总复习——三角形的练习卷
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
中考数学总复习《三角形的综合题》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.如图,OA⊥OB,OB=4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使⊥CDO=45°,当P在射线OA上自O向A运动时,PD的长度的变化()A.一直增大B.一直减小C.先增大后减小D.保持不变2.如图,△ABC中BF、CF分别平分∠ABC和∠ACB,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①∠DFB=∠DBF;②△EFC为等腰三角形;③△ADE的周长等于△BFC的周长;④∠BFC= 90∘+12∠A.其中正确的是()A.①②B.①③C.①②④D.①②③④3.如图,在⊥ABC中,已知⊥1=⊥2,BE=CD,AB=5,AE=2,则CE=()A.3B.4C.5D.64.如图,在5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),那么与△ABC有一条公共边且全等的所有格点三角形的个数是().A.2B.3C.4D.55.有一张矩形纸片ABCD,已知AB=2√2,AD=4,上面有一个以AD为直径的半圆(如图1),E 为边AB上一点,将纸片沿DE折叠,A点恰好落在BC上,此时半圆还露在外面的部分(如图2,阴影部分)的面积是()A.π−2B.2−π2C.43π−√3D.23π−16.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.12,412,512C.3,4,5D.4,712,8127.给出下列说法:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2则⊥C=90°;③⊥ABC中,若⊥A:⊥B:⊥C=1:5:6则⊥ABC是直角三角形;④⊥ABC中,若a:b:c=1:2:√3则这个三角形是直角三角形.其中,错误的说法的个数为()A.1个B.2个C.3个D.4个8.如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ.连接PD、AQ则PD+AQ的最小值为()A.4√5B.√89C.2√5+5D.7√29.如图,点D是⊥ABC外的一点,BD,CD分别平分外角∠CBE,∠BCF连接AD交BC于点O.下列结论一定成立的是()A.DB=DC B.OA=ODC.⊥BDA=⊥CDA D.⊥BAD=⊥CAD10.如图,点P是正方形ABCD的对角线BD上一点PE⊥BC,PF⊥CD垂足分别为E,F连接AP,EF下列结论:①AP=EF;②AP⊥EF;③△APD与四边形PEFD的面积相等.其中正确的结论是()A.①②B.①③C.②③D.①②③11.如图,在矩形ABCD中AB=2,∠AOB=60°则BD的长为()A.1B.2C.3D.412.如图,点D是⊥ABC内一点AD=CD,∠ADB=∠CDB则以下结论①∠DAC=∠DCA;②AB= AC;③BD平分⊥ABC;④BD与AC的位置关系是互相垂直,其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.如图,△ABC是直角三角形∠ACB=90°,分别以AC、CB为边向两侧作正方形.若图中两个正方形的面积和S1+S2=36,则AB=.14.如图,DE是⊥ABC的中位线,AF是BC边上的中线,DE,AF交于点O.现有以下结论:①DE⊥BC;②OD=14BC;③AO=FO;④S⊥AOD=14S⊥ABC,其中正确结论的序号为。
人教版八年级数学第11章三角形复习题一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 如图,小方做了一个长方形框架,发现它很容易变形,请你帮小方选择一个最好的加固方案()3. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.64. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°6. 下列哪一个度数可以作为某一个多边形的内角和 ( ) A .240° B .600° C .540°D .2180°7. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A .六边形 B .五边形C .四边形D .三角形8. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 ( )A .x=y+zB .x=y-zC .x=z-yD .x+y+z=180二、填空题9. (2019•江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E.(1)若∠B=50°,则∠DAC+∠ACF=________°,∠E=________°;(2)若∠B=α,则∠DAC+∠ACF=______,∠E=________.三、解答题17. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.18. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.19. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC 于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】B4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°, 故选C .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形.8. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x °,∠ABC+y °,∠ACB+z °,∴∠A-x °+∠ABC+y °+∠ACB+z °=180°②,①②联立整理可得x=y+z.二、填空题9. 【答案】20【解析】∵40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △, ∴404080ADC ∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, ∴1008020CDE ∠=︒-︒=︒,故答案为:20.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.13. 【答案】19[解析] ∵AD是BC边上的中线,∴BD=CD.∴△ABD的周长-△ACD的周长=(AB+BD+AD)-(AC+CD+AD)=AB-AC.∵△ABD的周长为25 cm,AB比AC长6 cm,∴△ACD的周长为25-6=19(cm).14. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】114[解析] 因为AB∥CD,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC=12∠BAB′=22°.在△ABC中,∠B=180°-(∠BAC+∠2)=114°.16. 【答案】(1)23065(2)180°+α90°-1 2α三、解答题17. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.18. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP 1,CP 2交于点M. 由(2)知,BM +CM <AB +AC. 又∵P 1P 2<P 1M +P 2M ,∴BP 1+P 1P 2+P 2C <BM +CM <AB +AC. ∴四边形BP 1P 2C 的周长<△ABC 的周长.19. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC. 又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C). ∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。
中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。
【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷1考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.18(第1题)(第3题)(第4题)(第5题)(第6题)2.如图,M,A,N是直线l上的三点,AM=3 ,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形—等边三角形—直角三角形—等腰三角形B.直角三角形—等腰三角形—直角三角形—等边三角形C.等腰三角形—直角三角形—等腰三角形—直角三角形D.等腰三角形—直角三角形—等边三角形—直角三角形3.如图所示,一个60o角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120O B.180O.C.240O D.30004.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°5.如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ()A.54°B.60°C.72°D.88°6.如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤77.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30∘,∠C=100∘,如图2.则下列说法正确的是()A.点在上B.点在的中点处C.点在上,且距点较近,距点较远D.点在上,且距点较近,距点较远(第7题)(第8题)8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25B.5.5C.7.5D.12.59.如图,在长方形纸片ABCD中,△EDC沿着折痕EC对折,点D的落点为F,再将△AGE沿着折痕GE对折,得到△GHE,H、F、E在同一直线上;作PH⊥AD于P,若ED=AG=3,CD=4,则PH 的长为()A.52B.5C.7225D.962510.如图,AD是ΔABC的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=().A.2.5B.2C.1.5D.1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,已知△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠AEC= ,∠C=. 12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于点D.若B(m,3),C(n,−5),A(4,0),则AD⋅BC=.(第13题)(第14题)(第15题)(第16题)14.如图△ABC中,AD⊥BC于点D,AE平分∠CAD交BC于E,若∠C=60°,则∠DEA=.15.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为16.如图,D、E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE 的面积为S2,若S△ABC=24,则S1﹣S2的值为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.18.在ΔABC中,AC<AB<BC,∠B=36°.(1)如图1,已知线段AB的垂直平分线与BC边交于点P,连接AP,求∠APC的度数.(2)如图2,若点Q是BC上一点,且BA=BQ,连接AQ.求证:∠AQC=3∠B.19.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC 于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.如图,一次函数y=(m+1)x+ 32的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为3 4.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的解析式.21.如图,在ΔABC中,∠ABC=45°,D为BC上一点,CD=2BD,∠ADC=600,AE⊥BC 于点E,CF⊥AD于点F,AE,CF相交于点G.(1)求证:ΔAFG≅ΔCFD;(2)若BC=3,AF=√3,求EG的长.22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.23.如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.24.如图1,张老师在黑板上画出了一个ΔABC,其中AB=AC,让同学们进行探究.(1)探究一:如图2,小明以BC为边在ΔABC内部作等边ΔBDC,连接AD,请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边ΔABE,连接CE.判断CE与AD的数量关系;并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE,若∠DEC=60∘,DE=2,求AE的长.。
图形的——三角形1一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣83.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.1558.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为_________ (只需填一个整数)11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________ 度.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________ 度.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________ °.14.如图是一副三角板叠放的示意图,则∠α= _________ .15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_________ .16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件_________ ,使△ABC≌△DEF.17.如图,已知△ABC中, AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是_________ .(只填一个即可)三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,在△ABC和△AB D中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图形的——三角形参考答案与试题解析一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B. C.D.考点:三角形三边关系.分析:根据勾股定理可知x的平方取值范围在2与3的平方和与平方差之间.解答:解:因为32﹣22=5,32+22=13,所以5<x2<13,即.故选B.点评:本题考查了锐角三角形的三边关系定理,有一定的难度.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣8考点:三角形的面积.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:阴影部分的面积=π×22÷2+π×12÷2﹣4×2÷2=;故选A.点评:此题考查了三角形的面积;解题的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.3.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.专题:常规题型.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.155考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3 B.4 C.6 D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥A C于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB 的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为 4 (只需填一个整数)考点:三角形三边关系.专题:开放型.分析:根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得x的取值范围.解答:解:根据三角形的三边关系可得:3﹣2<x<3+2,即:1<x<5,所以x可取整数4.故答案为:4.点评:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75 度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 70 度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.(2014•佛山)如图是一副三角板叠放的示意图,则∠α= 75°.考点:三角形的外角性质.分析:首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.解答:解:∵∠ACB=90°,∠1=45°,∴∠2=90°﹣45°=45°,∴∠α=45°+30°=75°,故答案为:75°.点评:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF 或AB∥DE),使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.17.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.考点:全等三角形的判定.专题:证明题.分析:根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.解答:证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).点评:本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)考点:全等三角形的判定.专题:开放型.分析:先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.解答:AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图,在R t△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.专题:几何综合题.分析:(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.2点评:本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.3。
2020-2021学年人教版六年级下册小升初总复习《三角形》专项训练卷1学校:___________姓名:___________班级:___________考号:___________一、解答题1.一块三角形的交通标志牌(如右图),它的面积大约是28平方分米,底是8分米,高大约是多少分米?2.计算下图中阴影部分的面积。
(单位:cm2)3.根据图完成下列各题。
①把线段比例尺改成数值比例尺是________。
②量得AC的长是________厘米,AC的实际长度是________米。
③量得∠B=________度。
(精确到整数位)④在图上画出从B点到AC边的最短路线。
⑤求出△ABC的图上面积是________平方厘米。
4.一个边长是3厘米的正方形铁丝框,现将它改围成一个直角三角形,要求三角形的面积是6平方厘米,高是3厘米。
请你通过计算,作出直角三角形的示意图。
5.在一块三角形稻田里共收获稻谷2500千克,平均每公顷收获稻谷多少千克?6.计算三角形面积:底10.6分米,高7分米。
7.一个等腰三角形的周长是40厘米,底边长是12厘米,每条腰长是多少厘米?8.一个等边三角形的周长是39分米,它的边长是多少分米?二、作图题9.在如图的方格中画一个三角形,使它的面积等于6cm2,并画出它的对称图形。
10.在下列平行线之间画一个平行四边形,使它的面积是三角形ABC的两倍。
11.把梯形分成一个平行四边形和一个三角形。
三、填空题12.自学下面这段材料,然后回答问题。
我们知道,在整数中“两个数的和等于这两个数的积”的情形并不多,例如2+2=2×2.但是在分数中,这种现象却很普遍。
请观察下面的几个例子:因为:74+73=4112,74×73=4112,所以74+73=74×73。
因为:95+94=4120,95×94=4120,所以95+94=95×94。
根据以上结果,我们发现了这样的一个规律:两个分数,如果它们的(______)相同,并且(______),那么这两个分数的和等于它们的积。
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。
2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
浙教版七下数学期末总复习--三角形的初步认识能力提升测试一,选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.以下列各组线段为边,能组成三角形的是( ); A .2cm 、2cm 、4cm B .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm2.已知△ABC 的边长均为整数,且最大边的边长为4,那么符合条件的不全等的 三角形最多有( ) A .4个 B .5个 C .6个 D .7个3.如图,Rt ABC 中,90C ∠=︒,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分BAC ∠,那么下列关系式中不成立的是( ) A 、B CAE ∠=∠ B 、DEA CEA ∠=∠ C 、B BAE ∠=∠ D 、2AC EC =4.. △ABC 和△A ˊB ˊC ˊ中,条件①AB= A ˊB ˊ;②BC= B ˊC ˊ;③AC= A ˊC ˊ;④∠A=∠A ˊ;⑤∠B=∠B ˊ;⑥∠C=∠C ˊ。
则下列各组条件中 不能保证△ABC ≌△A ˊB ˊC ˊ的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥5.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△ACE≌△BCDB 、△BGC≌△AFC C 、△DCG≌△ECFD 、△ADB≌△CEA6.下列四组中一定是全等三角形的是( )A .两条边对应相等的两个锐角三角形B .面积相等的两个钝角三角形C .斜边相等的两个直角三角形D .周长相等的两个等边三角形7.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定 8.如果三角形的一个内角等于其他两个内角的差,那么这个三角形是 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定9.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A 、1B 、2C 、3D 、410.如图,点E 是正方形ABCD 内一点,CDE ∆是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . 则=∠AFB ( )BC A E D015.A 075.B 060.C 055.D二,填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAB= .12.如图,在△ABC 中,∠C=90 ,点D 在AC 上,,将△BCD 沿着直线BD 翻折,使点C 落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是 cm ..13.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC,△ADF,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12, 则S △ADF ﹣S △BEF = .14如图已知ABC △中,10AB AC ==厘米,∠B =∠C ,BC=6厘米,点D 为AB 的中点.如果点P 在线段BC 上以1厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度与点P 的运动速度相等,经过 秒后,BPD △与CQP △全等;15.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为________________(用含n 的代数式表示)。
初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 3. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF=____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC 中,∠A∶∠B=2∶1,∠C=60°,则∠A =____°. 17. 如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD 11. 35 12. 60° 13. 45 14. 30° 15. 360° 16. 8017. 解:在△ABN 中,∠A +∠B +∠1=180°,在△CDP 中,∠C +∠D +∠3=180°,在△EFM 中,∠E +∠F +∠2=180°,∴∠A +∠B +∠1+∠C +∠D +∠E +∠F +∠3+∠2=540°,在△MNP 中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A +∠B +∠C +∠D +∠E +∠F =540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD =90°-∠FED =90°-(∠B +∠BAE)=90°-∠B -12∠BAC=90°-∠B -12(180°-∠B -∠C)=90°-∠B -90°+12∠B +12∠C =12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD =12(∠C -∠B)20. 证明:∵∠BAC>∠ACE ,∠DCE>∠B ,又∠ACE =∠DCE ,∴∠BAC>∠B 21. 证明:∠BOC =180°-(∠OBC +∠OCB)=180°-12(∠ABC +∠ACB)=180°-12(180°-∠A)=90°+12∠A。
教育选轻轻·家长更放心页 1第105讲 特殊三角形微课 等腰三角形题一:如图,△ABC 中,∠ACB =o 90,∠B =o30,AD 平分∠BAC ,DE ⊥AB 于点E ,连结CE 交AD 于点H ,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个题二:如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC =BD .求证:(1)BC =AD ;(2)△OAB 是等腰三角形.题三:已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是__________. 题四:已知等腰三角形一腰上的高与另一腰的夹角为36°,求这个等腰三角形的底角的度数.教育选轻轻·家长更放心页 2题五:如图,在△ABC 中,AB =AC ,点D是BC 的中点,点E 在AD 上.求证:(1)△ABD ≌△ACD ;(2)BE =CE题六:如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE ,求证BE =CD .题七:如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,FG 平分∠EFD 交直线AB 于点G ,求证:EF =EG .教育选轻轻·家长更放心页 3题八:在△ABC 中,AD 平分∠BAC ,BD =CD,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AB =AC .第106讲 特殊三角形微课 等边三角形题一:下列三角形中,①有两个角等于60°;②有一个角等于60°的等腰三角形;③一腰上的中线也是这条腰上的高的等腰三角形,其中能判定是等边三角形的个数是___________.题二:如图,等腰直角△ABC 中,CA =CB ,点E 为△ABC 外一点,CE =CA ,且CD 平分∠ACB 交AE 于D ,且∠CDE =60°.求证:△CBE 为等边三角形.教育选轻轻·家长更放心页 4题三:如图,∠BAC=90°,AD ⊥BC ,∠BAD=30°,则C 的度数是______.题四:已知:如图,△ABC 中,∠C =90°,学习等边三角形时,我们知道,如果∠A =30°,那么AB =2BC ,由此我们猜想,如果AB =2BC ,那么∠A =30°,请你利用轴对称变换,证明这个结论.题五:如图,在Rt △ABC 中,如果∠BCA =90°,∠A =30°,CD 是AB 边上的高.(1)若BD =1,则BC 、AB 各等于多少?教育选轻轻·家长更放心页 5(2)求证:BD =1124BC AB .题六:如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2B .23C .3D .3题七:如图1,在四边形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC.(1)求证:AD =DC ;(2)如图2,在上述条件下,若∠A =∠ABC =60°,过点D 作DE ⊥AB ,过点C 作CF ⊥BD ,垂足分别为E ,F ,连接EF ,判断△DEF 的形状并证明你的结论.题八:如图,在△ABC中,D是BC边上的一点,DE⊥BC,交AB边于E,DF⊥AC于F,BE=CD,BD=CF.(1)△ABC是等腰三角形吗?如果是请说明理由;(2)连结EF,若△DEF是等边三角形时,∠A的度数是多少?第107讲特殊三角形微课勾股定理题一:如图,四边形ABCD的面积等于_____.教育选轻轻·家长更放心页6教育选轻轻·家长更放心页 7题二:如图所示,四边形ABCD 是平行四边形,AB =10,AD =8,AC ⊥BC 于C ,则四边形ABCD 的面积是_____.题三:一个直角三角形两边长分别为10和24,则第三边长的平方为_____.题四:一个直角三角形的两边长分别为9和40,则第三边长的平方是_____.题五:如图,是2002年8月在北京召开的第24届国际数学家大会的会标,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,小正方形的面积是1,直角三角形较长的直角边为a ,较短的直角边为b ,则(a b )(a 2+b 2)的值等于_____.题六:如图是某年召开的国际数学家大会会标,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则a 3+b 3的值为_____.教育选轻轻·家长更放心页 8题七:已知在矩形ABCD 中,AB =4,BC =252,O 为BC 上一点,BO =72,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点.(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰△OMP ,使点P 在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标题八:已知A (2,0),B (0,2),试在x 轴上确定点M ,使三角形MAB 是等腰三角形,写出所有满足条件点M 的坐标.教育选轻轻·家长更放心页 9第108讲 特殊三角形微课 勾股定理逆定理题一:如图,在四边形ABCD 中,∠B=90°,AB =BC =4,CD =6,DA =2.求∠DAB 的度数.教育选轻轻·家长更放心页 10 题二:如图,在四边形ABCD 中,AB、BC 、CD 、DA 的长分别为2、2、23、2,且AB ⊥BC ,则∠BAD 的度数等于_____.题三:如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是_____.题四:如图,在4×3的长方形网格中,已知A 、B 两点为格点(网格线的交点称为格点),若C 也为该网格中的格点,且△ABC 为等腰直角三角形,则格点C 的个数为_____.题五:△ABC 中,AB =10,BC 边上的中线AD = 53,BD =5,试判断△ABC 的形状?题六:如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为_____.题七:观察下面几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26;请你根据规律写出第⑤组勾股数是__________.题八:观察第一个数为偶数的勾股数:4、3、5; 6、8、10; 8、15、17;…,若用2n表示第一个偶数,请分别用n的代数式来表示其他两边,并证明确实是勾股数.第109讲特殊三角形微课勾股定理的应用题一:如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()A.14 B.16 C.20 D.28教育选轻轻·家长更放心页11题二:如图,一个四边形纸片ABCD,AB=4,BC=8,CD=10,∠B=90°,将△ABC沿AC翻转至△AEC,点E落在边AD上,求AD的长.题三:在长,宽,高分别为12cm,4cm,3cm的木箱中,放一根木棒,能放进去的木棒的最大长度为_____cm.题四:有一个棱长为1m且封闭的正方形体纸箱,一只蚂蚁沿纸箱表面从顶点A爬到顶点B,那么这只蚂蚁爬行的最短路程是_____m.题五:如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.教育选轻轻·家长更放心页12教育选轻轻·家长更放心页 13题六:如图,Rt △ABC 中,AB =3,AC =4,BC =5,分别以它的三边为直径作如图所示的三个半圆,则阴影部分面积为_____.题七:一个长为10m 的梯子斜靠在墙上,梯子底端距墙底6m .(1)若梯子的底端水平向外滑动1m ,梯子的顶端下滑多少米?(2)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?题八:如图,一架梯子AB斜靠在一竖直的墙AC上,已知AC=7m,这时梯脚B到墙底端C的距离BC为2m,当梯子的顶端沿墙下滑时,梯脚向外移动,如果梯脚B向外移动到B1的距离为1m 时,那么梯子的顶端沿墙下滑的距离AA1_____1.(用>、<、=来填空)教育选轻轻·家长更放心页14第105讲特殊三角形微课等腰三角形题一:B.详解:因为∠ACB=90°,∠B=30°,所以∠BAC=60°,因为AD是角平分线,所以∠CAD=∠BAD=30°,所以AD=BD,所以△ABD是等腰三角形,因为AD是角平分线,∠ACB=90°,DE⊥AB,所以CD=ED,AC=AE,所以△CDE、△ACE是等腰三角形,又△CEB也是等腰三角形,所以此图中共有4个等腰三角形.题二:证明见详解详解:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵AC=BD,AB=BA,∠ACB=∠BDA =90°,∴△ABC≌△BAD(HL),∴BC=AD.(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.∴△OAB是等腰三角形.题三:30°或150°详解:①当三角形为锐角三角形时,如图所示:教育选轻轻·家长更放心页15教育选轻轻·家长更放心页 16BD ⊥AC ,且∠ABD =60°,由三角形的内角和为180°,所以顶角为30°;②当三角形为钝角三角形时,如图所示:BD ⊥AC ,且∠ABD =60°,所以∠DAB =30°,所以顶角∠BAC =150°.题四:63°或27°详解:若三角形是锐角三角形,如图1所示:因为BD ⊥AC ,所以∠A +∠ABD =90°,因为∠ABD =36°,所以∠A =90°-36°=54°,因为AB =AC ,所以∠ABC =∠C=o o o 1(18054)632-=; 若三角形是钝角三角形时,如图2所示,因为BD ⊥AC ,所以∠BAD +∠ABD =90°所以∠DAB =90°-36°=54°,所以∠BAC =180°-54°=126°,因为AB =AC ,所以∠ABC =∠C =o o o 1(180126)272-=.教育选轻轻·家长更放心页 17题五:见详解详解:(1)∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1)知△ABD ≌△ACD ,∴∠BAD =∠CAD ,即∠BAE =∠CAE .在△ABE 和△ACE 中,∵AB =AC ,∠BAE =∠CAE ,AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).题六:证明见详解详解:因为BD ⊥AC ,CE ⊥AB ,所以∠ADB =∠AEC =90°,在△ACE 和△ABD 中,∠A 是公共角,AD =AE ,所以△ACE ≌△ABD ,所以AB =AC ,又因为AD =AE ,所以BE =CD题七:证明见详解详解:因为FG 平分∠EFD 交AB 于点G ,所以∠GFD =∠EFG ,因为AB ∥CD ,所以∠EGF = ∠GFD ,所以∠EFG =∠EGF ,所以△EFG 是等腰三角形,所以EF =EG .题八:证明见详解详解:因为AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,因为角平分线上的点到角两边距离相等,所以DE =DF ,又因为BD =CD ,∠DEB =∠DFC =90°,所以Rt △DEB ≌Rt △DFC ,所以∠B =∠C ,所以AB =AC .教育选轻轻·家长更放心页 18 第106讲 特殊三角形微课 等边三角形题一:3个详解:①两个角为60°,则第三个角也是60°,则三角形为等边三角形,故①正确;②在等腰三角形中,其中有一角等于60°,则该三角形为等边三角形,故②正确;③由等边三角形三线合一的性质可知正确,故答案为:3个.题二:见详解详解:∵CA =CB ,CE =CA ,∴BC =CE ,∴∠CAE =∠CEA ,∵CD 平分∠ACB 交AE 于D ,且∠CDE =60°,∴∠ACD =∠DCB =45°,∠DAC +∠ACD =∠EDC =60°,∴∠DAC =∠CEA =15°,∴∠ACE =150°,∴∠BCE =60°,∴△CBE 为等边三角形题三:30°详解:因为AD ⊥BC ,所以o 90ADB ∠=,因为o 30BAD ∠=,所以o60B ∠=, 因为o 90BAC ∠=,所以o 30C ∠=.题四:∠A =30°.详解:如图,延长BC 至点D ,使CD =BC ,连接AD ,则△ABC 和△ADC 关于直线AC 成轴对称,∴AB =AD ,BD =2BC ,∠BAC =∠DAC ,∵AB =2BC ,∴AB =BD ,∴AB =AD =BD ,∴△ABD 是等边三角形,教育选轻轻·家长更放心页 19∴∠BAD =60°,∴∠BAC =12∠BAD =12×60°=30°.题五:(1) BC =2,AB =4;(2)证明见详解.详解:(1)因为∠BCA =90°,∠A =30°,CD 是AB 边上的高,所以o30BCD ∠=, 于是在Rt △ADC 和Rt △BDC 中,由∠A =30°,o 30BCD ∠=可得,BC =2BD =2,AB =2BC =4;(2)在Rt △ADC 和Rt △BDC 中,由30°角所对的直角边等于斜边的一半可得:BD =12BC ,12BC AB =, 所以1124BD BC AB ==. 题六:C. 详解:∵△ABC 是等边三角形,点P 在∠ABC 的平分线上,∴∠EBP =∠QBF =30°,∵BF =2,FQ ⊥BP ,∴BQ =BF 33. ∵FQ 是BP 的垂直平分线,∴BP =2BQ 3.在Rt △BEP 中,∵∠EBP =30°,∴PE =12BP =3.故选C. 题七:(1)证明见详解;(2) △DEF 为等边三角形,证明见详解.教育选轻轻·家长更放心页 20 详解:(1)证明:因为DC ∥AB ,所以∠CDB =∠ABD ,又因为BD 平分∠ABC ,所以∠CBD =∠ABD ,所以∠CDB =∠CBD ,所以BC =DC ,又因为AD =BC ,所以 AD =DC ;(2)由(1)得, BC =DC ,CF ⊥BD ,所以点F 是BD 的中点,因为∠DEB =o 90, 所以EF =DF =BF ,因为∠ABC =o 60,BD 平分∠ABC ,∠BDE =o60,所以△DEF 为等边三角形. 题八:(1) △ABC 是等腰三角形,理由见详解;(2)o 60.详解:(1)因为DE ⊥BC ,DF ⊥AC 于F ,所以∠BDE =o 90,∠FDC =o 90, 在Rt △BDE 和Rt △CFD 中,BE CD BD CF=⎧⎨=⎩,所以Rt △BDE ≌Rt △CFD ,所以∠B =∠C ,所以AB =AC .(2)如图:因为Rt △BDE ≌Rt △CFD ,所以DE =DF ,当∠EDF =60°时,△DEF 是等边三角形(有一个角是60°的等腰三角形是等边三角形),教育选轻轻·家长更放心页 21 所以∠CDF =90°-∠EDF =30°,所以∠C =90°-∠CDF =60°,所以∠B =∠C =60°,所以∠A =o o 18060B C -∠-∠=第107讲 特殊三角形微课 勾股定理题一:36.详解:在直角△ABD 中,BD 为斜边,已知AD =3,AB =4,则BD =5,∴S 四边形ABCD =S △ABD +S △BCD =12AD •AB +12BD •BC =6+30=36. 题二:48.详解:AB =10,AD =8,AC ⊥BC 于C ,由勾股定理可知:AC =6,根据平行四边形的面积公式可得:四边形ABCD 的面积是8×6=48.题三:676或476.详解:设第三边为x(1)若24是直角边,则第三边x 是斜边,由勾股定理,得102+242=x 2,所以x 2=676;(2)若24是斜边,则第三边x 为直角边,由勾股定理,得102+x 2=242,所以x 2=476所以第三边长的平方为676或476.题四:1681或1519.详解:设第三边为x(1)若40是直角边,则第三边x 是斜边,由勾股定理,得:92+402=x 2,所以x 2=1681.(2)若40是斜边,则第三边x 为直角边,由勾股定理,得:92+x 2=402,所以x 2=1519. 所以第三边的长为1681或1519.题五:13.详解:观察图形,根据勾股定理,知a2+b2即大正方形的面积是13,又根据直角三角形的面积公式,知2ab即其中四个直角三角形的面积和=13-1=12 ∵(a-b)2=a2+b2-2ab=13-12=1 ∵又a>b∴a-b=1 ∴(a-b)(a2+b2)=13.题六:35.详解:由题意得:大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=13,a-b=1,解得a=3,b=2,∴a 3+b3=35,故两条直角三角形的两条边的立方和=a3+b3=35.题七:(1)(12,4);(2)P1(-72,152)、P2(0,4)、P3(2,4)、P4(4,4).详解:(1)符合条件的等腰△OMP只有1个;点P的坐标为(12,4);(2)符合条件的等腰△OMP有4个.如图②,在△OP1 M中,OP1=OM=4,在Rt△OBP1中,BO=72,BP1221OP OB-22742⎛⎫- ⎪⎝⎭15,∴P1(-72,152);在Rt△OMP2中,OP2=OM=4,∴P2(0,4);在△OMP3中,MP3=OP3,∴点P3在OM的垂直平分线上,∵OM=4,∴P3(2,4);在Rt△OMP4中,OM=MP4=4,∴P4(4,4)教育选轻轻·家长更放心页22教育选轻轻·家长更放心 页 23题八:(0,0)(-2,0)(2+22,0),(-22+2,0).详解:如图所示:M 1(0,0),M 4(-2,0),∵A (2,0),B (0,2),∴AB =2222=2 2.+,∵M 2,M 3是以A 为圆心,AB 长为半径交x 轴于两点,∴M 2(2+22,0),M 3(-22+2,0).故所有满足条件点M 的坐标是:(0,0)(-2,0)(2+22,0),(-22+2,0).第108讲 特殊三角形微课 勾股定理逆定理题一:135°.详解:连结AC ,∵∠B =90°,AB =BC =4,∴AC 2=32,∠CAB =∠ACB =45°,∵32+22=62,∴AC 2+DA 2=CD 2,∴△ACD是直角三角形,∵∠DAC是CD所对的角,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=90°+45°=135°.题二:135°.详解:连接AC.∵AB⊥BC于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=2,∴AC=22,∠BAC=∠BCA=45°,∵CD=23,DA=2,∴CD2=12,DA2=4,AC2=8.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°.故答案为135°.题三:AB、EF、GH.详解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.教育选轻轻·家长更放心页24教育选轻轻·家长更放心页 25题四:6个.详解:根据等腰直角三角形的判定和长方形网格的特点易作出满足条件的C 点.如图:故6个.题五:等边三角形.详解:∵D 为BC 的中点,∴DC =BD =5,∴BC =10,∵AB =10,AD =53,BD =5,∴AB 2=AD 2+BD 2,∴∠BDA =90°,∴∠ADC =90°,∴AC 2 =AD 2+DC 2,∴AC 2 =(53)2+52=100,∴AC =10,∵AB =BC =AC =10,∴△ABC 是等边三角形.题六:6.教育选轻轻·家长更放心页 26详解:延长AD 到E ,使DE =AD ,连接BE ,∵D 为BC 的中点,∴DC =BD ,∵在△ADC 与△EDB 中,AD =ED ,∠ADC =∠EDB ,DC =BD ,∴△ADC ≌△EDB (SAS ),∴BE =AC =3,∠CAD =∠E ,又∵AE =2AD =4,AB =5,∴AB 2=AE 2+BE 2,∴∠CAD =∠E =90°,则S △ABC =S △ABD +S △ADC =12AD •BE +12AD •AC =12×2×3+12×2×3=6. 故答案为:6.题七:12,35,37.详解:根据前面的几组数可以得到每组勾股数与各组的序号之间的关系,如果是第n 组数,则这组数中的第一个数是2(n +1),第二个是:n (n +2),第三个数是:(n +1)2+1.根据这个规律即可解答.第⑤组勾股数是12,35,37.题八:2n 表示第一个偶数,那么其它两个数为n 2-1,n 2+1详解:若用2n 表示第一个偶数,那么其它两个数为n 2-1,n 2+1∴(2n )2+(n 2-1)2=n 4+2n 2+1=(n 2+1)2,∴2n 、n 2-1、n 2+1是一组勾股数.第109讲 特殊三角形微课 勾股定理的应用题一:D .教育选轻轻·家长更放心页 27详解:根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案∵AC =10,BC =8,∴AB =6,图中五个小矩形的周长之和为:6+8+6+8=28.故选D .题二:AD =10.详解:由题意△ABC 沿AC 翻转至△AEC ,∴△ABC ≌△AEC ,∴AE =AB =4,CE =CB =8,∴∠ABC =∠AEC =90°,∴∠DEC =90°,又∵CD =10,在Rt △EDC 中,DE 2+EC 2 =CD 2 ,∴DE =22EC CD -=22810-=6,又∵AD =AE +ED ,∴AD =4+6=10.题三:13.详解:如图,连结AC 、AD .在Rt △ABC 中,有AC 2=AB 2+BC 2=160,在Rt △ACD 中,有AD 2=AC 2+CD 2=169,∵AD 169,∴能放进去的木棒的最大长度为13cm .教育选轻轻·家长更放心页 28 题四:5详解:如图:因为BC =1m ,AC =2m ,所以AB 2212=5 .题五:30.教育选轻轻·家长更放心 页 29 详解:由勾股定理AB=22512+=13,根据题意得: S 阴影=12π(122)2+12π(52)2-[12π(132)2-12×5×12] =30. 题六:7.625.详解:由题意可知:阴影部分的面积等于分别以3、4、5为直径的半圆的面积与两个Rt △ABC 的面积的差,即S 阴影=12×[3.14×(23)2+3.14×(24)2+3.14×(25)2] -2×12×3×4=7.625. 题七:(1)(8-51)米;(2)2米详解:(1)在△ABC 中,∠ACB =90°,AB =10米,BC =6米,由勾股定理得AC =8米, △A 1BC 1中,∠C =90°,A 1B 1=10米,B 1C =7米,由勾股定理得A 1C =51米,∴AB 1=AC -B 1C =(8-51)米.答:它的顶端下滑动(8-51)米.(2)设梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等为x ,根据题意,10=22(6)(8)x x ++-解得,x =2米,答:滑动的距离为2米.题八:<.教育选轻轻·家长更放心页 30 详解:在直角三角形ABC 中,根据勾股定理,得:AB 2272=53+ 在直角三角形A 1B 1C 中,根据勾股定理,得A 1C 539=44-,644<7,则AA 1<1.。
中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、三角形中位线的概念和性质1.连接三角形两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于第三遍,且等于第三边的一半3.隐含中点的条件:等腰三角形三线合一(顶角的角平分线底边的中垂线),平行四边形对角线的交点。
例1.如图,点D、E分别为△ABC的边AB、AC的中点,点F在DE的延长线上,CF∥BA,若BC=8,则EF=( ) A.4 B.8 C.5 D.3例2.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是( ) A.68° B.34° C.22° D.44°二、连接两点构造三角形的中位线例3.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF的最大值是.4例4.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形.三.已知角平分线+垂直构造中位线例5.如图,AD 为ABC 中BAC ∠的外角平分线,BD AD ⊥于D ,E 为BC 中点5DE =,3AC =则AB 长为( )A .8.5B .8C .7.5D .7例6.如图,在△ABC 中,∠ABC =90°,在边AC 上截取AD =AB ,连接BD ,过点A 作AE ⊥BD 于点E ,F 是边BC 的中点,连接EF.若AB =5,BC =12,求EF 的长度.例7.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.四.倍长法构造三角形的中位线例8.如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点.求证ME=12CF.例9.如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D,CE平分∠ACB,交AB于点E,交BD于点F.求证:(1)△BEF是等腰三角形;(2)BD=12(BC+BF).五.已知一边中点,取另一边中点构造三角形的中位线例10.如图,四边形ABCD中,点E,F分别是边AB,CD的中点,且AD=6,BC=10,则线段EF的长可能为( )A.7B.8.5C.9D.10六.已知两边中点,取第三边中点构造三角形的中位线例11.如图,菱形ABCD 的对角线AC BD ,相交于点O .E ,F 分别是AD OC ,的中点,若1207BAD EF ∠=︒=,ABCD 的周长为( )A .8B .16C .3D .3例12.如图,已知四边形ABCD 中AC BD ⊥,AC=6,8BD =点E 、F 分别是边AD 、BC 的中点,连接EF ,则EF 的长是 __.强化训练题一.选择题1.如图 在△ABC 中 AB =4 BC =5 AC =8.点D E F 分别是相应边上的中点 则四边形DFEB 的周长等于( )A .8B .9C .12D .132.如图 △ABC 中 AB =AC =12 BC =10 AD 平分∠BAC 交BC 于点D 点E 为AC 的中点 连接DE 则△CDE 的周长为( )A .11B .17C .18D .163.如图 在ABC 中 45B ∠=︒ 60C ∠=︒ AD BC ⊥于点D 6BD = 若E F 分别为AB BC 的中点 则EF 的长为( )A 2B 6C 6D 34.如图 ABCD 的对角线AC BD 交于点O AE 平分BAD ∠交BC 于点E且60ADC ∠=︒ 12AB BC = 连接OE .下列结论中不成立的是( )A .30CAD ∠=︒B .ABCD S AB AC =⋅ C .OB AB =D .14OE BC =5.如图 四边形ABCD 中 ∠B =90° AB =8 BC =6 点M 是对角线AC 的中点 点N 是AD 边的中点 连结BM MN 若BM =3MN 则线段CD 的长是( )A .53B .3C .103D .56.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( )A .46.5cmB .22.5cmC .23.25cmD .以上都不对7.如图 在ABC 中 AE 平分BAC ∠ BE AE ⊥于点E 点F 是BC 的中点 若10AB = 6AC = 则EF 的长为( )A .2B .3C .4D .58.如图 在四边形ABCD 中 点E F 分别为AD DC 的中点 连接EB BF EF △EBF 的面积为 S 1 .点G 为四边形ABCD 外一点 连接AG BG EG FG 使得AG =BC ∠GAB =∠ABC △EGF 的面积为 S 2 则 S 1 与 S 2 满足的关系是( )A .S 1 = S 2B .2 S 1 =3 S 2C .3 S 1 =4 S 2D .3 S 1 =2 S 29.如图 平行四边形ABCD 中 O 为对角线交点 DP 平分ADC ∠ CP 平分BCD ∠ 7AB = 10AD = 则OP 的长为( )A .1.5B .2C .2.5D .310.如图 ▱ABCD 的顶点A D 分别在直角∠MON 的两边OM ON 上运 动(不与点O 重合) ▱ABCD 的对角线AC BD 相交于点P 连接OP 若OP=5 则▱ABCD 的周长最小值是( )A .20B .25C .10D .15二 填空题11.如图 在平行四边形ABCD 中 E 是CD 的中点 F 是AE 的中点 CF 交BE 于点G 若BE =8 则GE = .12.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cm BC =8cm 则DF 的长为 .13.如图已知三角形纸片ABC第1次折叠使点B落在BC边上的点B'处折痕AD交BC于点D;第2次折叠使点A落在点D处折痕MN交AB'于点P.若12BC=则MP与MN的和是_________.14.如图在▱ABCD中AC是对角线∠ACD=90°点E是BC的中点AF平分∠BAC CF⊥AF于点F连接EF.已知AB=5BC=13则EF的长为.15.如图在Rt△ABC中∠ACB=90°AC=BC=6 点D是AC边上的一点且AD=2 以AD为直角边作等腰直角三角形ADE连接BE并取BE的中点F连接CF则CF的长为.16.如图 EF是△ABC的中位线 O是EF上一点且满足OE=2OF.则△ABC的面积与△AOC的面积之比为.17.如图□ABCD的顶点C在等边△BEF的边BF上点E在AB的延长线上 G为DE的中点连接CG.若AD=5 AB=CF=3 则CG的长为.三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.19.如图在平行四边形ABCD中对角线AC BD、相交于点O点E是边BC中点连接OE并延长至点F使EF OE、.连接BF CF(1)求证:四边形OBFC是平行四边形;(2)求证:OF CD∥.20.如图四边形ABCD为平行四边形 E为AD上的一点连接EB并延长使BF=BE 连接EC并延长使CG=CE连接FG H为FG的中点连接DH(1)求证:四边形AFHD为平行四边形;(2)若CB=CE∠EBC=75°∠DCE=10°求∠DAB的度数.21.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.(1)求证:PM=PN;(2)求∠MPN的度数.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN=13AC.23.(1)如图1 在四边形ABCD中AB=CD E F分别是AD BC的中点连接FE 并延长分别与BA CD的延长线交于点M N.求证:∠BME=∠CNE;(提示:取BD的中点H连接FH HE作辅助线)(2)如图2 在△ABC中F是BC边的中点D是AC边上一点E是AD的中点直线FE交BA的延长线于点G若AB=DC=2 ∠FEC=45°求FE的长度.24.【发现与证明】如图在四边形ABCD中 E F G H是各边中点对角线AC BD相交于点O I J是AC BD的中点连接EF EH HG GF EI GI EJ FJ IJ GJ IH.结论1:四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;结论3:S四边形EFGH =12S四边形ABCD;……(1)请选择其中一个结论加以证明(只需证明一个结论).(2)【探究与应用】(★温馨提示:以下问题可以直接使用上述结论)①如图1 在四边形ABCD中 F H分别为边AB DC的中点连结HF.已知AD=6 BC=4线段HF的取值范围是 .②如图2 在四边形ABCD中点E F G H分别是AB BC CD DA的中点连接EG FH交于点O EG=8cm FH=6cm ∠EOF=60°求S四边形ABCD.答案部分:例1.A ∵点D E 分别为△ABC 的边AB AC 的中点 ∴DE 是△ABC 的中位线 ∴DE ∥BC ,DE =12BC =4.∴DF ∥BC ∵DF ∥BC ,CF ∥BA∴四边形BCFD 是平行四边形 ∴DF =BC =8,∴EF =DF -DE =4.例2.C ∵P 是BD 的中点,E 是AB 的中点 ∴PE =12AD ,同理,PF =12BC ∵AD =BC ,∴PE =PF∴∠EFP =12×(180°-∠EPF )=22°. 故选C.例3.答案 6.5解:如图,连接DN DB∵点E F 分别为DM MN 的中点 ∴EF 是△MDN 的中位线 ∴EF =12DN当N与点B重合时,DN最大,此时EF的值最大∵∠A=90°,AB=12,AD=5∴DB=√AD2+AB2=13,∴EF的最大值为6.5 故答案为6.5.例4.证明如图,连接BD∵C,H分别是AB,DA的中点∴CH是△ABD的中位线BD∴CH∥BD,CH=12BD同理,FG∥BD,FG=12∴CH∥FG,CH=FG∴四边形CFGH是平行四边形.例5.D解:延长BD CA交于点F∠的外角平分线∵AD为ABC中BAC∴FAD BAD∠=∠∵BD AD⊥∴90∠=∠=︒ADF ADB在ABD△和AFD△中FAD BAD AD ADADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD AFD △≌△ ∴AB AF = BD DF = 又E 为BC 中点 5DE = ∴210CF DE == 又3AC =∴7AF CF AC AB =-==. 故选:D .例6.解: 在△ABC 中,∠ABC =90°,AB =5,BC =12 则AC =√AB 2+BC 2=√52+122=13 ∵AD =AB =5∴DC =AC -AD =13-5=8 ∵AD =AB ,AE ⊥BD ,∴BE =ED ∵BF =FC ,∴EF =12DC =4.解:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BD ⊥AD ∴∠ADB =∠ADF又∵AD =AD ,∴△ADB ≌△ADF (ASA ).∴AF =AB =6,BD =FD .∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2.例8.证明:如图,延长FE 至N ,使EN =EF ,连接BN ,AN ,则ME =12AN . ∵EF =EN ,∠BEF =90°,∴BE 垂直平分FN . ∴BF =BN .∴∠BNF =∠BFN . ∵△BEF 为等腰直角三角形,∠BEF =90°,∴∠BFN =45°.∴∠BNF =45°. ∴∠FBN =90°,即∠FBA +∠ABN =90°.又∠FBA +∠CBF =90° ∴∠CBF =∠ABN .在△BCF 和△BAN 中,∵BF =BN ,∠CBF =∠ABN ,BC =BA∴△BCF ≌△BAN (SAS ).∴CF =AN .∴ME =12AN =12CF .例9.(1)证明:在△ABC 中,∵AB =BC ,∠ABC =90°,∴∠ACB =45°. ∵CE 平分∠ACB ,∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°.∴BE =BF ,即△BEF 是等腰三角形. (2)解:如图,延长AB 至点M ,使得BM =AB ,连结CM .易知D 是AC 的中点∴BD ∥MC ,BD =12MC .∴∠BFE =∠MCE .由(1)得∠BEF =∠BFE ,BE =BF ,∴∠BEF =∠MCE .∴ME =MC .∵BM =AB =BC ,∴BD =12MC =12ME =12(MB +BE )=12(BC +BF ).例10.A 如图,连接BD ,取BD 的中点H ,连接HF ,HE∵点E ,H 分别是AB ,BD 的中点,∴EH 是△ABD 的中位线,∴EH =12AD =3 同理可得FH =12BC =5,∴EF ≤FH +EH =8,故选A .例11.B 解:取CD 的中点G 连接EG FG点E 为AD 的中点 点F 为OC 的中点12EG AC ∴=EG AC ∥ 12FG OD = //FG OD四边形ABCD 是菱形 120BAD ∠=︒AC BD ∴⊥ 60ADC ∠=︒ 1302ODC ADC ∠=∠=︒EG GF ∴⊥ AD DC AC ==设CD x = 则12EG x = 3FG 7EF =22213()()(7)2x ∴+= 解得4x =4CD ∴=∴菱形ABCD的周长为:44416CD=⨯=故选:B.例12解:如图取AB的中点G连接EG FG∵E F分别是边AD CB的中点∴EG BD∥且118422EG BD==⨯=FG AC且116322FG AC==⨯=∵AC BD⊥∴EG FG⊥∴2222435EF EG FG=++=.故答案为:5.强化训练题一.选择题1.如图在△ABC中AB=4 BC=5 AC=8.点D E F分别是相应边上的中点则四边形DFEB的周长等于()A.8 B.9 C.12 D.13解:∵点D F分别是AB AC的中点∴DF=BC=2.5同理EF=AB=2∴四边形DFEB的周长=EF+FD+DB+BE=9故选:B .2.解:∵AB =AC AD 平分∠BAC ∴BD =DC =BC =5 ∵点E 为AC 的中点∴CE =AC =6 DE =AB =6 ∴△CDE 的周长=CD +CE +DE =17 故选:B . 3.A 解:45B ∠=︒ AD BC ⊥ABD ∴是等腰直角三角形 6AD BD ∴=60C ∠=︒30DAC ∴∠=︒12DC AC ∴=2233AD AC DC DC AC ∴-=36AC =22AC ∴=E F 分别为AB BC 的中点1122222EF AC ∴==⨯=故选:A . 4.C解:四边形ABCD 是平行四边形60ABC ADC ∴∠=∠=︒ 120BAD ∠=︒AE 平分BAD ∠60BAE EAD ∴∠=∠=︒ABE ∴是等边三角形AE AB BE ∴==AB =12BC AE ∴=12BC90BAC ∴∠=︒30CAD ∴∠=︒ 故A 正确; AC AB ⊥∴ABCDSAB AC =⋅ 故B 正确AB =12BC OB =12BDBD BC >AB OB ∴≠ 故C 错误; CE BE = CO OA = OE ∴=12ABOE ∴=14BC 故D 正确. 故选:C . 5.【答案】C6.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( ) A .46.5cmB .22.5cmC .23.25cmD .以上都不对解:由△ABC 三边长分别为7cm 8cm 9cm 三条中位线组成一个新的三角形 可知新三角形与原三角形相似 相似比是1:2 即:后一个三角形的周长都是前一个三角形周长的∵原三角形的周长=7+8+9=24 ∴这个新三角形的周长=×24=12 ∴这个五个新三角形的周长之和=24+×24+×24+×24+×24=23.25故选:C .7.A解:延长AC BE 交于点M∵AE 平分BAC ∠ BE AE ⊥∴90AEB AEM ∠=∠=︒ CAE BAE ∠=∠∵AE AE =∴ABE AME ≌∴10AB AM == BE EM =∵6AC =∴4CM AM AC =-=∵点F 是BC 的中点 BE EM =∴EF 为BCM 中位线 ∴122EF CM ==.故选:A .8.【答案】A解:连接 AC∵∠GAB =∠ABC∴AG ∥BC .又 AG = BC可知四边形 AGBC 是平行四边形∴AC ∥BG点 E F 分别为 AD DC 的中点∴EF 是△ ADC 的中位线∴EF ∥AC∴ EF ∥BG .∴点 B 与点 G 到 EF 的距离相等△EBF 与△ EGF 是同底等高的关系∴ S △ EBF = S △ EGF 即S1=S2故选: A9.A解:如图 延长DP 交BC 于点F四边形ABCD 是平行四边形AD BC ∴∥ OD OB = 7AB CD == 10BC AD ==180ADC BCD ∴∠+∠=︒ ADF CFD ∠=∠ DP 平分ADC ∠ CP 平分BCD ∠ADF CDF ∠=∠∴ FCP DCP ∠=∠90CDP DCP ∴∠+∠=︒ CDF CFD ∠=∠7DC CF ∴== DP PF =OP ∴是DBF 的中位线()()111107 1.5222OP BF BC CF ∴==-=-= 故选:A .10.解:如图 取 AD 的中点 H ,连接 PH , OH∵四边形 ABCD 是平行四边形 ∴AP = PC又∵点 H 是 AD 中点 LAOD =90°∴PH =- AB , OH =- AD∴OH + PH ≥ OP∴AB + AD ≥2OP∴四边形 ABCD 的周长最小值为20故选: A .二.填空题11.解:取 BE 的中点 M 连接 FM , CM∵F 为AE 的中点 M 为 BE 的中点∴MF =AB , FM // AB∵四边形 ABCD 是平行四边形∴DC = AB , DC // AB∵E 为 CD 的中点∴CE =DC∴ CE = FM , CE // FM .∴四边形 EFMC 是平行四边形∴EG = GM∵BM = EM = BE =x8=4∴ EG =x4=2故答案为:212.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cmBC =8cm则DF 的长为 1cm .解:∵DE 为△ABC 的中位线∴DE =BC =4(cm )∵∠AFC 为直角 E 为AC 的中点∴FE =AC =3(cm )∴DF =DE ﹣FE =1(cm )故答案为:1cm .13.6解:如图2 由折叠得:AM MD = MN AD ⊥ AD BC ⊥ 连接GD∴GN BC∥GN是AD的垂直平分线∴AG DG=∴GAD GDA∠=∠∵90GBD GAD GDB GDA∠+∠=︒=∠+∠∴GBD GDB∠=∠∴GB GD=∴AG BG=同理可得:AN CN=∴GN是ABC的中位线而12BC=∴162GN BC==∵PM GM=∴6 MP MN GM MN GN+=+==.故答案为:6.14.【答案】7215.解:延长AE BC交于点H∵△ADE是等腰直角三角形∴∠HAC=45°AE=AD=2∴CH=AC=BC AH=AC=6∴EH=AH﹣AE=4∵BC=CH BF=FE∴FC=EH=2故答案为:2.16.【答案】3 (或3:1)】解: EF 是△ ABC 的中位线.. EF / BC , EF = BCOE =20F: OE =BC =BC设点 A 到 BC 的距离为 h则 S △ ABC = BC · h , S △ aoc =OE · h =BC · h =BC · h:△ ABC 的面积与△ AOC 的面积之比=3:1.故选: D .17.【答案】52解答】解:∵四边形 ABCD 是平行四边形∴AD = BC , CD = AB , DC / AB∵AD =5, AB = CF =3.∴CD =3, BC =5∴BF = BC + CF =8∵△ BEF 是等边三角形 G 为 DE 的中点∴BF = BE =8, DG = EG延长 CG 交 BE 于点 H∵DC / AB∴∠CDG=∠HEG在△ DCG 和△ EHG 中∠CDG=∠HEGDG = EG∠DGC =∠ EGH∴△ DCGR △ EHG ( ASA ).∴DC = EH , CG = HG∵ CD =3, BE =8∴HE =3, BH =5∵ LCBH =60°, BC = BH =5∴△CBH 是等边三角形∴CH = BC =5∴CG = CH =52故答案为:52三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.解:∵AB=12 AC=16 BC=20∴AB2+AC2=BC2∴△ABC是直角三角形∴∠A=90°∵F是AB中点∴AF=6∴CF===2∵中线BE CF相交于G∴G是△ABC重心∴CG:GF=2:1∴CG=.19.(1)证明见解析(2)证明见解析(1)证明:∵点E是边BC中点∴BE CE=又∵EF OE=∴四边形OBFC是平行四边形;(2)证明:∵四边形ABCD是平行四边形对角线AC BD、相交于点O ∴点O是BD的中点又∵点E是边BC中点∴OE是BCD△的中位线∴OE CD即OF CD∥.20.【答案】(1)证明:∵BF=BE CG=CE∴BC为△FEG的中位线FG∴BC//FG BC=12又∵H是FG的中点∴FH=1FG2∴BC=FH .又∵四边形ABCD是平行四边形∴AD//BC AD=BC∴AD//FH AD=FH∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形∴∠DAB=∠DCB∵CE=CB∴∠BEC=∠EBC=75°∴∠BCE=180°−75°−75°=30°∴∠DCB=∠DCE+∠BCE=10°+30°=40°∴∠DAB=40° .21.解:(1)如图,连接CD,AE.由三角形中位线定理可得PM∥12CD,PN∥12AE.∵△ABD和△BCE是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°∴∠ABE=∠DBC.∴△ABE≌△DBC,∴AE=DC.∴PM=PN.(2)如图,设PM交AE于F,PN交CD于G,AE交CD于H,AE交BD于Q.由(1)知△ABE≌△DBC,∴∠BAE =∠BDC.又∵∠DQH=∠BQA,∴∠AHD=∠ABD=60°,∴∠FHG=120°.22.证明:如图,取NC的中点H,连接DH过点H作HE∥AD,交BN的延长线于E.∵AB=AC,AD⊥BC,∴D为BC的中点.∵H为NC的中点,∴DH∥BN.又∵PD∥EH,∴四边形PDHE是平行四边形.∴HE=PD.∵P为AD的中点,∴AP=PD. ∴AP=EH.又∵HE∥AD,∴∠PAN=∠EHN,∠APN=∠HEN.∴△APN≌△HEN(ASA).∴AN=NH. ∴AN=NH=HC. ∴AN=13AC.23.(1)证明:连接BD取DB的中点H连接EH FH ∵E H分别是AD BD的中点∴EH∥AB EH=AB∴∠BME=∠HEF∵F H分别是BC BD的中点∴FH∥CD FH=CD∴∠CNE=∠HFE∵AB=CD∴HE=FH∴∠HEF=∠HFE∴∠BME=∠CNE;(2)连接BD取DB的中点H连接EH FH∵E F分别是AD BC的中点∴EH=AB FH=CD FH∥AC∴∠HFE=∠FEC=45°∵AB=CD=2∴HF=HE=1∴∠HEF=∠HFE=45°∴∠EHF=180°﹣∠HFE﹣HEF=90°∴.24.【答案】(1)解:结论1:四边形EFGH是平行四边形;证明:∵在四边形ABCD中 E F G H是各边中点∴EF为∆ABD的中位线∴EF∥BD EF=12BD同理可得GH∥BD GH=12BD∴GH∥EF GH=EF∴四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;证明:∵E J G I分别为DA DB BC AC中点∴EJ为∆ABD的中位线∴EJ∥AB EJ=12AB同理可得IG∥AB IG=12AB∴EJ∥IG EJ=IG∴四边形EJGI是平行四边形;结论3:S四边形EFGH=12S四边形ABCD;证明:由结论1证明可得 EF=12BD GH=12BD∴∆AEF的高为∆ADB高的一半∆CHG的高为∆BCD高的一半∴S�AEF=14S�ADB S�CHG=14S�CDB同理:S�DEH=14S�DAC S�BFG=14S�BCA∴S四边形EFGH=S四边形ABCD−S�AEF−S�CHG−S�DEH−S�BFG=12S四边形ABCD;(2)解:①连接AC 取AC的中点E 连接FE HE∵点E F为AC AB的中点∴EF=12BC=2同理:EH=12AD=3第 31 页 共 31 页 ∴EH-EF<FH<EF+EH即1<EH<5故答案为:1<FH<5;②如图所示 连接EFGH 由结论1可得四边形EFGH 为平行四边形如图所示 过点E 作EM ∥FH 交GH 延长线于点M 过点G 作GN ⊥EM∵EF ∥GM EM ∥FH∴四边形FHME 为平行四边形∴FH=EM=6 ∠EOF=∠GEM=60° FE=HM∴∠EGN=30°∴EN=12EG =4∴GN =√EG 2−EN 2=4√3∴S �EGM =12EM ×GN =12√3由图可得S 四边形EFGH =S �EGM =12√3由结论3可得:S 四边形ABCD =2S 四边形EFGH =24√3.。
高考数学总复习培优练习:解三角形(含答案)1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若2c 6b ,60B =,则C =_____.【答案】30C =【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=,所以30C =.2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边, 且有cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,且ABC △3b ,c . 【答案】(1)3π;(2)2,2. 【解析】(1)cos 3sin 0a C a C b c --= sin cos 3sin sin sin sin 0A C A C B C ⇒--=()sin cos 3sin sin sin sin 0A C A C A C C ⇒-+-=sin cos 3sin sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,13cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=; (2)1sin 342ABC S bc A bc ==△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) A 62+ B 62- C 6D 2 【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 42sin sin 6a Bb A π⨯===π,且()()62cos cos cos cos sin sin C A B A B A B -=-+=--= 由余弦定理可得:2262622cos 122124c a b ab C -+=+-++⨯⨯⨯.故选A . 2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅等于( ) A .19 B .19-C .18D .18-【答案】B【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯, ()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭.故选B .3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,7c =3b a =,则ABC △对点增分集训的面积为( ) A 33B 23- C 2D 23+ 【答案】A 【解析】已知3C π=,7c 3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11333sin 1322ABCSab C ==⨯⨯=A . 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin 23sin C B =,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒【答案】A【解析】根据正弦定理由sin 23sin C B =得:23c b =, 所以2223323a b bc b =-,即227a b =, 则22222223cos 243b c a A bc b +-===,又()0,A ∈π,所以6A π=.故选A . 6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且3a ABC △外接圆的半径为( ) A .1 B 2C .2D .4【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=, 由正弦定理可得322sin 3aR A===,所以1R =,故选A .7.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C .8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=,∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B .9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为315,2b c -=,1cos 4A =-,则a 的值为( ) A .8 B .16 C .32 D .64【答案】A【解析】因为0A <<π,所以215sin 1cos A A =- 又115sin 3152ABCSbc A ===,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣,∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入, 得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D .12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知23a =,22c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得3sin A =,由正弦定理sin sin a c A C =,解得2sin C =所以4C π∠=或34π(舍).故选B .二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,22c =,2216b a -=,则角C 的最大值为_____; 【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知222222222332cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max 6C π=.当且仅当22a =,26b =14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.【答案】(2⎤⎦,【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 224B B B π⎛⎫⎤+=+∈ ⎪⎦⎝⎭,,故答案为(2⎤⎦,. 15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且23a =,则ABC △面积的最大值是________3【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-, 则2sin cos b B A -=,结合正弦定理得223cos sin a A A -==,即tan 3A =-,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥, 故4bc ≤,113sin 4322ABC S bc A =≤⨯=△3 16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,3b则ABC △面积的取值范围是__________.【答案】333⎝⎦,【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得32sin sin sin sin 3a c b A C B ====π,∴2sin a A =,2sin c C =, ∴132sin 3sin 3sin 23ABC S ac B A C A A π⎛⎫===- ⎪⎝⎭△ 23133331cos23sin sin sin cos sin 22242AA A A A A A A ⎫-=+==⎪⎪⎝⎭ 33333sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,3333326A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是333⎝⎦,.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C 3cos 2sin a A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △3a 的值. 【答案】(1)23π;(221 【解析】(13sin cos 2sin A A C+=,∵sin 0C ≠,∴3sin cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=. (2)由3ABC S =△可得1sin 32S bc A ==.∴4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=, ∴21a =.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,27AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=,求AC 的长. 【答案】(1)23;(27 【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍), ∴ABD △的面积113sin 42322S DB DA ADB =⋅⋅⋅∠=⨯⨯= (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠, 代入得21sin B =B 为锐角,故57cos B =, 所以()21sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠, 213=,解得7AC。
A B CDE F第五章《三角形》复习之一 (总复习 07)姓名————————学号——————班别————————一. 知识点: 1.三角形的分类三角形按边分类可分为_______和______(等边三角形是等腰三角形的特殊情况);按角分类可分为______、_______和_______,例1:如果三角形三个内角之比为1:2:3,那么这个三角形是————————三角形。
2.三角形的三边关系:三角形的第三边小于两边之—————,大于两边之——————。
用式子表示为:——————<AC <———————— 例2:已知一个三角形的三条边长为2、5、x ,则x 的取值范围是 。
3.三角形内角和等于——————度。
4.直角三角形两锐角——————例3、如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中两个锐角的度数分别是————,——————。
5.如图-2:已知:AD 是△ABC 的中线,BD=4,则CD=————,BC=————6.已知:如图-3AD 是△ABC 的角平分线,则 ----------=———————— 7.已知:如图3AD 是△ABC 的高,则,则 ----------=————————巩固练习一,填空题1、在△ABC 中,已知∠A=30°,∠B=70°,则∠C 的度数是 。
2、在Rt △ABC 中,一个锐角为30°,则另一个锐角为 度。
3.、如图-4左:∠A+∠B+∠C+∠D+∠E+∠F=——————度。
4、已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 。
5、(1)等腰三角形一边的长是4,另一边的长是8,则它的周长是 。
(2)等腰三角形一边的长是5,另一边的长是8,则它的周长是 。
6、已知三角形的两边长分别是2cm 和5cm,第三边长是奇数,则第三边的长是 。
7、如图-5,ΔABC ≌ΔDEF ,∠A=50°,∠B=70°,CD=3cm ,则∠EFD=____°,AF=_____cm 。
一边一角构造三角形全等类型 1 一边一等角已知一组边相等(AB=DE)一组角(角的顶点和相等边的端点重合)相等(∠A=∠D):思路1:截取角的另一组边相等(DF=AC), 利用“SAS”的方法构造全等(△ABC≌△DEF),思路2:通过在相等边的另一端点处作一组角相等(∠E=∠B),利用“ASA”的方法构造全等(△ABC≌△DEF)。
例1.如图,∠A=∠CDF,AB=DF.求证:BC=FC。
例2.如图,在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE 交BC于点F,求证: DF=EF。
练习题1.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E在DA的延长线上,连接OE,将射线 OE 绕点O顺时针旋转∠BCD的度数得到的射线与CD的延长线相交于点F,探究OE与OF之间的数量关系.2.如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且AD=CE,连接BD,取BD的中点F,连接 AF,AE,DE,求∠FAE的度数.3.(2021大连中考25题)如图,在△ABC中,点D,E分别在BC,AC上,BD=BA,点F在BE 上,FA=FE,∠AFE=∠ABD.(1)∠EBC= ;(2)求证:∠BEA=∠BED.类型2 一边一互补角已知一组边相等(AB=DG)一组角(角的顶点和相等边的端点重合)互补(∠A+∠EDG=180°):思路1:截取角的另一组边相等( DF = AC), 利用“SAS”的方法构造全等(△ABC≌△DGF),思路2:通过在相等边的另一端点处作一组角相等(∠G=∠B), 利用“ASA”的方法构造全等(△ABC≌△DGF)。
例1.如图,在△ABC 中,AB=AC,E是△ABC外一点,且∠BAC+∠BEA=180°,过点C作CD∥BE,交AE于点D,求证:CD=AE.练习题1、如图,在△ABC中,∠ABC=90°,AB=BC,点D、E分别在AC、AB边上,点F在CB的延长线上,∠BED=∠CAF,AD=CF,证明:DE=AF。
第11章三角形一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm3.下列各图中,正确画出AC边上的高的是()A.B.C.D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.66.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.811.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是三角形.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=°.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1()又∵EF平分∠DEC(已知)∴()又∵∠1=∠2(已知)∴∠BAC=()∴AB∥DE()∴∠EDC═60°()22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴+∠CFE=90°∵∠1=∠2,∠CFE=∠3(已证)∴+ =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB.24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.参考答案与试题解析一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.3.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在直线AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形三条高至少有一条在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、三角形三条角平分线都在三角形的内部,故正确.D、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.故选:D.5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.6【分析】根据三角形的第三边大于两边之差小于两边之和,即可解决问题.【解答】解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是2、5,则第三边长a的取值范围是3<a<7.故选:A.6.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°【分析】设这个内角为α,则与其相邻的外角为4α,根据邻补角的和等于180°列式进行计算即可得解.【解答】解:设这个内角为α,则与其相邻的外角为4α,所以,α+4α=180°,解得α=36°,4α=4×36°=144°.故选:D.7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°【分析】连接AD并延长,根据三角形的外角性质计算,得到答案.【解答】解:连接AD并延长,∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,则∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°,故选:C.8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【解答】解:∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【分析】根据n边形的对角线有条,把5代入即可得到结论.【解答】解:由题意得,=5,解得:n=5,(负值舍去),故选:B.10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.8【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.11.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1620°,解得n=11.故选:C.二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是等边三角形.【分析】根据角平分线的性质及平行的性质求得△ACE的各个角均为60度,从而得出△ACE是等边三角形.【解答】解:∵CD平分∠ACB,∠ACB=120°∴∠1=∠2==60°∵AE∥DC∴∠3=∠2=60°,∠E=∠1=60°∴∠3=∠4=∠E=60°∴△ACE是等边三角形.故答案是:等边.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为7cm.【分析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BD的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm,故答案为:7cm.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为7≤x <9 .【分析】根据已知条件可以得到三角形的第三边的长,再根据三角形的三边关系以及x 为△ABC中的最长边可以得到关于x的不等式组,解出不等式组即可.【解答】解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x≥14﹣x,∴x≥7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7≤x<9,故答案为:7≤x<9.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=2°.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的,根据发现后一个角等于前一个角的的规律即可得解,把∠A=64°代入∠A n=∠A解答即可.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理可得∠A2=∠A1=×∠A=∠A,由此可得一下规律:∠A n=∠A,当∠A=64°时,∠A5=∠A=2°,故答案为:2°.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出(n ﹣1)个三角形.【分析】(1)三角形分割成了两个三角形;(2)四边形分割成了三个三角形;(3)以此类推,n边形分割成了(n﹣1)个三角形.【解答】解:n边形可以分割出(n﹣1)个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=120 °.【分析】由正六边形的性质得出∠AFB=∠DEF=120°,AF=EF=DE,由等腰三角形的性质和三角形内角和定理得出∠FAE=∠FEA=∠EFD=30°,求出∠AFD=90°,由三角形的外角性质即可求出∠AOD的度数.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFB=∠DEF=120°,AF=EF=DE,∴∠FAE=∠FEA=∠EFD=(180°﹣120°)÷2=30°,∴∠AFD=120°﹣30°=90°,∴∠AOD=∠FAE+∠AFD=30°+90°=120°.故答案为:120.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2 (角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)【分析】根据平行线的判定方法以及角平分线的定义解决问题即可.【解答】解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2(角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)故答案为:角平分线的定义,∠DEC=2∠2,角平分线的定义,∠DEC,等量代换,同位角相等两直线平行,两直线平行同位角相等.22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.【分析】(1)根据三角形的外角性质计算;(2)根据三角形内角和定理计算.【解答】解:(1)∵∠ADC=∠1+∠B,∠B=∠1,∴∠B=∠ADC=×70°=35°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣35°﹣70°=75°.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2 (角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1 +∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴∠2 + ∠3 =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).【分析】根据角平分线的定义、直角三角形的性质、三角形内角和定理、垂直的定义填空.【解答】证明:∵AF平分∠CAB(已知)∴∠1=∠2(角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1+∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴(∠2)+(∠3)=90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).故答案为:(角平分线的定义);∠1;(直角三角形的性质);∠2;∠3;(垂直的定义).24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.【分析】(1)设CE与BD、AD的交点分别为M、N,可分别在△MBE和△NAC中,由三角形的外角性质求得∠DMN=∠B+∠E、∠DNM=∠A+∠C,进而在△DMN中根据三角形内角和定理得出所求的结论;(2)根据多边形的外角和等于360°解答即可.【解答】解:(1)如图1,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°;(2)如图2,∵五角星的五个顶角的度数相等,∴,∴∠1=180°﹣∠2=108°.。
总复习——三角形的练习卷
一、复习目标:1、通过讲评练习使学生对三角形的相关概念更清楚。
3、三角形按角分和按边分的分类,以及通过三角形的内角和180度来求三角形的各角,特殊三角形的求角度。
二、复习过程:
1、复习概念:
概念:1、由三条线段组成的图形叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
3、三角形的内角和为180度
4、三角形任意两条边的和大于第三条边
2、练习讲评:
(一)在钉子板上画指定的三角形
注意:画的时候为了准确,需要画在钉子之间
(二)填空:
1、一个三角形有()条边、()个角和()个顶点
2、三角形按角的大小来分,可分为()、()( |三类
3、三角形按边的长短来分,可分为()、()
注意:基础概念题,主要是给学生对知识做个梳理
4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。
(三)判断:
1、2、3、4、5都为概念的延伸题,要求学生要记忆
6、7、8为多项选择,主要是让学生利用公式、概念灵活做题
(四)画高:
注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。
学生说一说画高的时候应该注意什么
1、用三角板画垂线,用虚线
2、要标上垂直符号
(五)计算
1、在三角形中角1=136度;角2=29度;角3=?
2、妈妈买了个等腰三角形的风铃。
它的一个底角是25度,它的顶角是多
少度?
3、在直角三角形中,一个锐角是35度,另一个锐角是多少度?
注意:强调三角形的内角和是180度。