相似三角形应用复习
- 格式:ppt
- 大小:145.00 KB
- 文档页数:12
考点一、比例线段 1、比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是a mb n=,或写成a :b=m :n 在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a ,b ,c ,d 满足a cb d=或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项。
如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2、比例的性质 (1)基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2(2)更比性质(交换比例的内项或外项)dbc a =(交换内项) ⇒=dcb a ac bd =(交换外项)abc d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):cda b d c b a =⇒= (4)合比性质:dd c b b a d c b a ±=±⇒= (5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
相似三角形复习【知识要点】1、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2、相似三角形的判定方法1.两个三角形相似,一般说来必须具备下列六种图形之一:2. 两个角对应相等的两个三角形__________.3. 两边对应成_________且夹角相等的两个三角形相似.4. 三边对应成比例的两个三角形___________.性质:⎪⎪⎩⎪⎪⎨⎧比的平方、对应面积比等于相似比、对应周长比等于相似、对应边成比例、对应角相等4321判定:⎪⎩⎪⎨⎧、三边对应成比例夹角相等、两边对应成比例,且、两角对应相等3211.相似比:相似三角形对应边的比叫做相似比。
当相似比等于1时,这两个三角形不仅形状相同,而且大小也 相同,这样的三角形我们就称为全等三角形。
全等三角形是相似三角形的特例。
2. 相似三角形的判定:①两角对应相等,两三角形相似。
②两边对应成比例,且夹角相等,两三角形相似。
③三边对应成比例,两三角形相似。
3. 相似三角形的性质:①相似三角形的对应角相等。
②相似三角形的对应线段(边、高、中线、角平分线)成比例。
③相似三角形的周长比等于相似比,面积比等于相似比的平方。
FEC【典型例题】1、如图在4×4的正方形方格中,△ABC 和△DEF 的顶点都在长为1的小正方形顶点上. (1)填空:∠ABC=______,BC=_______. (2)判定△ABC 与△DEF 是否相似?2、如图所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .并证明3、如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF =∠A .(1)求证:BCABEF DE =.(2)证明:BDE ∆与EFC ∆相似。
4、已知,如图,CD 是Rt ABC ∆斜边上的中线,DE AB ⊥交BC 于F ,交AC 的延长线于E , 说明:⑴ ADE ∆∽FDB ∆; ⑵DF DE CD ∙=2.5、已知:如图,□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。
相似三角形复习关键信息项:1、相似三角形的定义及性质定义:____________________________性质:____________________________2、相似三角形的判定方法方法:____________________________示例:____________________________3、相似三角形的应用应用场景:____________________________解题思路:____________________________11 相似三角形的定义相似三角形是指三角分别相等,三边成比例的两个三角形。
两个三角形相似用符号“∽”表示。
111 相似比相似三角形对应边的比称为相似比。
相似比为 1 时,两个三角形全等。
112 相似三角形的性质1、相似三角形的对应角相等,对应边成比例。
2、相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比。
3、相似三角形周长的比等于相似比。
4、相似三角形面积的比等于相似比的平方。
12 相似三角形的判定方法1、两角分别相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
121 直角三角形相似的判定1、一个锐角相等的两个直角三角形相似。
2、两条直角边成比例的两个直角三角形相似。
3、斜边和一条直角边成比例的两个直角三角形相似。
122 判定方法示例例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么三角形 ABC ∽三角形 A'B'C'。
又比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C' 且∠A =∠A',那么这两个三角形相似。
13 相似三角形的应用131 应用场景1、测量物体的高度,如测量旗杆、大树等的高度。
相似三角形复习教学设计一、教学目标1、知识与技能目标学生能够理解相似三角形的定义、性质和判定定理,并能熟练运用它们解决相关问题。
掌握相似三角形的周长比、面积比与相似比的关系,并能进行简单的计算。
2、过程与方法目标通过对相似三角形知识的系统复习,培养学生的归纳总结能力和逻辑思维能力。
经历运用相似三角形解决实际问题的过程,提高学生的数学应用意识和解决问题的能力。
3、情感态度与价值观目标让学生在学习过程中感受数学的严谨性和实用性,激发学生对数学的兴趣。
培养学生合作交流的意识和勇于探索的精神。
二、教学重难点1、教学重点相似三角形的判定定理和性质的应用。
相似三角形周长比、面积比与相似比的关系。
2、教学难点灵活运用相似三角形的知识解决综合性问题。
在实际问题中构建相似三角形模型。
三、教学方法讲授法、练习法、讨论法、多媒体辅助教学法四、教学过程1、知识回顾相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
相似三角形的判定定理:两角对应相等的两个三角形相似。
两边对应成比例且夹角相等的两个三角形相似。
三边对应成比例的两个三角形相似。
相似三角形的性质:相似三角形对应角相等,对应边成比例。
相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
相似三角形的周长比等于相似比,面积比等于相似比的平方。
2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。
分析:因为 DE∥BC,所以△ADE∽△ABC,根据相似三角形对应边成比例可得:AD/AB = AE/AC,即 3/(3 + 2) = 4/(4 + CE),解得 CE = 20/3。
例 2:已知△ABC∽△A'B'C',相似比为 2∶3,△ABC 的周长为16,求△A'B'C'的周长。
分析:因为相似三角形的周长比等于相似比,所以△ABC 的周长∶△A'B'C'的周长= 2∶3,设△A'B'C'的周长为 x,则 16∶x = 2∶3,解得 x = 24。
相似三角形知识点汇总【知识要点】1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ²BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c dad bc =⇔= ②合比性质:±±a b c d a b b c dd =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
相似三角形复习导学案一、学习目标1、掌握相似三角形的定义、性质和判定定理。
2、能够熟练运用相似三角形的性质和判定解决相关问题。
3、通过复习,提高对图形的观察、分析和推理能力。
二、知识梳理1、相似三角形的定义三角分别相等,三边成比例的两个三角形叫做相似三角形。
2、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。
(2)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比。
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
3、相似三角形的判定定理(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
三、典型例题例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。
解:因为 DE∥BC,所以△ADE∽△ABC。
所以 AD/AB = AE/AC因为 AB = AD + BD = 3 + 2 = 5所以 3/5 = 4/(4 + CE)15 = 20 + 3CE3CE =-5CE =-5/3(舍去)所以 CE 的长为 20/3。
例 2:如图,在△ABC 中,∠A = 90°,AB = 8,AC = 6,点 D在 AB 上,且 AD = 4,DE⊥BC 于点 E,求 DE 的长。
解:因为∠A = 90°,AB = 8,AC = 6,所以 BC =√(AB²+ AC²) =√(8²+ 6²) = 10因为∠B =∠B,∠A =∠BED = 90°所以△BDE∽△BAC所以 DE/AC = BD/BC因为 BD = AB AD = 8 4 = 4所以 DE/6 = 4/10DE = 24四、巩固练习1、如图,在△ABC 中,D、E 分别是 AB、AC 边上的点,且DE∥BC,若 AD = 2,BD = 4,AE = 3,则 EC 的长为()A 6B 9C 12D 152、已知△ABC∽△A'B'C',相似比为 3:4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 103、如图,在△ABC 中,D 是 AB 上一点,且∠ACD =∠B,若AD = 1,AC = 2,AB = 4,则 CD 的长为()A 1B √2C 2D 2√2五、拓展提高1、如图,在矩形 ABCD 中,AB = 6,BC = 8,点 E 是 BC 边上一点,连接 AE,将△ABE 沿 AE 折叠,点 B 恰好落在对角线 AC 上的点 F 处,求 CE 的长。
专项训练年度:相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的应用1. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?【答案与解析】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°.又∵∠AOB=∠DOC,∴△AOB∽△DOC.∴.∵BO=50m,CO=10m,CD=17m,∴AB=85m.即河宽为85m.【总结升华】这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条.2. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否相似?为什么?(2)求古塔的高度.【思路点拨】本题考查的是相似三角形的实际应用,要注意的是小明和古塔都与地面垂直,是平行的.【答案与解析】(1)△ABC∽△ADE.∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°.∵∠A=∠A,∴△ABC∽△ADE .(2)由(1)得△ABC∽△ADE,∴.∵AC=2m,AE=2+18=20m,BC=1.6m,∴.∴DE=16m,即古塔的高度为16m.【总结升华】解决相似三角形的实际应用题的关键是题中相似三角形的确定.举一反三【变式】小明把一个排球打在离他2米远的地上,排球反弹后碰到墙上,如果他跳起来击排球时的高度是1.8米,排球落地点离墙的距离是7米,假设排球一直沿直线运动,那么排球能碰到墙上离地多高的地方?【答案】如图,∵AB=1.8米,AP=2米,PC=7米,作PQ ⊥AC,根据物理学原理知∠BPQ=∠QPD,则∠APB=∠CPD ,∠BAP=∠DCP=90°,∴ △ABP ∽△CDP , ∴AB AP DC PC=, 即1.827DC =, ∴DC=6.3米.即球能碰到墙上离地6.3米高的地方.要点二、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比.∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方. ∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.类型二、相似三角形的性质3. (2015•上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【总结升华】本题综合性较强,考查了相似三角形、直角三角形以及平行四边形相关知识,而熟记定理是解题的关键.举一反三【变式】(2015•铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B.提示:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=1=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.4.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.【思路点拨】相似三角形对应的高,中线,角分线对应成比例.【答案与解析】∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC.∵AD⊥BC,∴AD⊥EH,MD=EF.∵矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.由相似三角形对应高的比等于相似比,得,∴,∴,∴.∴EF=6cm,EH=12cm..∴.【总结升华】解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高.举一反三:【变式】有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.∴△ABC∽△A1B1C1∽△A2B2C2且,,∴,∴相似三角形的性质及应用--巩固练习【巩固练习】一、选择题1.(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.2. 如图2, 在△ABC中, D、E两点分别在AB、AC边上, DE∥BC. 若AD:DB = 2:1, 则S△ADE : S△ABC为( ).A. 9:4B. 4:9C. 1:4D. 3:23.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是().A.24米B.54米C.24米或54米D.36米或54米4. 图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB// DE.若△ABC与△DEC的面积相等,且EF=9,AB=12,则DF=( ).A.3 B.7 C.12 D.155.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是().A.6米B.8米C.18米D.24米6.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的()倍.A.2B.4C.2D.64二、填空题7. 如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.8. 已知两个相似三角形的相似比为,面积之差为25,则较大三角形的面积为______.9.(2015•吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm ,则楼高CD 为 m .10. 梯形ABCD 中,AD ∥BC,AC ,BD 交于点O ,若AOD S △=4, OC S △B =9,S 梯形ABCD =________.11.如图,在平行四边形ABCD 中,点E 为CD 上一点,DE:CE=2:3,连接AE,BE,BD,且AE,BD 交于点F ,则::DEF EF BAF S S S △△B △________________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.三、解答题 13. 一位同学想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.9m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m ,又测得地面部分的影长2.7m ,他求得树高是多少?14.(2015•蓬溪县校级模拟)小红用下面的方法来测量学校教学大楼AB 的高度:如图,在水平地面点E 处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B .已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角).15. 在正方形中,是上一动点,(与不重合),使为直角,交正方形一边所在直线于点. (1)找出与相似的三角形. (2)当位于的中点时,与相似的三角形周长为,则的周长为多少?【答案与解析】一.选择题1.【答案】D .【解析】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3;∴BE :BC=1:4;∵DE ∥AC ,∴△DOE ∽△AOC , ∴=,∴S △DOE :S △AOC ==,故选D .2.【答案】B .【解析】提示:面积比等于相似比的平方.3.【答案】C.4.【答案】B.5.【答案】B.【解析】提示:入射角等于反射角,所以△ABP ∽△CDP .6.【答案】C .【解析】提示:面积比等于相似比的平方.二.填空题7.【答案】3.8.【答案】45cm 2.9.【答案】12.10.【答案】25.【解析】∵ AD ∥BC ,∴ △AOD ∽△COB ,∴ 2A O DB OC 49S AO CO S ⎛⎫== ⎪⎝⎭△△,∴AO:CO =2:3, 又∵AODDOC 23S AO S OC ==△△,∴ COD 6S =△,又 C O D A O B S S =△△,∴ ABCD 492625S =++⨯=梯形.11.【答案】4:10:25【解析】∵ 平行四边形ABCD ,∴△DEF ∽△BAF,∴2DEF AEB S DE S AB ⎛⎫= ⎪⎝⎭△△,∵DE:EC=2:3,∴DE:DC=2:5,即DE:AB=2:5,∴DEF BAFS S △△∵△DEF 与△BEF 是同高的三角形,∴DEF BEF S S △△24.510== 12.【答案】2. 三.综合题13.【解析】作CE ∥DA 交AB 于E ,设树高是xm ,∵ 长为1m 的竹竿影长0.9m∴ 1 1.20.9 2.7x -= 即 x =4.2m14.【解析】解:如图,∵根据反射定律知:∠FEB=∠FED ,∴∠BEA=∠DEC∵∠BAE=∠DCE=90°∴△BAE ∽△DCE ∴; ∵CE=2.5米,DC=1.6米, ∴; ∴AB=12.8答:大楼AB 的高为12.8米.15.【解析】(1)与△BPC 相似的图形可以是图(1),(2)两种情况:△PDE ∽△BCP ,△PCE ∽△BCP ,△BPE ∽△BCP .(2)①如图(1),当点P 位于CD 的中点时,若另一直角边与AD 交于点E , 则12PD BC = ∵ △PDE ∽△BCP∴ △PDE 与△BCP 的周长比是1:2∴ △BCP 的周长是2a .②如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E时, 则12PC BC =, ∵ △PCE ∽△BCP∴ △PCE 与△BCP 的周长比是1:2∴ △BCP 的周长是2a .③如图(2),当点P 位于CD 的中点时,若另一直角边与BC 延长线交于点E时,∴ BP BC =∵ △BPE ∽△BCP∴ △BPE 与△BCP ,∴ △BCP 的周长是5..。
相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。