《真空中的静电场》选择题解答与分析
- 格式:pdf
- 大小:582.97 KB
- 文档页数:8
12 真空中的静电场 12.1电荷、场强公式1. 如图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,则C 点的场强的大小为(A) 4.5104(N C -1). (B) 3.25104(N C -1). 答案:(B)参考解答:根据点电荷的场强大小的公式,点电荷q 1在C 点产生的场强大小为)C (N 108.1)(4142011-⋅⨯==AC q E πε,方向向下.点电荷q 2在C 点产生的场强大小为)C (N 107.2)(4142022-⋅⨯==AC q E πε,方向向右.C 处的总场强大小为:),C (N 1025.3142221-⋅⨯=+=E E E总场强与分场强E 2的夹角为.69.33arctan 021==E E θ对于错误选择,给出下面的分析:答案(A)不对。
你将)C (N 105.410)7.28.1(14421-⋅⨯=⨯+=+=E E E 作为解答。
错误是没有考虑场强的叠加,是矢量的叠加,应该用),C (N 1025.3142221-⋅⨯=+=E E E进入下一题:2. 真空中点电荷q 的静电场场强大小为2041r qE πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.进入下一题: 12.2高斯定理1. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(C) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.答案:(B) 参考解答:高斯定理的表达式:∑⎰==⋅ni i q s E 101d ε .它表明:在真空中的静电场内,通过任意闭合曲面的电通量等于该闭合面所包围的电荷电量代数和的0/1ε倍。
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ(x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D)()j i a+π04ελ. 【提示】左侧与右侧半无限长带电直线在(0,a )处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。
据Guass 定理:SE dS=iiq ε∑⎰r R ≤时,有:()22012rL=r E L R λππεπ⎛⎫ ⎪⎝⎭,即:20r =2E R λπε r R >时,有:()012rL=E L πλε ,即:0=2rE λπε [ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)06εq . (B) 012εq. (C) 024εq . (D) 048εq .【提示】添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体的外表面构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
另一方面,该高斯面可看成由24个面积与侧面abcd 相等的面组成,且具有对称性。
所以,通过侧面abcd 的电场强度通量等于24εq [ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-.【提示】200248P a M M aq qU E dl dr r a πεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 【提示】根据带电球面在球内外所激发电势的公式,以及电势叠加原理即可知结果。
一.二. 选择题[ B ]1 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+?(x <0)和-? (x >0),则Oxy 坐标平面上点(0,a )处的场强E ϖ为(A) 0. (B)i aϖ02ελπ.(C)i aϖ04ελπ. (D) ()j i a ϖϖ+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ]2 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面,据Guass 定理:r R ≤时,有:20r 2rL=LE ρππεg g ,即:0=r 2E ρεgr R >时,有:20R 2rL=L E ρππεg g ,即:20R =2rE ρεg[ C ]3 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A)6εq . (B) 012εq .(C)024εq . (D) 048εq.【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ]4 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) aq08επ.(C) a q 04επ-. (D) aq08επ-.【提示】:220048P a M Maq q V E dl dr raπεπε-===⎰⎰v vg[ C ]5 已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N .(C) 电势能W M <W N . (D) 电场力的功A >0.【提示】:静电力做负功,电势能增加。
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
大学物理真空中的静电场答案【篇一:第九章真空中的静电场(答案)2013】] 1(基础训练1)图中所示为一沿x轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+?(x<0)和-? (x>0),则oxy坐标平面上点(0,a)处的场强e为?? (a) 0. (b) i. 2??0a???????i?j?. (c) i. (d)4??0a4??0ae??e??矢量叠加后,合场强大小为:【提示】:左侧和右侧半无限长带电直线在(0,a)处产生的场强大小e+、e-大小为:?,方向如图。
e合?2??0a[ c ] 2(基础训练3)如图所示,一个电荷为q的点电荷位于立方体的a角上,则通过侧面abcd的电场强度通量等于:qq (a) . (b) .6?012?0(c)qq. (d) . 24?048?0【提示】:添加7个和如图相同的小立方体构成一个大立方体,使a处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由gauss定理知,通过该高斯面的电通量为q?0。
再据对称性可知,通过侧面abcd的电场强度通量等于q。
24?0[ d ] 3(基础训练6)在点电荷+q的电场中,若取图中p点处为电势零点,则m点的电势为(a)qq.(b) .4??0a8??0a(c)?q?q.(d) .4??0a8??0a【提示】:vm??pm??ae?dl??q4??0r2a?2?q8??0a1[ d ] 4(基础训练6)、如图所示,cdef为一矩形,边长分别为l和2l.在dc延长线上ca=l处的a点有点电荷+q,在cf的中点b点有点电荷-q,若使单位正电荷从c点沿cdef路径运动到f点,则电场力所作的功等于:q5?1q1?5?? (a) . (b)4??0l5?l4??0lq3?1q5?1??(c) . (d) . 4??0l4??0l3???qa?q(v?v)?1?0?(?【提示】:c?f?? 0cf4??l0??[ c ] 5(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。