〖精选3套试卷〗2020学年广东省湛江市中考数学学业水平测试试题
- 格式:doc
- 大小:1.97 MB
- 文档页数:61
机密★启用前2020年广东省初中学业水平考试数学试题参考答案及评分标准一、选择题(共10小题,每小题3分,共30分)二、填空题(共6小题,每小题4分,共24分)11、()1-y x 12、4 13、1 14、7 15、︒45 16、3117、252- 三、解答题(一)(共3小题,每小题6分,共18分)18、解:原式=2222222x y x y xy x --+++ ……………………2分 =xy 2 ……………………4分 当2=x ,3=y 时,原式=62322=⨯⨯ ……………………6分19、解:(1) 6187224120=---=x , ……………………3分 (2)144018001207224=⨯+(人) . ……………………6分 20、证明:∵BD =CE ,∠ABE =ACD ,∠DFB =EFC ,∴△DFB ≌△EFC. ……………………3分 ∴FB =FC. ∴∠FBC =∠FCB.∴∠FBC +∠ABE =∠FCB +∠ACD , 即∠ABC =∠ACB.∴△ABC 是等腰三角形. ……………………6分四、解答题(二)(共3小题,每小题8分,共24分)21、解:(1) 由⎩⎨⎧=-=+24y x y x ,解得⎩⎨⎧==13y x .把⎩⎨⎧==13y x 分别代入31032-=+y ax 和15=+by x , 解得34-=a ,12=b . ……………………4分答20图FE DCB A(2) 将34-=a ,12=b 代入方程02=++b ax x 得012342=+-x x .解得3221==x x . ∵()()()222623232=+,∴该三角形是等腰直角三角形 . ……………………8分22、证明:(1) (如答22-1图) 过点O 作OE ⊥CD 于E. ∵AD ∥BC ,∠DAB =90°, ∴∠ABC =90°. 又∵CO 平分∠BCD , ∴∠1=∠2 . ∴△BOC ≌△EOC . ∴OE =OB .∴CD 为⊙O 的切线 . ……………………4分 (2) (如答22-2图) 连接OD ,OE . 由(1)得OE =OB . ∴OE =OA .∵∠OAD =∠OED =90°, ∴Rt △AOD ≌Rt △EOD (HL) . ∴DE =AD =1,∠3=∠4=21∠AOE . ∴∠APE =21∠AOE =∠3 . 由(1) △BOC ≌△EOC 得CE =BC =2 . ∴CD =DE +CE =1+2=3 . 过点D 作DF ⊥BC ,垂足为F . ∴CF =BC -BF =BC -AD =2-1=1 .在Rt △DFC 中,22132222=-=-=CF CD DF . ∴OA =21AB =21DF =2 . ∴22213tan tan ===∠=∠OA AD APE . ……………………8分答22-1图CC 答22-2图23、解:(1) 设每个A 类摊位占地面积为x 平方米,则每个B 类摊位占地面积为()2-x 平方米,得5326060⨯-=x x . 解得5=x . ∴32=-x .经检验5=x ,32=-x 符合题意.答:每个A 类摊位占地面积为5平方米,每个B 类摊位占地面积为3平方米 . …………4分 (2) 设建造A 类摊位a 个,则建造B 类摊位()a -90个,得总费用()810011*********+=-⨯⨯+⨯=a a a y . ……………………6分 ∵a a 390≥- . 解得245≤a . 又∵0110>,所以y 随a 的增大而增大, 当22=a 时,y 有最大值为10520 .答:最大费用为10520元 . ……………………8分五、解答题(三)(共2小题,每小题10分,共20分)24、(1) 2 . ……………………2分(2) 解:(如答24图) ∵AB ∥OC ,设B ⎪⎭⎫ ⎝⎛m m 8,,则D ⎪⎭⎫⎝⎛m m 84,,∴BD m m m 434=-= . ∴384321=⨯⨯=∆mm S BDF . ……………………6分(3) 证明:(如答24图)由(2)知B ⎪⎭⎫ ⎝⎛m m 8,,D ⎪⎭⎫ ⎝⎛m m 84,,则A ⎪⎭⎫ ⎝⎛m 80,,E ⎪⎭⎫⎝⎛m m 2,,C ()0,m .∴BE m m m 628=-=,CE m2= . ∵CF ∥BD , ∴△ECF ≌△EBD.答24图∴BECEBD CF =. ∴CF 4m= .∵点G 与点O 关于点C 对称, ∴CG =OC =AB =m . ∴FG =CG -CF =4m m -=m 43 . ∴BD =FG . 又∵BD ∥FG ,∴四边形DFGB 是平行四边形 . ……………………10分 25、解:(如答25图)(1) ∵BO =3AO =3, ∴A(-1,0),B(3,0) . ∴()()31633-++=x x y 2333336332+-+-+=x x . ∴333+-=b ,233+-=c . ……………………2分(2) 过点D 作DE ⊥y 轴,垂足为E . ∴DE ∥OB . ∴△OBC ∽△EDC . ∴CDBCDE OB =. ∴DE 3=,即3-=D x .∴()()3233333336332+=+--⨯+--⨯+=D y ∴D ()133+-, . ……………………4分 设直线BD 的函数解析式为m kx y += . ∵图象过点B(3,0),D ()133+-,,答25图∴⎩⎨⎧+=+-=+.13303m k m k ,解得⎪⎩⎪⎨⎧=-=.333m k ,∴直线BD 的函数解析式为333+-=x y . ……………………6分 (3) 满足条件的点Q 共有四个(每写对一个得1分):⎪⎪⎭⎫ ⎝⎛-03334,,⎪⎪⎭⎫⎝⎛-03323,,()0325,-,()0321,- . ……………………10分(本卷所有题参考答案只提供一种解法,其他解法只要正确,请参照本答案相应给分. )。
2020年广东省初中学业水平考试数学一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A.B. C. D. 【答案】B【解析】根据相反数的定义:“只有符号不同的两个数互为相反数”可知,9的相反数是-9.故选B.2.一组数据2,4,3,5,2的中位数是( )A. 5B. 35C. 3D. 25 【答案】C【解析】【分析】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数.【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,∴这组数据的中位数是3,故选:C .【点睛】本题考查了求中位数,熟练掌握中位数的求法是解答的关键.3.在平面直角坐标系中,点关于轴对称的点的坐标为( )A.B. C. D. 【答案】D【解析】【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点关于轴对称的点的坐标为(3,-2),故选:D . 99-1919-(3,2)x (3,2)-(2,3)-(2,3)-(3,2)-(3,2)x【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4.若一个多边形的内角和是540°,则该多边形的边数为( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据内角和公式即可求解.【详解】设这个多边形的边数为n,∴(n-2)×180°=540°解得n=5故选B .【点睛】此题主要考查多边形的内角和,解题的关键是熟知内角和公式.5.在实数范围内有意义,则的取值范围是( )A.B. C. D. 【答案】B【解析】【分析】根据二次根式里面被开方数即可求解.【详解】解:由题意知:被开方数,解得:,故选:B .【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.6.已知的周长为16,点,,分别为三条边的中点,则的周长为()A. 8B. C. 16 D. 4 【答案】A【解析】【分析】由,,分别为三条边的中点,可知DE 、EF 、DF 为的中位线,即可得到的周长. x 2x ≠2x ≥2x ≤2x ≠-240x -≥240x -≥2x ≥ABC ∆D E F ABC ∆DEF ∆D E F ABC ∆ABC ∆DEF ∆【详解】解:如图,∵,,分别为三条边的中点,∴,,, ∵, ∴, 故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.7.把函数的图象向右平移1个单位长度,平移后图象的函数解析式为( )A.B. C.D.【答案】C【解析】【分析】抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数的图象向右平移1个单位长度,平移后图象的函数解析式为, 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.8.不等式组的解集为( ) A. 无解 B. C. D.D E F ABC ∆12DF BC =12DE AC =12EF AB =16BC AC AB ++=()1116822DF DE EF BC AC AB ++=++=⨯=2(1)2y x =-+22y x =+2(1)1y x =-+2(2)2y x =-+2(1)3y x =--2(1)2y x =-+[]22(1)12(2)2y x x =--+=-+23112(2)x x x -≥-⎧⎨-≥-+⎩1x ≤1x ≥-11x -≤≤【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形中,,点,分别在边,上,.若将四边形沿折叠,点恰好落在边上,则的长度为( )A. 1D. 2【答案】D【解析】【分析】 由CD ∥AB 得到∠EFD=∠FEB=60°,由折叠得到∠FEB=∠FEB’=60°,进而得到∠AEB’=60°,然后在Rt △AEB’中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD=∠FEB=60°,由折叠前后对应角相等可知:∠FEB=∠FEB’=60°,∴∠AEB’=180°-∠FEB-∠FEB’=60°,∴∠AB’E=30°,设AE=x ,则BE=B’E=2x ,的ABCD 3AB =E F AB CD 60EFD ∠=︒EBCF EF B AD BE∴AB=AE+BE=3x =3,∴x =1,∴BE=2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.10.如图,抛物线的对称轴是.下列结论:①;②;③;④,正确的有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】 由抛物线的性质和对称轴是,分别判断a 、b 、c 的符号,即可判断①;抛物线与x 轴有两个交点,可判断②;由,得,令,求函数值,即可判断③;令时,则,令时,,即可判断④;然后得到答案.【详解】解:根据题意,则,,∵, ∴,∴,故①错误;由抛物线与x 轴有两个交点,则,故②正确;∵,令时,,∴,故③正确;在中,的2y ax bx c =++1x =0abc >240b ac ->80a c +<520a b c ++>1x =12b x a=-=2b a =-2x =-2x =420y a b c =++>1x =-0y a b c =-+>0a <0c >12b x a=-=20b a =->0abc <240b ac ->2b a =-2x =-420y a b c =-+<80a c +<2y ax bx c =++令时,则,令时,,由两式相加,得,故④正确;∴正确的结论有:②③④,共3个;故选:B .【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ―x =_____________.【答案】x (y -1)【解析】试题解析:xy ―x =x (y -1)12.若与是同类项,则___________.【答案】3【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【详解】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.13.,则_________.【答案】1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.2x =420y a b c =++>1x =-0y a b c =-+>520a b c ++>3m x y 25n x y -m n +=|1|0b +=2020()a b +=|1|0b +=∴,,∴,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键. 14.已知,,计算的值为_________.【答案】7【解析】【分析】将代数式化简,然后直接将,代入即可.【详解】由题意得,,∴,故答案为:7.【点睛】本题考查了提取公因式法,化简求值,化简是解题关键.15.如图,在菱形中,,取大于的长为半径,分别以点,为圆心作弧相交于两点,过此两点的直线交边于点(作图痕迹如图所示),连接,,则的度数为_________.【答案】45° 【解析】【分析】根据题意知虚线为线段AB 的垂直平分线,得AE=BE ,得;结合°,,可计算的度数. 【详解】 ∵2a =1b =-2020()a b +=202011=5x y =-2xy =334x y xy +-5x y +=2xy =5x y +=2xy =3343()41587x y xy x y xy +-=+-=-=334x y xy +-ABCD 30A ∠=︒12AB A B AD E BE BD EBD ∠EBA EAB ∠=∠30A ∠=1275ABD ABC =∠=︒EBD ∠18030150ABC ∠=-=︒︒︒1275ABD ABC =∠=︒AE EB =∴∴故答案为:45°.【点睛】本题考查了菱形的性质,及垂直平分线的性质,熟知以上知识点是解题的关键.16.如图,从一块半径为的圆形铁皮上剪出一个圆周角为120°的扇形,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________.【答案】 【解析】【分析】连接OA ,OB ,证明△AOB 是等边三角形,继而求得AB 的长,然后利用弧长公式可以计算出的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答. 【详解】连接OA ,OB ,则∠BAO=∠BAC==60°, 又∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴的长为:, 设圆锥底面圆的半径为r EAB EBA ∠=∠753045EBD ∠=-=︒︒︒1m ABC m 13BOC1211202⨯︒ O B C 120AB 21803ππ= 223r ππ=故答案为.【点睛】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.17.有一架竖直靠在直角墙面梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,,点,分别在射线,上,长度始终保持不变,,为的中点,点到,的距离分别为4和2.在此滑动过程中,猫与老鼠的距离的最小值为_________.【答案】【解析】【分析】根据当、、三点共线,距离最小,求出BE 和BD 即可得出答案.【详解】如图当、、三点共线,距离最小,∵,为中点,的的13r =1390ABC ∠=︒M N BA BC MN 4MN =E MN D BA BC DE 2-B D E B D E 4MN =E MN∴,,,故答案为:.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:,其中.【答案】;【解析】【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.【详解】解:原式 ,将,代入得:原式.故答案为:【点睛】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18(1)求的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人? 2BE =BD ==2DE BD BE =-=2-22()()()2x y x y x y x +++--x =y =2xy 2222222x xy y x y x =+++--2xy =x =y =2==x x【答案】(1)6 (2)1440人【解析】【分析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例即可求出结果.【详解】(1)解:由题意得:解得(2)解:(人) 答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.【点睛】本题主要考查了用样本估计总体,属于基础题目,审清题意,找到对应数据是解题的关键.20.如图,在中,点,分别是、边上的点,,,与相交于点,求证:是等腰三角形.【答案】见解析【解析】【分析】先证明,得到,,进而得到,故可求解.【详解】证明:在和中∴∴∴又∵∴247218120x +++=6x =247218001440120+⨯=ABC ∆D E AB AC BD CE =ABE ACD ∠=∠BE CD F ABC ∆BDF CEF ∆∆≌BF CF =FBC FCB ∠=∠A ABC CB =∠∠BDF ∆CEF ∆()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等()BDF CEF AAS ∆∆≌BF CF =FBC FCB ∠=∠ABE ACD ∠=∠FBC ABE FCB ACD ∠+∠=∠+∠即∴是等腰三角形.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于,的方程组与的解相同. (1)求,的值;(2)若一个三角形的一条边的长为的方程的解.试判断该三角形的形状,并说明理由.【答案】(1); (2)等腰直角三角形,理由见解析【解析】【分析】(1)关于x ,y 的方程组的解相同.实际就是方程组 的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与为边长,判断三角形的形状.【详解】解:由题意列方程组:解得 将,分别代入和解得∴(2)解得 这个三角形是等腰直角三角形A ABCCB =∠∠ABC ∆x y4ax xy ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩a b x 20x ax b ++=-124ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩42x y x y +=⎧⎨-=⎩42x y x y +=⎧⎨-=⎩31x y =⎧⎨=⎩3x =1y =ax +=-15x by +=a =-12b =a =-12b =2120x -+=x ==理由如下:∵∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.如图1,在四边形中,,,是的直径,平分.(1)求证:直线与相切;(2)如图2,记(1)中的切点为,为优弧上一点,,.求的值.【答案】(1)证明见解析;(2. 【解析】【分析】 (1)如图(见解析),先根据平行线的性质得出,再根据角平分线的性质可得,然后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得,,再根据圆切线的判定、切线长定理可得,然后根据相似三角形的判定与性质可得,设,从而可得,又根据相似三角形的判定与性质可得,从而可得,最后根据正切三角函数的定义即可得.的222+=ABCD //AD BC 90DAB ∠=︒AB O CO BCD ∠CD O E P »AE 1AD =2BC =tan APE ∠OB CB ⊥OE OB =APE ABE ∠=∠90AEB =︒∠2,1CE BC DE AD ====12AE DE EF CE ==AE a =2EF a =BE AE EF BE=BE =【详解】(1)如图,过点作于点∵,∴,即又∵平分,∴即OE 是的半径∴直线与相切;(2)如图,连接,延长交延长线于点由圆周角定理得:,是的直径,,AD 、BC 都是的切线由切线长定理得:∵∴在和中, ∴∴ 设,则在和中,O OE CD ⊥E //AD BC 90DAB ∠=︒90OBC ∠=︒OB CB ⊥CO BCD ∠OE CD ⊥OE OB =O CD O BE AE BC F APE ABE ∠=∠90AEB =︒∠ AB O AB AD ⊥AB BC ⊥∴O 2,1CE BC DE AD ====//AD BC DAE CFE ∠=∠ADE FCE △AED FEC DAE CFE ∠=∠⎧⎨∠=∠⎩ADE FCE ~ 12AE DE EF CE ==(0)AE a a =>2EF a =90BAE ABE FBE ABE ∠+∠=∠+∠=︒ BAE FBE ∴∠=∠ABE △BFE △90BAE FBE AEB BEF ∠=∠⎧⎨∠=∠=︒⎩ABE BFE ∴~,即 解得在中,则.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、切线长定理、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.某社区拟建,两类摊位以搞活“地摊经济”,每个类摊位的占地面积比每个类摊位的占地面积多2平方米,建类摊位每平方米的费用为40元,建类摊位每平方米的费用为30元,用60平方米建类摊位的个数恰好是用同样面积建类摊位个数的. (1)求每个,类摊位占地面积各为多少平方米?(2)该社拟建,两类摊位共90个,且类摊位的数量不少于类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】(1)5平方米;3平方米 (2)10520元【解析】【分析】(1)设类摊位占地面积平方米,则类占地面积平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建类摊位个,则类个,设费用为,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【详解】解:(1)设每个类摊位占地面积平方米,则类占地面积平方米BE AE EF BE ∴=2BE a a BE=BE =Rt ABE △tan AE ABE BE ∠===tan tan APE ABE ∠=∠=A B A B A B A B 35A B A B B A A x B ()2x -A a B (90)a -z A x B ()2x -由题意得 解得,∴,经检验为分式方程的解∴每个类摊位占地面积5平方米,类占地面积3平方米(2)设建类摊位个,则类个,费用为∵∴,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当时z 有最大值,此时∴建造90个摊位的最大费用为10520元【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点是反比例函数()图象上一点,过点分别向坐标轴作垂线,垂足为,,反比例函数()的图象经过的中点,与,分别相交于点,.连接并延长交轴于点,点与点关于点对称,连接,.(1)填空:_________;(2)求的面积;(3)求证:四边形为平行四边形.6060325x x =⨯-5x =23x -=5x =A B A a B (90)a -z 3(90)a a ≤-022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+22a =10520z =B 8y x =0x >B A C k y x=0x >OB M AB BC D E DE x F G O C BF BG k =BDF ∆BDFG【答案】(1)2 (2)3 (3)见解析【解析】【分析】(1)根据题意设点B 的坐标为(x ,),得出点M 的坐标为(,),代入反比例函数(),即可得出k ;(2)连接,根据反比例函数系数k 的性质可得,,可得,根据,可得点到的距离等于点到距离,由此可得出答案;(3)设,,可得,,根据,可得,同理,可得,,证明,可得,根据,得出,根据,关于对称,可得,,,可得,再根据,即可证明是平行四边形. 【详解】解:(1)∵点B 在上, ∴设点B 的坐标为(x ,), ∴OB 中点M 的坐标为(,), ∵点M 在反比例函数(), ∴k=·=2, 故答案为:2; (2)连接,则, ,8x 2x 4x k y x =0x >OD ||12AOD k S ∆==842AOB S ∆==413BOD S ∆=-=//OF AB F AB O AB (),B B B x y (),D D D x y 8B B x y ⋅=2D D x y ⋅=B D y y =4B D x x =4B E y y =31BE EC =34BD AB =EBD ECF ∆∆∽13CF CE BD BE ==43OC AB BD BD ==41OC CF =O G C OC CG =4CG CF =3FG CF =BD FG =//BD FG BDFG 8y x =8x2x 4xk y x=0x >2x 4xOD ||12AOD k S ∆==∵, ∴,∵,∴点到的距离等于点到距离,∴;(3)设,,,,又∵,∴,同理, ∴,, ∵,∴, ∴, ∵, ∴, ∴,关于对称,∴,∴,∴,又∵,∴,又∵,∴是平行四边形.【点睛】本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.842AOB S ∆==413BOD S ∆=-=//OF AB F AB O AB 3BDF BDO S S ∆∆==(),B B B x y (),D D D x y 8B B x y ⋅=2D D x y ⋅=B D y y =4B D x x =4B E y y =31BE EC =34BD AB =//AB BC EBD ECF ∆∆∽13CF CE BD BE ==43OC AB BD BD ==41OC CF =O G C OC CG =4CG CF =43FG CG CF OF CF CF =-=-=3BD CF =BD FG =//BD FG BDFG25.如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上,当与相似时,请直接写出所有满足条件的点的坐标.【答案】(1); (2) (3),,,【解析】【分析】(1)根据,得出,,将A ,B 代入得出关于b ,c 的二元一次方程组求解即可;(2)根据二次函数是,,得出的横坐标为,代入抛物线解析式求出,设得解析式为:,将B ,D 代入求解即可;(3)由题意得tan ∠tan ∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3,分①当△PBQ ∽△ABD 时,②当△PQB ∽△ABD 时,③当△PQB ∽△DAB 时,④当△PQB ∽△ABD 时四种情况讨论即可.2y x bx c =++x A B A B 33BO AO ==B y C D BC =b c BD P x Q BA ABD ∆BPQ ∆Q 1-32--=+y x 1⎛⎫- ⎪ ⎪⎝⎭(1-1,0⎫⎪⎪⎭(5-33BD AO ==(10)A -,(30)B ,2y x bx c =++2312y x x ⎛=-- ⎝BC =(3,0)B D (1)D BD y kx b =+【详解】解:(1)∵,∴,, ∴将A ,B 代入得, 解得,∴,; (2)∵二次函数是,, ∴的横坐标为,代入抛物线解析式得∴,设得解析式为:将B ,D 代入得, 解得,∴直线的解析式为; (3)由题意得tan ∠tan ∠ADB=1, 33BD AO ==(10)A -,(30)B ,2y x bx c =++030b c b c -+=++=132b c ⎧=--⎪⎪⎨⎪=⎪⎩1b =-32c =--2312y x x ⎛=-+- ⎝BC =(3,0)B D 3312y ⎛=+-- ⎝312=++-1=+(1)D +BD y kx b =+103b k b =+=+⎪⎩k b ⎧=⎪⎨⎪=⎩BD =y x由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3, ①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即, 解得tan ∠PQB=tan ∠ADB 即, 解得此时Q 的坐标为(0); ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即=1,解得n=-2,tan ∠QPB=tan∠ABD 即,解得x=1- 此时Q 的坐标为(1-,0);③当△PQB ∽△DAB 时,tan ∠PBQ=tan∠ABD 即, 解得 tan ∠PQM=tan ∠DAE 即, 解得, 此时Q,0); ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即=1, 解得n=-2, 2n -11n x-=-2n -1n x --2n -1n x -=-2n -tan ∠PQM=tan ∠DAE 即, 解得x=5-Q 的坐标为(5-0);综上:Q 的坐标可能为,,,. 【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.1n x -=-1⎛⎫- ⎪ ⎪⎝⎭(1-1,0⎫-⎪⎪⎭(5-。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.42.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°4.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π5.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-6.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-27.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°8.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC9.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50010.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B. C. D.二、填空题(本题包括8个小题)11.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.12.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.13.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.14.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.15.地球上的海洋面积约为361000000km1,则科学记数法可表示为_______km1.16.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.17.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.18.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.三、解答题(本题包括8个小题)19.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数kyx的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.20.(6分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.21.(6分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?22.(8分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环) 6 7 8 6 8乙命中的环数(环) 5 10 7 6 7根据以上数据,下列说法正确的是( )A.甲的平均成绩大于乙B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同D.甲的成绩更稳定2.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵3.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm4.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-5.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.47.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A.0 B.1 C.2 D.38.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠29.不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是()A.5 B.4 C.3 D.210.函数1y x=-的自变量x的取值范围是()A.1x>B.1x<C.1x≤D.1x≥二、填空题(本题包括8个小题)11.如图,四边形ACDF是正方形,CEA∠和ABF∠都是直角,且点,,E A B三点共线,4AB=,则阴影部分的面积是__________.12.写出一个大于3且小于4的无理数:___________.13.因式分解:2xy4x-=.小正方形,则每个小矩形的面积是_____.15.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .16.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时. 17.在△ABC 中,∠C =30°,∠A ﹣∠B =30°,则∠A =_____.18.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.三、解答题(本题包括8个小题)19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?21.(6分)如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE .求证:△ABE ∽△DEF .若正方形的边长为4,求BG 的长.22.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.23.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.24.(10分)先化简,再计算:22444332x x x xx x x++--÷++-其中322x=-+.25.(10分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.26.(12分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:(环),乙命中的环数的平均数为:(环),∴甲的平均数等于乙的平均数,故选项A错误;甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,因为2.8>0.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,波动越小,数据越稳定.同时还考查了众数的中位数的求法. 2.D 【解析】试题解析:A 、∵4+10+8+6+2=30(人), ∴参加本次植树活动共有30人,结论A 正确; B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确; C 、∵共有30个数,第15、16个数为5, ∴每人植树量的中位数是5棵,结论C 正确; D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵), ∴每人植树量的平均数约是4.73棵,结论D 不正确. 故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数. 3.B 【解析】 【分析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长. 【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切, ∴OC ⊥AB , ∵OA=6,OC=3, ∴OA=2OC , ∴∠A=30°, ∴∠AOC=60°, ∴∠AOB=120°, ∴劣弧AB 的长=1206180π⨯⨯ =4π,故选B .本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键. 4.B 【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误; B 、y=﹣3x ,y 随着x 的增大而减小,正确; C 、3y x=,每个象限内,y 随着x 的增大而减小,故此选项错误; D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B .考点:反比例函数的性质;正比例函数的性质. 5.B 【解析】 【分析】先由平均数是3可得x 的值,再结合方差公式计算. 【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3,解得:x=4,则数据为1、2、3、4、5, ∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B . 【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义. 6.C 【解析】 【分析】试题解析:∵图象与x 轴有两个交点, ∴方程ax 2+bx+c=0有两个不相等的实数根, ∴b 2﹣4ac >0, ∴4ac ﹣b 2<0, ①正确; ∵=1∴b=2a , ∵a+b+c <0, ∴b+b+c <0,3b+2c <0,∴②是正确; ∵当x=﹣2时,y >0, ∴4a ﹣2b+c >0, ∴4a+c >2b , ③错误;∵由图象可知x=﹣1时该二次函数取得最大值, ∴a ﹣b+c >am 2+bm+c (m≠﹣1). ∴m (am+b )<a ﹣b .故④正确 ∴正确的有①②④三个, 故选C .考点:二次函数图象与系数的关系. 【详解】 请在此输入详解! 7.C 【解析】 【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒, 根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出225,AQ AB BQ =+=,DFO BAQ ∠=∠直接用余弦可求出. 【详解】详解:∵四边形ABCD 是正方形, ∴AD=BC,90DAB ABC ∠=∠=, ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中, AD ABDAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ ,∵90Q QAB ∠+∠=, ∴90P QAB ∠+∠=, ∴90AOP ∠=, ∴AQ ⊥DP ; 故①正确;②无法证明,故错误. ∵BP=1,AB=3, ∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C . 【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高. 8.D 【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2. 故选D 9.C 【解析】 【分析】先解不等式组得到-1<x≤3,再找出此范围内的正整数. 【详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个, 故选C .本题考查了一元一次不等式组的整数解,解题的关键是正确得出一元一次不等式组的解集.10.D【解析】【分析】根据二次根式的意义,被开方数是非负数.【详解】x-≥,根据题意得10x≥.解得1故选D.【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.二、填空题(本题包括8个小题)11.8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·AB CE=8,2故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.12π等,答案不唯一.本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16都是完全平方数,10,11,12,,15都是无理数.13.. 【解析】 要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 14.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.15.2.【解析】试题分析:若22m n x y --与423m n x y +是同类项,则:4{22m n m n -=+=,解方程得:2{2m n ==-.∴3m n -=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.1640403 【解析】【分析】设该船行驶的速度为x 海里/时,由已知可得BC =3x ,AQ ⊥BC ,∠BAQ =60°,∠CAQ =45°,AB =80海里,在直角三角形ABQ 中求出AQ 、BQ ,再在直角三角形AQC 中求出CQ ,得出BC =40+3=3x ,解方程即可.【详解】该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+40403+/时;40403+.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17.90°.【解析】【分析】根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.18.31+【解析】【分析】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a ,则,CD GF DE a===解直角三角形可得DF,根据正切的定义即可求得GCD∠的正切值【详解】延长GF与CD交于点D,过点E作EM DF⊥交DF于点M,设正方形的边长为a,则,CD GF DE a===AF//CD,90,CDG AFG∴∠=∠=1209030,EDM∠=-=3cos30,DM DE=⋅=23,DF DM a∴==)331,DG GF FD a a a∴=+==()3131tan.aGDGCDCD a∠===3 1.【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.三、解答题(本题包括8个小题)19.规定日期是6天.【解析】【分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭ 解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20.(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°, 活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人). 点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.21.(1)见解析;(2)BG=BC+CG=1.【解析】【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.22.(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A 港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.考点:一次函数的应用.23.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.【解析】【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG ,∵AG=GD ,∴AD=CF ,∴四边形ACDF 是矩形.【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.24.23x -+;-【解析】【分析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.【详解】 解:22444332x x x x x x x ++--÷++- =2(2)(2)(2)332x x x x x x x ++--÷++- =2(2)233(2)(2)x x x x x x x +--⋅+++- =233x x x x +-++ =23x -+当3x =-+时,原式== 【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.25.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D 作于DE ⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD 即为所求;(2)如图,过D 作DE ⊥AB 于E,∵AD 平分∠BAC,∴DE=CD=4,∴S △ABD =12AB·DE=20cm 2. 【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.26.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22 人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是( )A .20,19B .19,19C .19,20.5D .19,202.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差3.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根 4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°6.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°7.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:98.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC9.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .2410.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .70二、填空题(本题包括8个小题)11.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______.12.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.13.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =5cm , 且tan ∠EFC=,那么矩形ABCD 的周长_____________cm .14.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.15.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.16.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.17.关于x 的不等式组3515-12x x a ->⎧⎨≤⎩有2个整数解,则a 的取值范围是____________.18.如图,点A ,B 在反比例函数k y x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.三、解答题(本题包括8个小题)19.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”思想求方程23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.20.(6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:EF•CG=EG•CB .21.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图①中m 的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 22.(8分)已知.化简;如果、是方程的两个根,求的值. 23.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.24.(10分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)25.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.26.(12分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202=1.故选D .【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义. 2.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D .【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 3.C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.4.A【解析】。
广东省湛江市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·深圳模拟) 下列计算正确的是A . 3a+2b=5abB . (-3a2b)2=-6a4b2C . +=4D . (a-b)2=a2-b22. (2分)分式有意义的条件是()A . x≠0B . y≠0C . x≠0或y≠0D . x≠0且y≠03. (2分) (2019九上·平房期末) 下列运算一定正确的是()A .B .C .D .4. (2分)(2019·河池模拟) 一组数据:5,7,10,5,7,5,6.这组数据的中位数和众数()A . 7和10B . 7和5C . 7和6D . 6和55. (2分) (2020七下·宁波期中) 在下列运算中,正确的是()A . (x﹣y)2=x2﹣y2B . (a+2)(a﹣3)=a2﹣6C . (a+2b)2=a2+4ab+4b2D . (2x﹣y)(2x+y)=2x2﹣y26. (2分) (2020八上·安陆期末) 点P(m,-2)与点P1(-4,n)关于x轴对称,则m,n的值分别为()A . ,B . ,C . ,D . ,7. (2分)(2017·洛阳模拟) 如图是由大小相同的小正方体搭成的几何体的主视图和左视图,搭成这样的几何体最多需要a个这样的小正方体,则a=()A . 16B . 12C . 9D . 88. (2分)(2017·岳阳) 观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A . 0B . 2C . 4D . 69. (2分)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A .B .C .D .10. (2分)如图,已知:∠MON=30o ,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为()A . 6B . 12C . 32D . 64二、填空题 (共6题;共6分)11. (1分) (2019七上·泰兴期中) 若规定a*b=5a+2b-1,则(-5)*6的值为________.12. (1分)(2017·武汉模拟) 计算: + =________.13. (1分)如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为________14. (1分) (2020九上·遂宁期末) 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是________.15. (1分)(2017·徐汇模拟) 如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子________.16. (1分) (2016九上·海盐期中) 已知抛物线y=x2﹣(k+1)x+4的顶点在x轴上,则k的值是________.三、解答题 (共8题;共78分)17. (5分) (2016七下·宝坻开学考) 解方程:.18. (5分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使得BM=2DE,连接ME①求证:ME⊥BC;②求∠EMC的度数.19. (11分) (2017八上·济南期末) 某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有________人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.20. (10分)(2017·桂林模拟) 某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. (10分) (2017九上·钦州期末) 如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2 ,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.22. (15分) (2017九上·桂林期中) 如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)求△DOC的面积.(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.23. (7分)(2017·岳阳模拟) 在△ABC中,CA=CB,在△AED中,DA=DE,点D,E分别在CA,AB上.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是________;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是________;,(3)若∠ACB=∠ADE=2α(0°<α<90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE 的数量关系,并加以证明(用含α的式子表示).24. (15分)(2017·永康模拟) 已知,抛物线y=ax2+bx+4 与x轴交于点A(﹣3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=ax2+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10、答案:略二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共78分)17-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22、答案:略23-1、23-2、23-3、24-1、24-2、24-3、。
湛江市2020年初中毕业生学生考试 数学试卷说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1.(2020广东湛江,1,4分)下列各数中,最小的数是( )A .1B .12C .0D .-1 【答案】D. 2.(2020广东湛江,2,4分)国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A .621310⨯ B .721.310⨯ C .82.1310⨯ D .92.1310⨯【答案】C. 3.(2020广东湛江,3,4分)气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是( )A .24B .22C .20D .17 【答案】C. 4.(2020广东湛江,4,4分)如左图是由6个大小相同的正方体组成的几何体,它的左视图是( )D.C.B.A.【答案】A.5.(2020广东湛江,5,4分)已知一个多边形的内角和是540°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 【答案】B. 6.(2020广东湛江,6,4分)在平面直角坐标系中,点A(2,-3)在( )象限A .一B .二C .三D .四 【答案】D. 7.(2020广东湛江,7,4分)下列运算正确的是( )A .236a a a ⋅=B .426()a a = C .43a a a ÷= D .222()x y x y +=+【答案】C.8.(2020广东湛江,8,4分)函数y =x 的取值范围是( )A .3x >-B .3x ≥-C .3x ≠-D .3x ≤- 【答案】B.9.(2020广东湛江,9,4分)计算222xx x ---的结果是( ) A .0 B .1 C .-1 D .x 【答案】C. 10.(2020广东湛江,10,4分)由于受H 7N 9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价%a 后售价下调到每斤5元,下列所列的方程中正确的是( )A .212(1%)5a += B .212(1%)5a -= C .12(12%)5a -= D .212(1%)5a -=【答案】B. 11.(2020广东湛江,11,4分)如图,AB 是⊙O 的直径,∠AOC =110°,则∠D=( )A .25°B .35°C .55°D .70°第11题图【答案】B.12.(2020广东湛江,12,4分)四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )平行四边形 等腰梯形 圆 三角形 A .12 B .14 C .34D .1 【答案】A.二、填空题:本大题共4小题,每小题4分,共16分13.(2020广东湛江,13,4分)分解因式:24x -= . 【答案】(2)(2)x x +-.14.(2020广东湛江,14,4分)抛物线21y x =+的最小值是 . 【答案】1.15.(2020广东湛江,15,4分)若反比例函数ky x=的图像经过点A (1,2),则k = . 【答案】2. 16.(2020广东湛江,16,4分)如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则顶点3A 的坐标是 ,22A 的坐标是 .xy A 9A 6A 3A 8A 7A 5A 4A 2A 1O第16题图【答案】(0,31-),(-8,-8).三、解答题:本大题共10小题,其中17-18每小题6分,19-22每小题8分,23-25每小题10分,26题12分,共86分. 17.(2020广东湛江,17,6分)计算:269(1)----【解题过程】解:269(1)---- =631--=2.18.(2020广东湛江,18,6分)解不等式组21(1)10(2)x x x +>⎧⎨-<⎩,并把它的解集在数轴上表示出来.解:解不等式(1)解得:1x >-; 解不等式(2)解得:1x <所以不等式组的解集为:11x -<< 在数轴上表示如下:19.(2020广东湛江,19,8分)如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD .求证:AC =DF .【解】证明:∵FB =CE ∴BC =EF∵ AB ∥ED ∴∠B =∠E∵ AC ∥EF ∴∠ACB =∠DFE ∴△ABC ≌△DEF ∴AC =DF 20.(2020广东湛江,20,8分)把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上数字1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中各随机投取一张. (1)试求取出的两张卡片数字之和为奇数概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由. 解:(1)用树状图列出所有的可能的情形如下:2 3 4 3 4 5 4 5 6和1 2 31 2 3开始1231 2 3第一组第二组从树状图可看出一共有9种等可能事件,和为偶数有4种情形,所以(49P 和为奇数)=(2)由于(4599P 和为偶数)=1-=,所以这个游戏不公平.21.(2020广东湛江,21,8分)如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A 的距离AB .(≈1.732)【解】解:由于CD∥BE所以∠EBC+∠DCB=180°因为∠AEB=60°,∠DCB=30°,所以∠ABC=90°在直角△ABC中BC =8012⨯=40由直角三角形三边关系得:AB=BC tan60⨯=(海里)答:AB的长约为69.3海里22.(2020广东湛江,22,8分)2020年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表频数分布直方图成绩(分)频数80604020100.590.580.570.550.560.5(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【解】解:(1)200,75,0.12(2)补全后的频数分布直方图如下图:频数分布直方图(3)1500(0.080.2)⨯+=420(人)23.(2020广东湛江,23,10分)如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P =∠BAC .(1)求证:P A 为⊙O 的切线; (2)若OB =5,OP =253,求AC 的长.解:(1)设AC 与OP 相交于点H∵AB 是直径,∴AC ⊥BC ,∠BAC +∠B=90° ∵OP ∥BC ,∴OP ⊥AC ,∠AOB =∠B ∵∠P =∠BAC∴∠P +∠AOP =90°,于是∠OAB =90° ∴P A 为⊙O 的切线(2)∵OP ⊥AC ,∴AC =2AH在直角三角形P AO 中,AP 203== 由面积法可知:20534253OA APAH OP⨯⨯=== 所以AC =824.(2020广东湛江,24,10分)阅读下面的材料,先完成阅读填空,再按要求答题:1sin 302=,3cos302=,则22sin 30cos 30+= ;①2sin 452=,2cos 452=,则22sin 45cos 45+= ;② 1sin 602=,3cos 602=,则22sin 60cos 60+= ;③…观察上述等式,猜想:对任意锐角A ,都有22sin cos A A += .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cos 0A >)且3sin 5A =,求cos .A【解】解:①②③④都填1(1)如下图,过点B 作BH ⊥BC 于点H ,222BH AH AB +=则sin BH A AB =,cos AHA AB= 所以222222222sin cos 1BH AH BH AH A B AB AB AB ++=+==(2)∵22sin cos 1A B +=,3sin 5A =, ∴22316cos 1()525A =-=∵cos 0A >,∴cos A =4525.(2020广东湛江,25,10分)周末,小明骑自行车从家里出发到野外郊游,从家出发1小时后后达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y (km )与小明离家时间x (h )的函数图象.(1)求小明骑车的速度和在南业所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.【解】(1)小明骑车的速度为:20千米/小时,在南亚游玩的时间为1小时; (2)设妈妈驾车的速度为x 千米/小时,则251520206060x ⨯=+⨯ 解得60x = (千米/小时)点C 的坐标为(9,254)设直线CD 的解析为:y kx b =+所以11069254k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得60,110k b ==-所以CD 的解析式为:60110y x =-26.(2020广东湛江,26,12分)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y 轴于A 点,交 x 轴于B 、C 两点(点B 在点C 的左侧),已知A 点坐标为(0,-5). (1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与OC 的位置关系,并给出证明;(3)在抛物线上是否存在一点P ,使△ACP 是以AC 为直角边的三角形,若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为:2(3)4y a x =-+, 代入点(0,-5),得594a -=+ 解得:a =-1所以抛物线的解析式为:2(3)4y x =--+或265y x x =-+-(2)对于265y x x =-+-,令y=0,解得121,5x x == 所以B ,C 两点的坐标为:B (1,0),C (5,0) OB =1,BC =4,OA =5,AB 26 过点C 作DH ⊥BD 于点H , 则△ABO ∽△BCH ∴CH BCOB AB =,∴126CH =∴CH 22613抛物线的对称轴:3x =,点C 到直线3x =的距离为22613所以抛物线的对称轴与⊙C 相外离第(2)题图 第(3)题图(3)分别过点C 和A 作1CP ⊥AC 于点C ,交抛物线于点P ,作CQ ⊥AC 于点C ,交抛物线于点Q.由于OC =OA =5,∴∠ACO =∠CMP =45°,∴MC =CP设OM =t ,则PM =CM =5-t ,∴P 点的坐标为(t ,5-t ),于是2565t t t -=-+-解得t =2,t =5(舍去)∴P 点的坐标为(2,3)同理可求得Q (7,-12)综上所述P 的坐标为(2,3)或(7,-12)友情提示:一、认真对待每一次考试。
2020年广东省湛江市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(2020广东湛江)9的相反数是( ) A .﹣9 B .9 C .19D .−19答案:A2.(2020广东湛江)一组数据2,4,3,5,2的中位数是( ) A .5 B .3.5 C .3 D .2.5答案:C3.(2020广东湛江)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2) B .(﹣2,3) C .(2,﹣3) D .(3,﹣2)答案:D4.(2020广东湛江)若一个多边形的内角和是540°,则该多边形的边数为( ) A .4 B .5 C .6 D .7答案:B5.(2020广东湛江)若式子√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x ≠2 B .x ≥2 C .x ≤2 D .x ≠﹣2答案:B6.(2020广东湛江)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A .8 B .2√2 C .16 D .4答案:A7.(2020广东湛江)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2 B .y =(x ﹣1)2+1 C .y =(x ﹣2)2+2 D .y =(x ﹣1)2﹣3答案:C8.(2020广东湛江)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1答案:D9.(2020广东湛江)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.√2C.√3D.2答案:B10.(2020广东湛江)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个答案:B二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(2020广东湛江)分解因式:xy﹣x=.答案:.x(y﹣1)12.(2020广东湛江)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.答案:413.(2020广东湛江)若√a−2+|b+1|=0,则(a+b)2020=.答案:114.(2020广东湛江)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.答案:715.(2020广东湛江)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .答案:60°。
2020年广东省湛江市初中毕业生学业考试数学试题答案数 学 试 卷讲明:1.本试卷总分值150分,考试时刻90分钟.2.本试卷共6页,共5大题.3.答题前,请认真阅读答题卡上的〝本卷须知〞,然后按要求将答案写在答题卡相应的位置上.4.请考生保持答题卡的整洁,考试终止,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.一、选择题:本大题10个小题,其中1~5每题3分,6~10每题4分,共35分.在每题给出的四个选项中,只有一项为哪一项符号题目要求的〕 1.以下四个数中,在1-和2之间的数是〔 〕 A .0 B .2- C .3- D .3 2.以下各式中,与2(1)x -相等的是〔 〕 A .21x -B .221x x -+C .221x x --D .2x3.湛江是个漂亮的海边都市,三面环海,海岸线长达1556000米,数据1556000用科学记数法表示为〔 〕 A .71.55610⨯ B .80.155610⨯ C .515.5610⨯D .61.55610⨯4.在右图的几何体中,它的左视图是〔 〕5.沃尔玛商场为了了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如下图,依照图中给出的信息,这100名顾客中对该商场的服务质量表示不中意的有〔 〕 A .6人 B .11人 C .39人 D .44人第4题图A .B .C .D .A 44%B 39%C 11%D A :专门中B :中意C :讲不清D :不中意第5题图ABCDE第6题图6.如图,在等边ABC △中,D E 、分不是AB AC 、的中点,3DE =,那么ABC △的周长是〔 〕A .6B .9C .18D .247.如图,在平面直角坐标系中,菱形OACB 的顶 点O 在原点,点C 的坐标为(40),,点B 的纵坐标 是1-,那么顶点A 的坐标是〔 〕A .(21)-,B .(12)-,C .(12),D .(21), 8.依照右图所示程序运算函数值, 假设输入的x 的值为52函数值为〔 〕 A .32 B .25C .425D .2549.以下讲法中:①4的算术平方根是±2; 与③点(23)P -,关于原点对称的点的坐标是(23)--,; ④抛物线21(3)12y x =--+的顶点坐标是(31),. 其中正确的选项是〔 〕 A .①②④ B .①③ C .②④ D .②③④10.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P ,那么α〔 〕A .30°B .40°C .80°D .不存在二、填空题:本大题共10个小题,其中11~15每题3分,16~20每题4分,共35分. 11.2-的相反数是 .12.要使分式13x -有意义,那么x 的取值范畴是 .13.如图,155AB CD ∠=∥,°,那么2∠= . 14.分解因式:22m n -= .15.在一个样本中,40个数据分不落在4个组内,第一、二、四组数据个数分不为5、12、第7题图P α α 第10题图 第8题图A BCD12 第13题图8,那么第三组的频数为 .16.如图,AB 是O ⊙的直径,C D E 、、是O ⊙上的点,那么12∠+∠= °.17.一件衬衣标价是132元,假设以9折降价出售,仍可获利10%,那么这件衬衣的进价是 元.18.如图,12O O ⊙、⊙的直径分不为2cm 和4cm ,现将1O ⊙向2O ⊙平移,当12O O = cm 时,1O ⊙与2O ⊙相切.19.22223322333388+=⨯+=⨯,,244441515+=⨯,……,假设288a a b b +=⨯〔a 、b 为正整数〕那么a b += .20.如图,在梯形ABCD 中,90511AB CD A B CD AB ∠+∠===∥,°,,,点M N 、分不为AB CD 、的中点,那么线段MN = . 三、解答题:本大题共2小题,每题8分,共16分.21.如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A表示,设点B 所表示的数为m . 〔1〕求m 的值;〔2〕求01(6)m m -++的值.B C第16题图第18题图BM 第20题图第21题图22.如图,点O A B 、、的坐标分不为(00)(30)(32)-,、,、,,将OAB △绕点O 按逆时针方向旋转90°得到OA B ''△.〔1〕画出旋转后的OA B ''△,并求点B '的坐标;〔2〕求在旋转过程中,点A 所通过的路径AA '的长度.〔结果保留π〕四、解答题:本大题共4小题,每题10分,共40分.23.某语文老师为了了解中考一般话考试的成绩情形,从所任教的九年级〔1〕、〔2〕两班各随机抽取了10名学生的得分,如下图:〔〔2〕假设把16分以上〔含16分〕记为〝优秀〞,两班各有60名学生,请估量两班各有多第22题图1 2 3 4 5 6 7 9 108 编号 九(1)班 1 2 3 4 5 6 7 9 10 8 编号 九(2)班 第23题图少名学生成绩优秀.24.如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P相距 〔1〕军舰N 在雷达站P 的什么方向?〔2〕两军舰M N 、的距离.〔结果保留根号〕25.六张大小、质地均相同的卡片上分不标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张〔放回洗匀〕,再随机抽取第二张.〔1〕用列表法或树状图表示出前后两次抽得的卡片上所标数字的所有可能结果;〔2〕记前后两次抽得的数字分不为m 、n ,假设把m 、n 分不作为点A 的横坐标和纵坐标,求点()A m n ,在函数12y x=的图象上的概率. 26.如图,AB 是O ⊙的切线,切点为B AO ,交O ⊙于点C ,过点C 作DC OA ⊥,交AB 于点D .〔1〕求证:CDO BDO ∠=∠; 〔2〕假设30A O ∠=°,⊙的半径为4,求阴影部分的面积.〔结果保留π〕第24题图N 北AB D 第26题图五、解答题:本大题共2小题,每题12分,共24分.27.某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种 新型产品共50件,下表是试验每件新产品所需原料的相关数据:〔1〕设生产甲种产品x 件,依照题意列出不等式组,求出x 的取值范畴;〔2〕假设甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,写出成本总额y 〔元〕与甲种产品件数x 〔件〕之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.28.矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建 立平面直角坐标系;点P 是OA 边上的动点〔与点O A 、不重合〕,现将POC △沿PC 翻折得到PEC △,再在AB 边上选取适当的点D ,将PAD △沿PD 翻折,得到PFD △,使得 直线PE PF 、重合.〔1〕假设点E 落在BC 边上,如图①,求点P C D 、、的坐标,并求过此三点的抛物线的函数关系式;〔2〕假设点E 落在矩形纸片OABC 的内部,如图②,设OP x AD y ==,,当x 为何值时,y 取得最大值?〔3〕在〔1〕的情形下,过点P C D 、、三点的抛物线上是否存在点Q ,使PDQ △是以PD 为直角边的直角三角形?假设不存在,讲明理由;假设存在,求出点Q 的坐标图①图②第28题图湛江市2018年初中毕业生学业考试数学试卷参考答案与评分讲明35分.二、填空题:本大题共10小题,其中11~15每题3分,16~20每题4分,共35分. 11.2 12.3x ≠ 13.125° 14.()()m n m n +-15.15 16.90 17.108 18.1或3 19.71 20.3三、解答题:本大题共2小题,每题8分,共16分.21.解:〔1〕由题意可得2m =····································································· 2分 〔2〕把m 的值代入得:01(6)21(26)m m -++=+ ·························· 3分=01(8+- ···············································································..... 4分 11+ ................................................................................................. 7分 ......................................................................................................... 8分 22.解:〔1〕如图OA B ''△为所示,点B '的坐标为(23),; .. (4)〔2〕OAB △绕点O 逆时针旋转90°后得OA B ''△点A 所通过的路径AA '是圆心角为90°,半径为3 的扇形OAA '的弧长,因此13(2π3)π42l =⨯⨯=.······························································· 7分即点A 所通过的路径AA '的长度为3π2. ·········· 8分四、解答题:本大题共4小题,每题10分,共40分. 23 ························································································································ 6分 〔2〕7604210⨯=〔名〕,6603610⨯=〔名〕. 第22题图∴九〔1〕班有42名学生成绩优秀,九〔2〕班有36名学生成绩优秀. ·························· 10分24.解:过点P 作PQ MN ⊥,交MN 的延长线于点Q . ········································· 1分 〔1〕在Rt PQM △中,由60MPQ ∠=°, 得30PMQ ∠=° 又36PM =11361822PQ PM ∴==⨯=〔海里〕 ··································································· 3分 在Rt PQN △中,cos 2PQ QPN PN ∠=== 45QPN ∴∠=°即军舰N 到雷达站P 的东南方向〔或南偏东45°〕 ··············································· 5分 〔2〕由〔1〕知Rt PQN △为等腰直角三角形,18PQ NQ ∴==〔海里〕 ··············· 7分在Rt PQM △中,tan 18tan 60MQ PQQPM =∠==··°18MN MQ NQ ∴=-=〔海里〕 ··························································· 9分答:两军舰的距离为()18海里. ··························································· 10分························································································································ 4分 由表可看出,前后两次抽得的卡片上所标数字的所有可能结果有36种. ························· 5分 或画树状图:第24题图N 北 1 1 2 3 4 5 6 2 1 2 3 4 5 6 3 1 2 3 4 5 6 4 1 2 3 4 5 6 5 1 2 3 4 5 6 6 1 2 3 4 5 6第一次: 第二次:从树状图能够看出,所有可能显现的结果有36种,即: ·············································· 3分 〔1,1〕、〔1、2〕、〔1、3〕、〔1、4〕、〔1、5〕、〔1、6〕、 〔2,1〕、〔2、2〕、〔2、3〕、〔2、4〕、〔2、5〕、〔2、6〕 〔3,1〕、〔3、2〕、〔3、3〕、〔3、4〕、〔3、5〕、〔3、6〕 〔4,1〕、〔4、2〕、〔4、3〕、〔4、4〕、〔4、5〕、〔4、6〕 〔5,1〕、〔5、2〕、〔5、3〕、〔5、4〕、〔5、5〕、〔5、6〕 〔6,1〕、〔6、2〕、〔6、3〕、〔6、4〕、〔6、5〕、〔6、6〕 ································ 5分 〔2〕有4个点〔2,6〕、〔3,4〕、〔4,3〕、〔6,2〕在函数12y x=的图象上 ············ 8分 ∴所求概率41369P == ························································································ 10分 26.解:〔1〕AB 切O ⊙于点B ∴OB AB ⊥,即90B ∠=° ····················································································· 1分 又90DC OA OCD ⊥∴∠=,° ············································································· 2分 在Rt COD △与Rt BOD △中 OD OD OB OC ==,Rt Rt ()COD BOD HL ∴△≌△ ············································································ 3分 CDO BDO ∴∠=∠.···························································································· 4分 〔2〕在Rt ABO △中,304A OB ∠==°, 8OA ∴=844AC OA OC ∴=-=-=······················································ 5分 在Rt ACD △中,tan CDA AC∠= 又304A AC ∠==°,tan 30CD AC ∴==·° ······················································ 7分1224233OCD OCDB S S ∴==⨯⨯⨯=△四边形 ······················································ 8分又3060A BOC ∠=∴∠=°,°.260π48π3603OBCS ∴==扇形·. ·············································································· 9分8π33OCDB OBC S S S ∴=-=-阴影四边形扇形. ····················································· 10分 五、解答题:本大题共2小题,每题12分,共24分. 27.解:〔1〕依题意列不等式组得94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤ ···································· 3分AB D 第26题图由不等式①得32x ≤ ························································································· 4分 由不等式②得30x ≥ ························································································· 5分 x ∴的取值范畴为3032x ≤≤ ············································································ 6分 〔2〕7090(50)y x x =+- ·············································································· 8分 化简得204500y x =-+200y -<∴,随x 的增大而减小. ··································································· 9分 而3032x ≤≤∴当32x =,5018x -=时,203245003860y =-⨯+=最小值〔元〕 ··················· 11分答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元. ····························································································· 12分 28.解:〔1〕由题意知,POC PAD △、△均为等腰直角三角形, 可得(30)(03)(41)P C D ,、,、, ··········································································· 2分设过此三点的抛物线为2(0)y ax bx c a =++≠,那么39301641c a b c a b c =⎧⎪++=⎨⎪++=⎩12523a b c ⎧=⎪⎪⎪=-∴⎨⎪⎪⎪=⎩∴过P C D 、、三点的抛物线的函数关系式为215322y x x =-+ ······························ 4分 〔2〕由PC 平分OPE PD ∠,平分APF ∠,且PE PF 、重合,那么90CPD ∠=°图①图②第28题图90OPC APD ∴∠+∠=°,又90APD ADP ∠+∠=° OPC ADP ∴∠=∠.Rt Rt POC DAP ∴△∽△.OP OC AD AP∴=,即34x y x =- ·········································································· 6分 2211414(4)(2)(04)33333y x x x x x x =-=-+=--+<< ∴当2x =时,y 有最大值43. ······································································· 8分 〔3〕假设存在,分两种情形讨论:①当90DPQ ∠=°时,由题意可知90DPC ∠=°,且点C 在抛物线上,故点C 与点Q 重合,所求的点Q 为〔0,3〕 ······················································································ 9分 ②当90DPQ ∠=°时,过点D 作平行于PC 的直线DQ ,假设直线DQ 交抛物线于另一点Q ,点(30)03P C ,、(,),∴直线PC 的方程为3y x =-+,将直线PC 向上平移2个单位与直线DQ 重合,∴直线DQ 的方程为5y x =-+ ·················································· 10分 由2515322y x y x x =-+⎧⎪⎨=-+⎪⎩得16x y =-⎧⎨=⎩或41x y =⎧⎨=⎩ 又点(41)(16)D Q ∴-,,,.故该抛物线上存在两点(03)(16)Q -,、,满足条件. ················································ 12分讲明:以上各题如有其他解〔证〕法,请酌情给分. 第28题图。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB2.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.07254.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>05.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个6.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)7.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.8.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.89.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°10.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)二、填空题(本题包括8个小题)11.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.12.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.13.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 14.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q 15.分解因式:2288a a -+=_______16.已知x 1,x 2是方程x 2-3x-1=0的两根,则1211x x +=______. 17.如果抛物线y =(k ﹣2)x 2+k 的开口向上,那么k 的取值范围是_____. 18.函数32xy x =-中,自变量x 的取值范围是______ 三、解答题(本题包括8个小题)19.(6分)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .求证:△ADE ∽△ABC ;若AD=3,AB=5,求的值.20.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.21.(6分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:EF•CG=EG•CB .22.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.23.(8分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=mx(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.24.(10分)如图,已知点D 在反比例函数ay x=的图象上,过点D 作DB y ⊥轴,垂足为(0,3)B ,直线y kx b =+经过点(5,0)A ,与y 轴交于点C ,且BD OC =,:2:5OC OA =.求反比例函数ay x=和一次函数y kx b =+的表达式;直接写出关于x 的不等式akx b x>+的解集. 25.(10分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.26.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价(元/千克)20 40零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.2.B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.3.B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.5.B 【解析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣2ba=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 6.C 【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2), 故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数; 关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数. 7.A 【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转. 详解:A 、上面小下面大,侧面是曲面,故本选项正确; B 、上面大下面小,侧面是曲面,故本选项错误; C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.8.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题. 【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.9.B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.10.C【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.二、填空题(本题包括8个小题)11.10°【解析】【分析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【详解】∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.12.x≥1【解析】【详解】把y=2代入y=x+1,得x=1, ∴点P 的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n 相应的函数值, 因而不等式x+1≥mx+n 的解集是:x≥1, 故答案为x≥1. 【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 13.2 【解析】【分析】接把点P (a ,b )代入反比例函数y=2x即可得出结论. 【详解】∵点P (a ,b )在反比例函数y=2x的图象上, ∴b=2a, ∴ab=2, 故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.D 【解析】 D .试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M ,AM 最小,与图2不符,可排除A.若微型记录仪位于图1中的点N ,由于AN=BM ,即甲虫从A 到B 时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P ,由于甲虫从A 到OP 与圆弧的交点时甲虫与微型记录仪之间的距离y 逐渐减小;甲虫从OP 与圆弧的交点到A 时甲虫与微型记录仪之间的距离y 逐渐增大,即y 与t 的函数关系的图象只有两个趋势,与图2不符,可排除C. 故选D .考点:1.动点问题的函数图象分析;2.排他法的应用. 15.22(2)a - 【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-.16.﹣1.【解析】试题解析:∵1x ,2x 是方程2310x x --=的两根,∴123x x +=、121x x =-,∴1211x x +=1212x x x x +=31- =﹣1.故答案为﹣1.17.k >2【解析】【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k ﹣2>1.【详解】因为抛物线y =(k ﹣2)x 2+k 的开口向上,所以k ﹣2>1,即k >2,故答案为k >2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18.x≠1【解析】【详解】解:∵32x y x =-有意义, ∴x-1≠0,∴x≠1;故答案是:x≠1.三、解答题(本题包括8个小题)19.(1)证明见解析;(2)35. 【解析】【分析】(1)由于AG ⊥BC ,AF ⊥DE ,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB ,进而可证明△ADE ∽△ABC ;(2)△ADE ∽△ABC ,AD AE AB AC =,又易证△EAF ∽△CAG ,所以AF AE AG AC=,从而可求解. 【详解】(1)∵AG ⊥BC ,AF ⊥DE ,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC ,∴∠AED=∠ACB ,∵∠EAD=∠BAC ,∴△ADE ∽△ABC ,(2)由(1)可知:△ADE ∽△ABC , ∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC ,∴△EAF ∽△CAG , ∴AF AE AG AC=, ∴AF AG =35 考点:相似三角形的判定20.(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x ,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,根据题意得:700(1+x )2=1183,解得:x 1=0.3=30%,x 2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.21.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG 2=GE•GD 得出CG GD GE CG=,再由∠CGD=∠EGC 可知△GCD ∽△GEC ,∠GDC=∠GCE .根据AB ∥CD 得出∠ABD=∠BDC ,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GD GE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EG BG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.22.(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.23.(1)y1=-2x+4,y2=-6x;(2)x<-1或0<x<1.【解析】【分析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.24.(1)y=-6x .y=25x-1.(1)x <2. 【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵BD OC =,:2:5OC OA =, 点A (5,2),点B (2,3),∴523OA OC BD OB ====,,,又∵点C 在y 轴负半轴,点D 在第二象限,∴点C 的坐标为(2,-1),点D 的坐标为(-1,3). ∵点()23D -,在反比例函数y=a x 的图象上, ∴236a =-⨯=-,∴反比例函数的表达式为6y x=-将A (5,2)、B (2,-1)代入y=kx+b ,502k b b +⎧⎨-⎩==,解得:252k b ⎧⎪⎨⎪-⎩==∴一次函数的表达式为2y x25=-.(1)将2y x25=-代入6yx=-,整理得:222605x x-+=,∵()2228246055=--⨯⨯=-<,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,∴不等式ax>kx+b的解集为x<2.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.2.7米.【解析】【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.26.(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】【分析】()1设购进猕猴桃x千克,购进芒果y千克,由总价=单价⨯数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;()2根据利润=销售收入-成本,即可求出结论.【详解】()1设购进猕猴桃x千克,购进芒果y千克,根据题意得:50 20401600x yx y+=⎧+=⎨⎩,解得:{2030x y==.答:购进猕猴桃20千克,购进芒果30千克.()2262050301600420(⨯+⨯-=元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2根据数量关系,列式计算.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .802.一、单选题 如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1253.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个 B .2个 C .3个 D .4个4.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32πC .2πD .3π5.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x =+D .2003503x x=- 632的值应该在( )A .﹣1﹣0之间B .0﹣1之间C .1﹣2之间D .2﹣3之间7.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①a b<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.509.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.1510.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=二、填空题(本题包括8个小题)11.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O 逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.12.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.13.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x ,5,3(x >5),则x 的值是 .14.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数式m 2-m +2017的值为____. 15.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.16.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 .17.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x 里,依题意,可列方程为________.18.若关于x 的方程x 2﹣8x+m =0有两个相等的实数根,则m =_____.三、解答题(本题包括8个小题)19.(6分)先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 20.(6分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.21.(6分)某电视台的一档娱乐性节目中,在游戏PK 环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA 1、BB 1、CC 1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA 1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.22.(8分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .求证:四边形OCED 是矩形;若CE=1,DE=2,ABCD 的面积是 .23.(8分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .24.(10分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.25.(10分)解不等式组21114(2)x x x +-⎧⎨+>-⎩ 26.(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10=∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24=76.故选C.考点:勾股定理.2.B【解析】【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, ∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=1.故选:B .【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.3.C【解析】【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A.120元B.125元C.135元D.140元2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C3.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:15.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟6.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4B .-1或-4C .1或-4D .1或4 7.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个 B .2个 C .3个 D .4个8.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数9.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m10.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12二、填空题(本题包括8个小题)11.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是_____cm .12.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.13.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=23,则BC的长为______.14.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P =40°,则∠ADC=____°.15.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.16.菱形的两条对角线长分别是方程214480-+=的两实根,则菱形的面积为______.x x17.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.18.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.三、解答题(本题包括8个小题)19.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.20.(6分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=m x(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.21.(6分)已知关于x 的一元二次方程3x 2﹣6x+1﹣k=0有实数根,k 为负整数.求k 的值;如果这个方程有两个整数根,求出它的根.22.(8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =k x(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =1.设点A 的坐标为(4,4)则点C 的坐标为 ;若点D 的坐标为(4,n). ①求反比例函数y =k x 的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.23.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.24.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE 是平行四边形.26.(12分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x 元,根据题意列方程得:x+15=(x+40%x )×80%解这个方程得:x=125则这种服装每件的成本是125元.故选B .考点:一元一次方程的应用.2.C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3.A【解析】过C 作CE ⊥AB ,Rt △ACE 中,∵∠CAD=60°,AC=15m ,∴∠ACE=30°,AE=12AC=12×15=7.5m ,, ∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,2∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.4.B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.5.D【解析】【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.6.C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7.C【解析】【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥a x 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0, ∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.8.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.9.D【解析】【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a ,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m .故选D .10.A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.二、填空题(本题包括8个小题)11.40cm【解析】【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则270180r=60π,解得:r=40cm,故答案为:40cm.【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.12.1【解析】【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.13.2【解析】【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB 是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3,OC=2,∴22+22OC PC+=4,2(23)∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15.1【解析】【分析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.16.2【解析】【详解】解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.17.1【解析】【分析】根据题意设小明的速度为akm/h ,小亮的速度为bkm/h ,求出a,b 的值,再代入方程即可解答.【详解】设小明的速度为akm/h ,小亮的速度为bkm/h ,2 3.5 2.5(3.52)(3.5 2.5)210b a b a ⎧=-⎪⎨⎪-+-=⎩ , 解得,12060a b =⎧⎨=⎩ , 当小明到达B 地时,小亮距离A 地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.18.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴x 15=1.50.5, 解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.三、解答题(本题包括8个小题)19.(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.20.(1)y 1=-2x +4,y 2=-6x ;(2)x<-1或0<x<1. 【解析】【分析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.21.(2)k=﹣2,﹣2.(2)方程的根为x 2=x 2=2.【解析】【分析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k 的不等式,求出不等式的解集即可得到k 的值;(2)将k 的值代入原方程,求出方程的根,经检验即可得到满足题意的k 的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k )≥0,解得 k≥﹣2.∵k 为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x 2=x 2=2.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.22. (1)C(2,2);(2)①反比例函数解析式为y =4x ;②直线CD 的解析式为y =﹣12x+1;(1)m =1时,S △OEF 最大,最大值为14. 【解析】【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A 坐标,进而得出点C 坐标,将点C ,D 坐标代入反比例函数中即可得出结论; ②由n=1,求出点C ,D 坐标,利用待定系数法即可得出结论;(1)设出点E 坐标,进而表示出点F 坐标,即可建立面积与m 的函数关系式即可得出结论.【详解】(1)∵点C 是OA 的中点,A(4,4),O(0,0),∴C 4040,22++⎛⎫ ⎪⎝⎭, ∴C(2,2);故答案为(2,2);(2)①∵AD =1,D(4,n),∴A(4,n+1),∵点C 是OA 的中点,∴C(2,32n +), ∵点C ,D(4,n)在双曲线k y x =上, ∴3224n k k n+⎧=⨯⎪⎨⎪=⎩,∴14n k =⎧⎨=⎩, ∴反比例函数解析式为4y x=; ②由①知,n =1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴2241a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线4yx=于F,∴F(m,4m),∴EF=﹣12m+1﹣4m,∴S△OEF=12(﹣12m+1﹣4m)×m=12(﹣12m2+1m﹣4)=﹣14(m﹣1)2+14,∵2<m<4,∴m=1时,S△OEF最大,最大值为14【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.23.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析. 【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.24.(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112.25.证明见解析【解析】【详解】∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四边形BFDE是平行四边形.26.(1)120;(2)54;(3)答案见解析;(4)1650.【解析】【分析】(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【详解】()16655%120÷=,故答案为120;()18⨯=,236054120故答案为54;()3C:12025%30⨯=,如图所示:()4300055%1650⨯=,答:该校最喜爱《中国诗词大会》的学生有1650名.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形2.如图,∠AOB =45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PM PN的值等于( )A .12B .22C .32D .333.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC AB C .BD BC D .AD AC4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C 相似的是( )A .B .C.D.6.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1447.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断8.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE9.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4ac B.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=010.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有()A.1个B.3个C.4个D.5个二、填空题(本题包括8个小题)11.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.12.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).13.已知关于x的方程有两个不相等的实数根,则m的最大整数值是.14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm216.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.17.若关于x的方程2x m2x22x++=--有增根,则m的值是▲18.若一个棱柱有7个面,则它是______棱柱.三、解答题(本题包括8个小题)19.(6分)如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.20.(6分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).22.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.24.(10分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.25.(10分)先化简22442x xx x-+-÷(x-4x),然后从-5<x<5的范围内选取一个合适的正整数作为x的值代入求值.26.(12分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答. 详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.2.B【解析】【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN =22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.3.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.4.B【解析】试题分析:正方形ABCD 绕点A 顺时针方向旋转180°后,C 点的对应点与C 一定关于A 对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B .考点:坐标与图形变化-旋转.5.B【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6.D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.7.A【解析】【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】。
广东省湛江市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分) (2017七上·黄陂期中) 的倒数是()A .B . 5C .D .2. (3分) (2016七上·富宁期中) 如果收入200元记作+200元,那么支出150元记()A . +150元B . -150元C . +50元D . -50元3. (3分)(2018·山西) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A . 6.06×104立方米/时B . 3.136×106立方米/时C . 3.636×106立方米/时D . 36.36×105立方米/时4. (3分) (2020八下·北京期末) 下列图案中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .5. (3分) (2019七下·通化期中) 下列计算正确是()A . =2B . =±2C . =2D . =±26. (3分)(2018·苏州) 如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A .B .C .D .7. (3分)(2018·临沂) 如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A . 42°B . 64°C . 74°D . 106°8. (3分)已知2x6y2和-是同类项,则2m+n的值是()A . 6B . 5C . 4D . 29. (3分)已知a<b,则下列不等式中不正确的是()A . <B . ﹣a+4>﹣b+4C . ﹣4a<﹣4bD . a﹣4<b﹣410. (3分)某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A .B .C .D .11. (3分)(2019·沈阳) 如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A .B .C .D .12. (3分)(2020·扶沟模拟) 数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y=3x和直线y=ax+b交于点(1,3),根据图象分析,方程3x=ax+b的解为()A . x=1B . x=﹣1C . x=3D . x=﹣3二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上 (共6题;共18分)13. (3分) (2018七上·开平月考) -1.5的相反数是 ________,-1.5的绝对值是________,-1.5的倒数是________.14. (3分) (2019八下·乌兰浩特期末) 某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.15. (3分) (2019八下·长宁期末) 方程的解是________.16. (3分)若m+n=7,mn=11,则m2﹣mn+n2的值是________.17. (3分)如图,若双曲线(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为________ .18. (3分)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于________ .三、解答题(本大题共8题,共66分,请将解答过程写在答题卡上) (共8题;共66分)19. (6分)计算-|-3|+.20. (6分)(2019·河池模拟) 如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).①请画出△ABC向左平移5个单位长度后得到的△A B C ;②请画出△ABC关于原点对称的△A B C ;③在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.21. (8分)(2017·河北模拟) 先化简,再求值:,其中x= +1.22. (8.0分)(2018·河南) 每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有________人;(2)扇形统计图中,扇形E的圆心角度数是________;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23. (8分)(2018·重庆模拟) 如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.24. (8分)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购买50根跳绳,如果A型跳绳的数量不多于B型跳绳数量的3倍,那么A型跳绳最多能买多少条?25. (10.0分)(2018·南岗模拟) 如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE 的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD= ,tan∠OBD=2,求⊙O的半径.26. (12分)(2016·西城模拟) 在平面直角坐标系 xOy中,对于点P(x,y),以及两个无公共点的图形W1和W2 ,若在图形W1和W2上分别存在点M (x1 , y1 )和N (x2 , y2 ),使得P是线段MN的中点,则称点M 和N被点P“关联”,并称点P为图形W1和W2的一个“中位点”,此时P,M,N三个点的坐标满足x= ,y=(1)已知点A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),连接AB,CD.①对于线段AB和线段CD,若点A和C被点P“关联”,则点P的坐标为________;②线段AB和线段CD的一“中位点”是Q (2,﹣),求这两条线段上被点Q“关联”的两个点的坐标;(2)如图1,已知点R(﹣2,0)和抛物线W1:y=x2﹣2x,对于抛物线W1上的每一个点M,在抛物线W2上都存在点N,使得点N和M 被点R“关联”,请在图1 中画出符合条件的抛物线W2;(3)正方形EFGH的顶点分别是E(﹣4,1),F(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圆心为T (3,0),半径为1.请在图2中画出由正方形EFGH和⊙T的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.参考答案一、选择题(共12小题,每小题3分,共36分.) (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(共6小题.每小题3分,共18分,请将答案填在答题卡上 (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共8题,共66分,请将解答过程写在答题卡上) (共8题;共66分)19-1、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:92.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .3.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( ) A .我爱美B .宜晶游C .爱我宜昌D .美我宜昌4.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+5.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=kx(k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣366.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A.0.86×104B.8.6×102C.8.6×103D.86×1027.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩8.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm9.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm210.二次函数2y x=的对称轴是()A.直线y1=B.直线x1=C.y轴D.x轴二、填空题(本题包括8个小题)11.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.12.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=▲ °.13.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.15.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________.16.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .17.在△ABC中,点D在边BC上,BD=2CD,AB a=,AC b=,那么AD= .18.函数y=的自变量x的取值范围是_____.三、解答题(本题包括8个小题)19.(6分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.20.(6分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?21.(6分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.22.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.24.(10分)从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)25.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.26.(12分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】 【分析】根据位似的性质得△ABC ∽△A′B′C′,再根据相似三角形的性质进行求解即可得. 【详解】由位似变换的性质可知,A′B′∥AB ,A′C′∥AC , ∴△A′B′C′∽△ABC ,∵△A'B'C'与△ABC 的面积的比4:9, ∴△A'B'C'与△ABC 的相似比为2:3, ∴23OB OB '= , 故选A . 【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 2.C 【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可. 详解:从左边看竖直叠放2个正方形. 故选:C .点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项. 3.C 【解析】试题分析:(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2=(x 2﹣y 2)(a 2﹣b 2)=(x ﹣y )(x+y )(a ﹣b )(a+b ),因为x ﹣y ,x+y ,a+b ,a ﹣b 四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C . 考点:因式分解. 4.C 【解析】 【分析】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由垂径定理得到C 为AB 的中点,再由折叠得到CD=OC ,求出OC 的长,在直角三角形AOC 中,利用勾股定理求出AC 的长,即可确定出AB 的长. 【详解】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3,则3.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.5.B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.6.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).7.A【解析】【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.9.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.10.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).二、填空题(本题包括8个小题)11.1【解析】【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=2286+=1cm.故答案为1.考点:平面展开-最短路径问题.12.1.【解析】试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=12∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.13.3() 6a b-【解析】【分析】根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=12(AE+AF-EF)=12(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【详解】解:如图1,⊙I 是△ABC 的内切圆,由切线长定理可得:AD=AE ,BD=BF ,CE=CF ,∴AD=AE=12[(AB+AC )-(BD+CE )]=12 [(AB+AC )-(BF+CF )]=12(AB+AC-BC ),如图2,∵△ABC ,△DEF 都为正三角形,∴AB=BC=CA ,EF=FD=DE ,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°, ∴∠1+∠2=∠2+∠3=120°,∠1=∠3; 在△AEF 和△CFD 中,13BAC CEF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CFD (AAS );同理可证:△AEF ≌△CFD ≌△BDE ; ∴BE=AF ,即AE+AF=AE+BE=a .设M 是△AEF 的内心,过点M 作MH ⊥AE 于H , 则根据图1的结论得:AH=12(AE+AF-EF )=12(a-b ); ∵MA 平分∠BAC , ∴∠HAM=30°; ∴HM=AH•tan30°=12(a-b )•3)3a b -故答案为:()3a b 6-. 【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.14.1【解析】【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(8-x)2+22,解得:x=17 4,∴4x=1,即菱形的最大周长为1cm.故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.15.0<x<4【解析】【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.16.-6 【解析】 【分析】 分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!17.1233a b +【解析】【分析】首先利用平行四边形法则,求得BC 的值,再由BD=2CD ,求得BD 的值,即可求得AD 的值.【详解】∵AB a =,AC b =,∴BC =AC -AB =b -a ,∵BD=2CD , ∴BD =23BC =2()3b a -, ∴AD =AB +BD =2()3a b a +-=1233a b +.故答案为1233a b +. 18.x≠﹣1【解析】【分析】 根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.三、解答题(本题包括8个小题)19.(1)证明见解析(2)18°【解析】【分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”. 20.男生有12人,女生有21人.【解析】【分析】设该兴趣小组男生有x 人,女生有y 人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x 人,女生有y 人, 依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩,解得:1221x y =⎧⎨=⎩. 答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.21.【解析】试题分析:可证明△ACD ∽△ABC ,则AD AC AC AB=,即得出AC 2=AD•AB ,从而得出AC 的长. 试题解析:∵∠ACD=∠ABC ,∠A=∠A , ∴△ACD ∽△ABC . ∴AD AC AC AB =,∵AD=2,AB=6,∴26ACAC =.∴212AC =.∴AC=考点:相似三角形的判定与性质.22.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.23.(1)100,108°;(2)答案见解析;(3)600人.【解析】【分析】(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人.喜欢用QQ沟通所占比例为:303 10010=,∴QQ的扇形圆心角的度数为:360°×310=108°. (2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100-20-5-30-5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%.∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.(5003)+【解析】【详解】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt △ADB 中,AB=1000,则AD=500,BD=5003,在Rt △ADC 中,AD=500,CD=500, 则BC=5005003+.答:观察点B 到花坛C 的距离为(5005003)+米.考点:解直角三角形25.共有7人,这个物品的价格是53元.【解析】【分析】根据题意,找出等量关系,列出一元一次方程. 【详解】 解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.26.13. 【解析】【分析】先计算括号里面的,再利用除法化简原式,【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭, =()()()()222222a a a a a a -++⋅+- ,=2222a a a a a--+⋅- ,=222a aa a-+⋅-,=2aa+,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式=32133 -+=-.【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .3.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .14C .16D .134.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-5.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π6.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等7.若x ﹣2y+1=0,则2x ÷4y ×8等于( )A .1B .4C .8D .﹣168.如图,菱形ABCD 中,E. F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .249.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A .10B .9C .8D .710.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本题包括8个小题)11.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.13.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______. 14.分解因式:4ax 2-ay 2=________________.15.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .16.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.17.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.18.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.三、解答题(本题包括8个小题)19.(6分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.20.(6分)关于x的一元二次方程230x m x m-++=有两个实数根,则m的取值范围是()A.m≤1B.m<1 C.﹣3≤m≤1D.﹣3<m<121.(6分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.22.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表:地铁站A B C D E X(千米) 89 10 11.5 13 1y (分钟)18 20 22 25 28 (1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.23.(8分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.24.(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?25.(10分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800 510 250 210 150 120 人数 1 1 3 5 3 2(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由. 26.(12分)已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x,故选:B.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.2.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.3.A【解析】【分析】作出树状图即可解题.解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是19, 故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.4.D 【解析】【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,∴∠AOC =90°,∵OC =3, ∴点A 经过的路径弧AC 的长=903180π⨯= 3π2,【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.6.C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.7.B【解析】【分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.8.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236==⨯=,AD EF∴菱形ABCD 的周长44624AD ==⨯=.故选:D .【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.9.D【解析】分析:先根据多边形的内角和公式(n ﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D .点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.10.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .二、填空题(本题包括8个小题)11.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算.12.2【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,∴设高为h ,则6×2×h=16,解得:h=1.∴它的表面积是:2×1×2+2×6×2+1×6×2=2.13.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.14.a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sinα米C .30tanα米D .30cosα米2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.63.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是( )A .y =2x 2+3B .y =2x 2﹣3C .y =2(x+3)2D .y =2(x ﹣3)24.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-5.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )A .90°B .120°C .270°D .360°6.已知平面内不同的两点A (a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣57.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 8.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x 的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .339.如图,四边形ABCD 中,AC ⊥BC ,AD ∥BC ,BC =3,AC =4,AD =1.M 是BD 的中点,则CM 的长为( )A .32B .2C .52D .310.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12二、填空题(本题包括8个小题)11.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 12.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.13.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 _______mm .14.将一副三角尺如图所示叠放在一起,则BE EC的值是 .15.已知直角三角形的两边长分别为3、1.则第三边长为________.16.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.17.在实数范围内分解因式:226x =_________18.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的正弦值为__.三、解答题(本题包括8个小题)19.(6分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.求∠APB 的度数;已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.20.(6分)如图,已知一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数m y x= (x <0)的图象交于点B (﹣2,n ),过点B 作BC ⊥x 轴于点C ,点D (3﹣3n ,1)是该反比例函数图象上一点.求m 的值;若∠DBC=∠ABC ,求一次函数y=kx+b 的表达式.21.(6分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.22.(8分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?23.(8分)如图,已知一次函数y 1=kx+b (k≠0)的图象与反比例函数的图象交于A 、B 两点,与坐标轴交于M 、N 两点.且点A 的横坐标和点B 的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y 1>y 1时x 的取值范围.24.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.25.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣mx>0的解集.26.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO 为α,∴AO=BOtanα=30tanα(米).故选C .考点:解直角三角形的应用-仰角俯角问题.2.D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选:D .【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.C【解析】【分析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y =2x 2向左平移3个单位得到的抛物线的解析式是y =2(x +3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.4.D【解析】【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<1 2a-,由数轴可知1x<-,所以112a-=-,解得1a=-;故选:D.【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.6.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.8.C【解析】【分析】设B (2k ,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC 13角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k . 【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x 轴于F ,设B (2k ,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC 222232OD CD ++13由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=, ∴AE =213213k CD OA OC ⨯⋅==,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC ==sin ∠OCD , ∴EF =1331313OD AE k OC ⋅==, ∵cos ∠OAE =AF CD AE OC ==cos ∠OCD , ∴1321313CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G , ∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0,∴169=15k , 故选C .【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.9.C【解析】【分析】延长BC 到E 使BE=AD,利用中点的性质得到CM=12DE=12AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=12DE=12AB,∵AC⊥BC,∴AB=22AC BC=224+3=5,∴CM=52,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.10.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.二、填空题(本题包括8个小题)11.m >1.【解析】分析:根据反比例函数y=2m x -,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围.详解:∵反比例函数y=2m x -,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.12.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.13.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD .∴△ABE ∽△DCE .∴BE AB EC CD=. ∵在Rt △ACB 中∠B=45°,∴AB=AC .∵在RtACD 中,∠D=30°,∴AC CD tan30==︒.∴BE ABEC CD ===15.4【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3=;②长为3、35=;∴或4.考点:3.勾股定理;4.分类思想的应用.16.(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.17.2(x+3)(x-3).【解析】【分析】先提取公因式2后,再把剩下的式子写成x2-(3)2,符合平方差公式的特点,可以继续分解.【详解】2x2-6=2(x2-3)=2(x+3)(x-3).故答案为2(x+3)(x-3).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.218.【解析】【分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为22.故答案为:22.【点睛】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.三、解答题(本题包括8个小题)19.(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可. 【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,3PH在Rt△BPH中,∠PBH=30°,3∴23PH=50解得325,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形20.(1)-6;(2)122y x=-+.【解析】【分析】(1)由点B(﹣2,n )、D (3﹣3n ,1)在反比例函数m y x=(x <0)的图象上可得﹣2n=3﹣3n ,即可得出答案; (2)由(1)得出B 、D 的坐标,作DE ⊥BC .延长DE 交AB 于点F ,证△DBE ≌△FBE 得DE=FE=4,即可知点F (2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B (﹣2,n )、D (3﹣3n ,1)在反比例函数m y x=(x <0)的图象上, ∴233n m n m -=⎧⎨-=⎩,解得:36n m =⎧⎨=-⎩; (2)由(1)知反比例函数解析式为6y x=-,∵n=3,∴点B (﹣2,3)、D (﹣6,1), 如图,过点D 作DE ⊥BC 于点E ,延长DE 交AB 于点F ,在△DBE 和△FBE 中,∵∠DBE=∠FBE ,BE=BE ,∠BED=∠BEF=90°,∴△DBE ≌△FBE (ASA ),∴DE=FE=4,∴点F (2,1),将点B (﹣2,3)、F (2,1)代入y=kx+b ,∴2321k b k b -+=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+.【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.21.见解析【解析】【分析】(1)二次函数图象经过A (2,0)、B (0,-6)两点,两点代入y=-12x 2+bx+c ,算出b 和c ,即可得解析式;(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-. (2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0,∴422AC OC OA =-=-=, ∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.22.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】【分析】设年平均增长率为x ,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x 1=0.5=50%,x 2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.23.(1)y 1=﹣x+1,(1)6;(3)x <﹣1或0<x <4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式; (1)将两条坐标轴作为△AOB 的分割线,求得△AOB 的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积24.见解析【解析】【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.25.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.26.33+3.5【解析】【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠3可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠33∴333过点E作EG⊥AB于点G,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠3,则33,故旗杆AB的高度为(3)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,42.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°3.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.35cm C.8cm D.53cm4.下列各数中是有理数的是()A.πB.0 C.2D.355.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°6.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A .B .C .D .7.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )A .B .C .D .8.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 9.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等10.已知a 35a 等于( )A .1B .2C .3D .4二、填空题(本题包括8个小题)11.在△ABC 中,AB=AC ,把△ABC 折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N .如果△CAN 是等腰三角形,则∠B 的度数为___________.12.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.13.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.14.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.15.分解因式:(2a+b)2﹣(a+2b)2= .16.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____17.因式分解:2312x-=____________.18.因式分解:3x3﹣12x=_____.三、解答题(本题包括8个小题)19.(6分)解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.20.(6分)计算:()101524532π-⎛⎫-︒--+ ⎪⎝⎭.21.(6分)计算:131|132sin60(2016)83π-︒︒⎛⎫+-+-⎪⎝⎭.先化简,再求值:2344111x xxx x++⎛⎫-+÷⎪++⎝⎭,其中22x=.22.(8分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O 点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.23.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60m ,底座BC 与支架AC 所成的角∠ACB=75°,点A 、H 、F 在同一条直线上,支架AH 段的长为1m ,HF 段的长为1.50m ,篮板底部支架HE 的长为0.75m .求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m ;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)24.(10分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .25.(10分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 延长与圆相交于点F ,与BC 相交于点C .求证:BC 是⊙O 的切线;若⊙O 的半径为6,BC =8,求弦BD 的长.26.(12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.2.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.B 【解析】试题分析:∵从半径为9cm 的圆形纸片上剪去13圆周的一个扇形, ∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r=122ππ=6cm , ∴圆锥的高为2296-=35cm故选B.考点: 圆锥的计算.4.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A 、π是无限不循环小数,属于无理数,故本选项错误;B 、0是有理数,故本选项正确;C 、2是无理数,故本选项错误;D 、35是无理数,故本选项错误,故选B .【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.5.A【解析】【分析】根据∠ABD =35°就可以求出AD 的度数,再根据180BD ︒=,可以求出AB ,因此就可以求得ABC ∠的度数,从而求得∠DBC【详解】解:∵∠ABD =35°,∴的度数都是70°,∵BD 为直径,∴的度数是180°﹣70°=110°,∵点A 为弧BDC 的中点,∴的度数也是110°, ∴的度数是110°+110°﹣180°=40°,∴∠DBC ==20°, 故选:A .【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.6.B【解析】【详解】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式,可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.7.B【解析】 试题解析:选项,,A C D 折叠后都不符合题意,只有选项B 折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.8.B【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式=()23-31a a - =()23-11a a -()=31 a故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.9.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.10.B【解析】【分析】直接利用3,5接近的整数是1,进而得出答案.【详解】∵a为整数,且3<a<5,∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.二、填空题(本题包括8个小题)11.或.【解析】【详解】MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,∴MN 是AB 的中垂线.∴NB=NA .∴∠B=∠BAN ,∵AB=AC∴∠B=∠C .设∠B=x°,则∠C=∠BAN=x°.1)当AN=NC 时,∠CAN=∠C=x°.则在△ABC 中,根据三角形内角和定理可得:4x=180,解得:x=45°则∠B=45°;2)当AN=AC 时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN ,故此时不成立; 3)当CA=CN 时,∠NAC=∠ANC=180x 2-. 在△ABC 中,根据三角形内角和定理得到:x+x+x+180x 2-=180, 解得:x=36°.故∠B 的度数为 45°或36°.12.1.【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 13.7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 14.32k =-【解析】【分析】将点的坐标代入,可以得到-1=212k +,然后解方程,便可以得到k 的值. 【详解】∵反比例函数y =21k x+的图象经过点(2,-1), ∴-1=212k + ∴k =− 32; 故答案为k =−3 2.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答 15.3(a+b )(a ﹣b ).【解析】(2a+b )2﹣(a+2b )2=4a 2+4ab+b 2-(a 2+4ab+4b 2)= 4a 2+4ab+b 2-a 2-4ab-4b 2=3a 2-3b 2=3(a 2-b 2)=3(a+b)(a-b)16【解析】【分析】连接OA ,OC ,根据∠COA=2∠CBA=90°可求出AC=Rt △ACD 中利用三角函数即可求得CD 的长.【详解】解:连接OA ,OC ,∵∠COA=2∠CBA=90°,∴在Rt △AOC 中,==∵CD ⊥AB ,∴在Rt △ACD 中,CD=AC·sin ∠CAD=12=,.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.17.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.18.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.三、解答题(本题包括8个小题)19.﹣1≤x<1.【解析】【分析】。