:E nt φ∆=∆。
公式适用于回路磁通量发生变化的情况,回路不一定要闭合。
(2)φ∆不能决定E 的大小,t φ∆∆才能决定E 的大小,而t φ∆∆与φ∆之间没有大小上的联系。
(3)当φ∆仅由B 的变化引起时,则B E nSt ∆=∆; 当φ∆仅由S 的变化引起时,则S E nBt ∆=∆。
(4)公式E n tφ∆=∆中,若t ∆取一段时间,则E 为t ∆这段时间内的平均值。
当磁通量不是均匀变化的,则平均电动势一般不等于初态与末态电动势的算术平均值。
三、导体切割磁感线时的感应电动势要点诠释:1、导体垂直切割磁感线时, 感应电动势可用E BLv =求出,式中L 为导体切割磁感线的有效长度。
若导线是曲折的,则L 应是导线的有效切割长度。
2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用sin E BLv θ=求出。
四、磁通量φ、磁通量变化量φ∆、磁通量变化率tφ∆∆的比较 要点诠释:1、φ是状态量,是某时刻穿过闭合回路的磁感线条数,当磁场与回路平面垂直时,BS φ=。
2、φ∆是过程量,它表示回路从某一时刻变化到另一时刻回路的磁通量的增量,即21φφφ∆=-。
3、 tφ∆∆表示磁通量变化的决慢,即单位时间内磁通量的变化,又称为磁通量的变化率。
高中物理电磁感应知识点总结电磁感应是电磁学的一个重要分支,主要探讨电磁场变化与导体中电动势的关系。
下面是对高中物理电磁感应的一些知识点总结:1. 法拉第电磁感应定律:当导体穿过磁场或磁场变化时,导体两端会产生电动势以及相应的电流。
电动势的大小与导体长度、磁场变化率和导体与磁场的相对运动速度有关。
2. 感应电流的方向:由法拉第电磁感应定律可以得知,产生的感应电流会使得磁场的变化减小。
根据楞次定律,产生的感应电流的方向会使得产生它的原因减弱。
因此,感应电流的方向与导体运动方向或者磁场变化方向相反。
3. 负载的作用:当导体产生感应电流时,如果导体是一个闭合回路,那么这个回路就形成了一个电路。
感应电流会在电路中产生电阻,导致电路中的电流和电压发生变化。
4. 磁场方向与感应电流方向的关系:通过电磁感应实验可以得知,当磁场垂直于导体运动方向时,感应电流的方向与导体的运动方向无关。
但是,当磁场与导体运动方向成一定角度时,感应电流的方向会受到磁场和导体运动方向的影响。
5. 感应电流的大小:根据法拉第电磁感应定律,感应电流的大小与导体的速度、导体的长度和磁场的磁感应强度有关。
一般情况下,感应电流的大小与以上因素成正比。
6. 电磁感应的应用:电磁感应在生活中有很多应用,例如电磁感应加热、发电机和变压器。
电磁感应加热是利用感应电流产生的热量来加热物体。
发电机是通过转动导体在磁场中产生感应电流从而转化为电能。
变压器则利用感应电流的相互感应来实现电能的输送和变换。
7. 涡流:当导体中的磁场发生变化时,会在导体中产生一个磁场。
由于涡流的存在,导体中的电荷会发生运动,从而形成一个感应电流。
8. 感应电磁场:当电流通过一根导线时,会在周围形成一个环状磁场。
同样,当磁场变化时,也会在周围形成一个感应电磁场。
感应电磁场与磁场的变化率有关,可以通过安培环路定理进行计算。
9. 洛伦兹力:当导体中的电流与磁场相互作用时,会在导体上产生洛伦兹力。
电磁感应中的法拉第定律知识点总结电磁感应是电磁学的重要分支,它研究了电场和磁场相互作用时产生感应电动势和感应电流的现象。
其中,法拉第定律是描述电磁感应现象的重要定律之一。
本文将对电磁感应中的法拉第定律进行详细的知识点总结,以帮助读者更好地理解和应用该定律。
1. 法拉第定律的基本概念法拉第定律是迈克尔·法拉第于1831年提出的,他发现当导体相对于磁场有相对运动时,会在导体中产生感应电动势和感应电流。
法拉第定律形式上可以表示为:感应电动势的大小与导体与磁感应强度的变化率成正比。
2. 法拉第定律的数学表达根据法拉第定律的数学表达方式,我们可以得到以下公式:ε = -N * ΔΦ / Δt其中,ε表示感应电动势,N表示匝数,Φ表示磁通量,Δt表示时间的变化量。
值得注意的是,负号表示感应电动势和磁通量的变化方向相反。
3. 法拉第定律的应用3.1 电磁感应现象的解释法拉第定律通过描述电磁感应现象,帮助我们理解了发电机、变压器等电磁器件的工作原理。
利用法拉第定律,我们可以解释为什么会在电磁铁中产生感应电流,以及为什么会有涡流的产生等。
3.2 电磁感应定律的计算应用在实际应用中,法拉第定律也经常用于计算感应电动势和感应电流的大小。
例如,在变压器中,可以利用法拉第定律计算初级线圈和次级线圈之间的电压关系。
在感应电动势的计算中,法拉第定律也是非常有用的工具。
4. 法拉第电磁感应定律和环路定律的区别法拉第电磁感应定律是电磁感应的基本定律之一,与之相对应的还有环路定律。
二者在表述方式和应用范围上有所区别。
法拉第电磁感应定律主要研究感应电动势和感应电流的产生机制和特点,而环路定律则更多地关注导体闭合回路中电流的产生和规律。
5. 法拉第定律的实验验证为了验证法拉第定律的正确性,科学家进行了许多实验。
其中最著名的实验之一是法拉第自感实验,他通过观察自感电流的方向和大小,间接验证了法拉第定律的正确性。
6. 法拉第定律的扩展应用除了在电磁学中的应用外,法拉第定律也被广泛应用于其他领域。
电磁感应与法拉第定律知识点总结电磁感应是电磁学中的一个重要部分,研究电场和磁场之间的相互作用以及由此产生的电流和电动势。
在电磁感应的研究中,法拉第定律是其中的核心原理之一。
本文将对电磁感应和法拉第定律的相关知识点进行总结和概述。
一、电磁感应的基本概念电磁感应是指导体中的电流或电流变化所引起的磁场在电路中产生的电动势。
电磁感应的基本规律可以由法拉第定律描述,它是电磁感应的基本方程式。
二、法拉第定律的内容及应用1. 法拉第定律的内容法拉第定律表明,磁场变化时,闭合回路内产生的感应电动势的大小与磁场变化的速率成正比。
即感应电动势E与磁场变化速率的乘积ΔΦ/Δt的等于负号。
2. 法拉第定律的公式法拉第定律的公式可以表示为E = -dΦ/dt。
其中,E表示感应电动势,Φ表示磁通量,t表示时间。
3. 预测感应电动势的方向根据法拉第定律,可以预测产生的感应电动势的方向。
当磁场增强时,产生的感应电动势的方向与电流方向相同;当磁场减弱时,产生的感应电动势的方向与电流方向相反。
4. 应用于电磁感应现象法拉第定律被广泛应用于各种电磁感应现象,例如电感应加热、发电机、电感等。
应用法拉第定律可以解释这些现象的产生原理,并进行相关设计与优化。
三、电磁感应的相关知识点1. 磁感应强度磁感应强度B是表示磁场强度的物理量,单位是特斯拉(T)。
它表示单位面积上通过的磁通量。
2. 磁通量磁通量Φ是表示磁场穿过一定面积的物理量,单位是韦伯(Wb)。
它表示磁场线通过给定面积的数量。
3. 磁通量密度磁通量密度B是表示单位面积上的磁通量,单位是特斯拉(T)。
它表示磁场通过单位面积的多少。
4. 电感电感是指线圈中由电流产生的磁场所储存的能量,单位是亨利(H)。
电感的大小与线圈的匝数、线圈的形状和芯材等因素相关。
5. 互感互感是指两个或多个线圈之间通过磁场产生的相互感应现象。
互感的大小与线圈的匝数、线圈的相对位置和芯材等因素相关。
6. 感应电流当导体中的磁场发生变化时,会在导体中产生感应电流。