《空间几何体的结构特征》同步练习1
- 格式:doc
- 大小:1.56 MB
- 文档页数:4
《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππ 5252=∴=R R ππ3=∴AH153312221=-=∴H A(2)11O VA ∆ 与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππ .又222221212d r d r R +=+= ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d 这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB .故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。
1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列关于棱柱的说法中正确的是( )A.只有两个面相互平行B.所有棱都相等C.所有面都是四边形D.各侧面都是平行四边形解析:由棱柱的概念和结构特征可知选D.答案:D2.观察如图所示的四个几何体,其中判断不正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:①是棱柱,②是棱锥,③不是棱锥,④是棱台.答案:B3.下列图形经过折叠可以围成一个棱柱的是( )解析:A、B、C中底面多边形的边数与侧面数不相等.答案:D4.在如图所示的长方体中,以O,A,B,C,D为顶点所构成的几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱解析:此几何体有一个面ABCD为四边形,其余各面OAD,OAB,OCD,OBC为有一个公共顶点的三角形,所以此几何体是四棱锥.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)( )解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,每条侧棱都相等,所以每条侧棱长为12 cm.答案:127.关于空间多面体有下面四个结论:①棱锥的侧面不一定是三角形;②棱锥的各侧棱长一定相等;③棱台的各侧棱的延长线交于一点;④用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台.其中正确的结论是________(填写序号).解析:棱锥的侧面是有公共顶点的三角形,但是各侧棱长不一定相等,故①②不正确;棱台是由平行于棱锥底面的平面截棱锥得到的,故各条侧棱的延长线一定交于一点,③正确;只有用一个平行于底面的平面去截棱锥,得到的两个几何体,才能一个是棱锥,一个是棱台,故④不正确.答案:③8.如图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC后,剩余部分的几何体是________(指出几何体的名称及顶点).答案:四棱锥A ′-BCC ′B ′三、解答题9.如图在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积分别为多少?解:(1)如图,折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2. B 级 能力提升1.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此一定不是六棱锥.答案:D2.一个正方体的六个面上分别标有字母A ,B ,C ,D ,E ,F ,下图是此正方体的两种不同放置,则与D 面相对的面上的字母是________.解析:由图知,标字母C 的平面与标有A ,B ,D ,E 的面相邻,则与D 面相对的面为E 面,或B 面,若E 面与D 面相对,则A 面与B 面相对,这时图②不可能,故与D 面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.。
1.1.1 棱柱、棱锥、棱台的构造特征A级根底稳固一、选择题1.以下关于棱柱的说法中正确的选项是( )A.只有两个面相互平行B.所有棱都相等C.所有面都是四边形D.各侧面都是平行四边形解析:由棱柱的概念和构造特征可知选D.答案:D2.观察如下图的四个几何体,其中判断不正确的选项是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:①是棱柱,②是棱锥,③不是棱锥,④是棱台.答案:B3.以下图形经过折叠可以围成一个棱柱的是( )解析:A、B、C中底面多边形的边数与侧面数不相等.答案:D4.在如下图的长方体中,以O,A,B,C,D为顶点所构成的几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱解析:此几何体有一个面ABCD为四边形,其余各面OAD,OAB,OCD,OBC为有一个公共顶点的三角形,所以此几何体是四棱锥.答案:B5.某同学制作了一个对面图案均一样的正方形礼品盒,如下图,那么这个正方体礼品盒的外表展开图应该为(对面是一样的图案)( )解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又一样的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,那么每条侧棱长为________cm.解析:该棱柱为五棱柱,每条侧棱都相等,所以每条侧棱长为12 cm.答案:127.关于空间多面体有下面四个结论:①棱锥的侧面不一定是三角形;②棱锥的各侧棱长一定相等;③棱台的各侧棱的延长线交于一点;④用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台.其中正确的结论是________(填写序号).解析:棱锥的侧面是有公共顶点的三角形,但是各侧棱长不一定相等,故①②不正确;棱台是由平行于棱锥底面的平面截棱锥得到的,故各条侧棱的延长线一定交于一点,③正确;只有用一个平行于底面的平面去截棱锥,得到的两个几何体,才能一个是棱锥,一个是棱台,故④不正确.答案:③8.如下图,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC后,剩余局部的几何体是________(指出几何体的名称及顶点).答案:四棱锥A ′-BCC ′B ′三、解答题9.如图在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)假设正方形边长为2a ,那么每个面的三角形面积分别为多少?解:(1)如图,折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =32a 2. B 级 能力提升1.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此一定不是六棱锥.答案:D2.一个正方体的六个面上分别标有字母A ,B ,C ,D ,E ,F ,以下图是此正方体的两种不同放置,那么与D 面相对的面上的字母是________.解析:由图知,标字母C 的平面与标有A ,B ,D ,E 的面相邻,那么与D 面相对的面为E 面,或B 面,假设E 面与D 面相对,那么A 面与B 面相对,这时图②不可能,故与D 面相对的面上字母为B.答案:B3.如下图,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,求沿正方体外表从点A到点M的最短路程.解:假设以BC为轴展开,那么A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.假设以BB1为轴展开,那么A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体外表从点A到点M的最短路程是13 cm.。
1.1 空间几何体的结构柱、锥、台、球的结构特征知识总结:1.下列几何体是棱柱的有()图2A.5个B.4个C.3个D.2个2.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.()A.1B.2C.3D.43.下列命题中正确的是()A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径4.一个无盖的正方体盒子展开后的平面图,如图14所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.图166.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为. 【变式训练】如图10所示,已知正三棱柱ABC—A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长为_________.图10图11 图127.正方体的截平面不可能...是①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是:()A.①②⑤B.①②④C.②③④D.③④⑤8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.9.如图21,甲所示为一几何体的展开图.图21(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6 cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.简单组合体的结构特征知能训练1.请描述如图1所示的组合体的结构特征.图12.如图2所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图23.连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.4.已知如图4所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图45.如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图76.如图10,说出下列物体可以近似地看作由哪几种几何体组成?图107.图11是一个奖杯,可以近似地看作由哪几种几何体组成?图111.1 空间几何体的结构柱、锥、台、球的结构特征1、分析:棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.答案:D2、分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A3、分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B不正确;圆锥仅有一个底面,所以C不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D不正确.很明显A 正确. 答案:A4、分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点, 则∠ABC=90°.图15答案:90°5、分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O. 答案:O6、解:如图3,在长方体ABCD —A 1B 1C 1D 1中,AB=3,BC=2,BB 1=1. 如图4所示,将侧面ABB 1A 1和侧面BCC 1B 1展开, 则有AC 1=261522=+,即经过侧面ABB 1A 1和侧面BCC 1B 1时的最短距离是26;如图5所示,将侧面ABB 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=233322=+,即经过侧面ABB 1A 1和底面A 1B 1C 1D 1时的最短距离是23;如图6所示,将侧面ADD 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=522422=+,即经过侧面ADD 1A 1和底面A 1B 1C 1D 1时的最短距离是52. 由于23<52,23<26,所以由A 到C 1在正方体表面上的最短距离为23.【变式】分析:将正三棱柱ABC —A 1B 1C 1沿侧棱AA 1展开,其侧面展开图如图11所示,则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图11中AD+DA 1.延长A 1F 至M ,使得A 1F=FM ,连接DM ,则A 1D=DM ,如图12所示.则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图12中线段AM 的长.在图12中,△AA 1M 是直角三角形,则AM=222121)111111(8++++++=+M A AA =10.分析:正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形). 答案:B8、分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17, 设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S. 在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm, 即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.9、答案:(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如图22甲所示.图22(2)需要3个这样的几何体,如图22乙所示.分别为四棱锥:A 1—CDD 1C 1,A 1—ABCD ,A 1—BCC 1B 1.简单组合体的结构特征1、解:图1(1)是由一个圆锥和一个圆台拼接而成的组合体;图1(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体; 图1(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体. 2、【变式】答案:一个大球内部挖去一个同球心且半径较小的球.3、解:如图3(1),正方体ABCD —A 1B 1C 1D 1,O 1、O 2、O 3、O4、O5、O 6分别是各表面的中心.由点O 1、O 2、O 3、O 4、O 5、O 6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图3(2)所示.4、解:如图5所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.5、答案:如图8所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.6、答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.7、答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上 部,在正棱柱上底面的中心放着一个球.。
《空间几何体的结构》同步练习1.在棱柱中( )A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行2.下列命题中正确的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥3.将梯形沿某一方向平移形成的几何体是( )A.四棱柱B.四棱锥C.四棱台D.五棱柱4.如图,在长方体ABCD-A′B′C′D′中,P是对角线AC与BD的交点,若P为四棱锥的顶点,棱锥的底面为长方体的一个面,则这样的四棱锥有( )A.3个B.4个C.5个D.6个5.如图几何体中是棱柱的有( )A .1个B .2个C . 3个D .4个6. 正方体的截平面不可能...是 ①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形下述选项正确的是:( )A .①②⑤B .①②④C .②③④D .③④⑤7.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( )A .31+B .102+C .23D .328.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C 是展开图上的三点,则在正方体盒子中,∠ABC =________.9.如图10所示,已知正三棱柱ABC —A 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长为_________。
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察如图所示的4个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台C.③是棱锥 D.④不是棱柱2.下列关于母线的叙述正确的是( )①在圆柱上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①② B.②③C.①③ D.②④D ①③中两点的连线可能不在侧面上,因此不一定是母线;②中两点的连线符合母线的条件;④中圆柱任意一条母线与圆柱的轴所在的直线平行,因此圆柱的任意两条母线所在的直线是互相平行的.3.下列判断正确的是( )A.棱柱中只能有两个面互相平行B.底面是正方形的直四棱柱是正四棱柱C.底面是正六边形的棱台是正六棱台D.底面是正方形的四棱锥是正四棱锥B A错误,比如四棱柱;B正确;C错误,还应满足正棱台上下底面中心的连线垂直于底面;D错误,还应满足顶点在底面的投影为底面的中心.4.若一正方体沿着表面几条棱裁开放平得到如图L112所示的展开图,则在原正方体中( )A.AB∥CD B.AB∥EFC.CD∥GH D. AB∥GHC 折回原正方体如图所示,则C与E重合,D与B重合,显然CD∥GH.5.如图所示的四个长方体中,由如图所示的纸板折成的是( )D 根据纸板的折叠情况及特殊面的阴影部分可以判断正确选项是D.6.给出下列三个命题:①底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1 C.2 D.37.如图所示,若Ω是长方体ABCDA1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱 D.Ω是棱台D 根据棱台的定义(侧棱的延长线必交于一点,即棱台可以还原成棱锥)可知,几何体Ω不是棱台.8.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点9.如图所示的一个几何体,哪一个是该几何体的俯视图( )答案:C10.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④D11.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )答案:C12.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是( )答案:D第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.关于如图所示的几何体的正确说法为________.(填序号)图L116①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④这是一个被截去一个三棱柱的四棱柱①③④由图易知①③④正确.14.一个无盖的正方体盒子展开后的平面图如图L117所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.15.下列说法中错误的是__________.(填序号)①圆柱的轴截面是过母线的截面中面积最大的;②球的所有截面中过球心的截面的面积最大;③圆台的所有平行于底面的截面都是圆面;④圆锥的所有轴截面都是全等的等腰直角三角形.④根据旋转体的定义可知,圆锥的所有轴截面是全等的等腰三角形.16.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案:2 4解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底边长为4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).18.如图是截去一角的长方体,画出它的三视图.解该图形的三视图如图所示.19.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.20.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.21.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?备特征③.22.如图所示,四边形ABCD绕边AD所在的直线EF旋转,其中AD∥BC,AD⊥CD.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,比较其不同点.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的平行投影可能平行D.若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点答案:D2.在一个几何体的三视图中,正视图和俯视图如图,则相应的侧视图可以为()解析:此空间几何体是由一个半圆锥和一个三棱锥拼接而成的一个简单组合体,由其正视图和俯视图可知其相应的侧视图可为D.答案:D3.(2016山西大同一中高二月考)如果用表示1个立方体,用表示2个立方体叠加,用表示3个立方体叠加,那么如图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()解析:由题意和图可知,左边和右边各为1个正方体,用表示;当中为3个正方体,用表示;上面为2个正方体,用表示.故选B.答案:B4.(2016山西太原五中高二月考)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是()A.①B.②C.③D.④解析:其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其正视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C.答案:C5.(2016安徽蚌埠一中高二期中)已知正六棱柱的底面边长和侧棱长均为2 cm,其三视图中的俯视图如图所示,则其侧视图的面积是()A.4 cm2B.2 cm2C.8 cm2D.4 cm2答案:A6.关于几何体的三视图,下列说法正确的是( )A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽答案:C 由三视图的特点可知选项C正确.7.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段( )A.平行且相等 B.平行不相等C.相等不平行 D.既不平行也不相等答案:A 由斜二测画法规则知平行性是不变的,长度的变化在平行时相同,故仍平行且相等.8.一个几何体的三视图如图L121所示,这个几何体可能是一个( )A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥答案:C 根据三视图,几何体为一个倒放的三棱柱.9.如图是水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么( )A.最短的是ACB.最短的是ABC.最短的是ADD.无法确定谁最短10.如图L123所示,已知四边形ABCD的直观图是一个边长为1的正方形,则原图形的周长为( )A.2 2 B.6 C.8 D.4 2+2图L123图L12411.图L124为水平放置的正方形ABCO,在直角坐标系中点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,点B′到O′x′轴的距离为( )A.12B.22C. 1D.2答案:B 因为BC垂直于x轴,所以在直观图中B′C′的长度是1,且与O′x′轴的夹角是45°,所以B′到O′x′轴的距离是22.12.用斜二测画法画出的某平面图形的直观图如图L125所示,AB平行于y′轴,BC,AD平行于x′轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )图L125A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2答案:C 依题意可知∠BAD=45°,则原平面图形为直角梯形,且上下底边的长分别与BC,AD相等,高为梯形ABCD的高的2 2倍,所以原平面图形的面积为8 cm2.第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是10,则皮球的直径是.解析:直径d=10sin 60°=15.答案:1514.在棱长为1的正方体ABCD-A1B1C1D1中,对角线AC1在六个面上的正投影长度总和是.解析:正方体的对角线AC1在各个面上的正投影是正方体各个面上的对角线,因而其长度都为,所以所求总和为6.答案:615.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的.(填入所有可能的几何体前的编号)①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案:①②③⑤16.(2012·杭州检测)如图Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:∵O′B′=1,∴O′A′=2,∴在Rt△OAB中,∠AOB=90°,OB=1,OA=22,∴S △AOB =12×1×22= 2.答案: 2三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,原平面图形的面积为________.答案:2+2218.画出下列几何体的三视图.解:几何体的三视图如图所示:19.如图,该几何体是由一个长方体木块锯成的. (1)判断该几何体是否为棱柱;(2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图.20.如图是某圆锥的三视图,求其底面积和母线长.21.已知正三棱锥VABC的正视图、侧视图和俯视图如图L1215所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.图L1215解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =2 3. 由俯视图可知三棱锥底面三角形的高为2 3×32=3. ∵三棱锥的高在底面上的投影是底面的中心,且其到点A 的距离为底面△ABC 高的23,∴底面中心到点A 的距离为23×3=2,∴侧视图中VA =42-22=2 3,∴S △VBC =12×2 3×2 3=6.22.如图所示,画出水平放置的四边形OBCD 的直观图.。
空间几何体的结构一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、44.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A15.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形7.图1是由图2中的哪个平面图旋转而得到的()二、填空题8如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l 的最短距离为______.9在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_____.10高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是______.11图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是____.(注:把你认为正确的命题的序号都填上)三、解答题12请给以下各图分类.13别画一个三棱锥和一个四棱台.14面体至少有几个面?这个多面体是怎样的几何体?15合下图,说说它们分别是怎样的多面体?16察以下几何体的变化,通过比较,说出他们的特征.17一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长____.参考答案巩固练习一、选择题1.D 2. B 3C 4C 5D 6。
第八章 立体几何空间几何体的结构1.下列说法错误的是( )A .若棱柱的底面边长相等,则它的各个侧面的面积相等B .四棱柱有4条侧棱,4个侧面,侧面为平行四边形C .多面体至少有四个面D .棱台的侧棱延长后必交于一个点【答案】A2.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线【答案】D【解析】A 错误.如由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥.B 错误.若△ABC 不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥. C 错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.3.(2012安徽高考)若四面体ABCD 的三组对棱分别相等,即AB CD =,AC BD =,AD BC =,则______(写出所有正确结论编号).①四面体ABCD 每组对棱相互垂直②四面体ABCD 每个面的面积相等③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90。
而小于180。
④连接四面体ABCD 每组对棱中点的线段互垂直平分⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长【答案】②④⑤【解析】②四面体ABCD 每个面是全等三角形,面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和等于180ο;④连接四面体ABCD 每组对棱中点构成菱形,线段互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长.4.如图,在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号).①矩形.②不是矩形的平行四边形.③有三个面为直角三角形,有一个面为等腰三角形的四面体.④每个面都是等腰三角形的四面体.⑤每个面都是直角三角形的四面体.【答案】①③④⑤【解析】①对,图中,四边形11ABC D 为矩形.③对,图中,四面体1B ABC -符合条件.④对,图中,四面体11D A BC -符合条件.A 1D 1C 1B 1D CB A⑤对,图中,四面体1A ABC -符合条件.5.如图,长方体1111ABCD A B C D -中,5,4AB BC ==,13AA =,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,求其最短路程【解析】从对角线的一端A 沿侧面到点1C 有三种到达方式:①经侧棱1BB 到达1C ,则最短距离为图中的线段1AC ,B C C 1A543A 1B 1 ∴1AC ==.②经侧棱BC 到达1C ,则最短距离为图中的线段1AC , B 1C 345A D C 1B∴1AC ==. ③经侧棱11A B 到达1C ,则最短距离为图中的线段1AC ,543C1AB A 1B 1D 1∴1AC == .D 1C 1B 1A 1D C B A6.三棱台上底面边长为3,下底面边长为6,高为1,求这个正三棱台的斜高与侧棱长.【解析】如图,113A B =,6AB =,11OO =,∵ 底面ABC ,111A B C 是正三角形, ∴111111333O D B D ===.11633OD BD ===1111223332O B B D ==⋅⋅=226332OB BD ==⋅=在直角梯形11O ODD 中,斜高为1D D∴12DD ==.在直角梯形11O OBB 中,侧棱为1B B ,∴12B B ==.∴正三棱台的斜高与侧棱长分别为2、2.E FO 1O B 1D 1A 1C 1A B CD。
《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。
A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。
该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。
B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。
C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。
D. 棱台的上下底面不一定平行。
2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。
2014高中数学 1-1-1 空间几何体的结构同步练习新人教A版必修2一、选择题1、下列说法不正确的就是( )A、圆柱的平行于轴的截面就是矩形B、圆锥的过轴的截面就是等边三角形C、圆台的平行于底面的截面就是圆D、球的任意截面都就是圆[答案] B[解析] 圆锥的过轴的截面应就是等腰三角形、2、下列命题中,正确的就是( )A、有两个面互相平行,其余各面都就是四边形的几何体叫棱柱B、棱柱中互相平行的两个面叫做棱柱的底面C、棱柱的侧面就是平行四边形,而底面不就是平行四边形D、棱柱的侧棱都相等,侧面就是平行四边形[答案] D3、棱锥侧面就是有公共顶点的三角形,能围成一个棱锥侧面的正三角形的个数的最大值就是( )A、3B、4C、5D、6[答案] C[解析] 由于顶角之与小于360°,故选C、[点评] 请依据此题的分析思考,下题中的选项就是什么?若正棱锥的底面边长与侧棱长相等,则该棱锥一定不就是( )A、三棱锥B、四棱锥C、五棱锥D、六棱锥[答案] D4、下面描述中,不就是棱锥的几何结构特征的为( )A、三棱锥有四个面就是三角形B、棱锥都就是有两个面就是互相平行的多边形C、棱锥的侧面都就是三角形D、棱锥的侧棱交于一点[答案] B5、所有棱长都相等的三棱锥叫做正四面体,正四面体ABCD 的棱长为a ,M 、N 分别为棱BC 、AD 的中点,则MN 的长度为( )A 、aB 、2a 2C 、3a 2D 、33a [答案] B[解析] 如图所示,连接BN 、CN ,∵正四面体的四个面都就是正三角形,∴BN =CN ,∴MN ⊥BC , ∴在Rt△NMC 中,MN =⎝ ⎛⎭⎪⎫32a 2-⎝ ⎛⎭⎪⎫a 22=2a 2、 6、长方体中共点的三条棱长分别为a 、b 、c (a <b <c ),分别过这三条棱中的一条及其对棱的对角面的面积分别记为S a 、S b 、S c ,则( )A 、S a >S b >S cB 、S a >S c >S bC 、S b >S c >S aD 、S c >S b >S a[答案] D[解析] 依题意:S a =a b 2+c 2,S b =b a 2+c 2,S c =c a 2+b 2,S 2c -S 2b =a 2c 2+b 2c 2-a 2b 2-b 2c 2=a 2(c 2-b 2)>0(∵a <b <c ),∴S c >S b ,同理S b >S a ,故S c >S b >S a 、7、如图(1)所示的平面图形沿虚线折叠能围成下面的哪个长方体?( )[答案] B[解析] 所给的平面图形(1)两端的小矩形无色,故折起后,长方体的两头应无色,排除A、C;平面图形(1)中有色的两个矩形不相邻,且折起后,应在相对面上,且仅有这两个面有色故D不符,排除D,选B、8、图(1)中的几何体就是由哪个平面图形旋转得到的( )[答案] A[解析] 图中的几何体就是一个圆台与圆锥的组合体,它就是由直角三角形与直角梯形绕同一条直线旋转得到的,故选A、二、填空题9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,下图就是此正方体的两种不同放置,则与D面相对的面上的字母就是________、[答案] B[解析] 由图观察可知,该立方体有六个面,与C相邻的四个面已给出∴C的对面为F,考察第一个图只有两种情况:①A的对面为E,D的对面为B或②A的对面为B,D的对面为E,如果就是第二种情形,将第一个图逆时针转一下,应该就是第二图,显然不符,∴D的对面为B、10、(1)图(1)中的几何体叫做________,AA1、BB1等就是它的________,A、B、C1等就是它的________、(2)图(2)中的几何体叫做________,PA、PB为其________,PBC、PCD叫做它的________,ABCD就是它的________、(3)图(3)中的几何体叫做________,它就是由棱锥________被平行于底面ABCD的平面________截得的、AA′,BB′为其__________,BCC′B′、DAA′D′为其________、[答案] (1)棱柱侧棱顶点(2)棱锥侧棱侧面底面(3)棱台O-ABCD A′B′C′D′侧棱侧面11、(1)图①中的几何体叫做________,O为其________,OA为它的________,AB为它的________、(2)图②中的几何体为________,AB、CD都就是它的________,⊙O与⊙O′及其内部就是它的________、(3)图③中的几何体为________,SB为其________、(4)图④中的几何体叫做________,AA′就是它的________,⊙O′及其内部就是它的________,⊙O′及其内部就是它的________,它还可以瞧作直角梯形OAA′O′绕它的________________旋转一周后,其它各边所形成的面所围成的旋转体、[答案] (1)球球心半径直径(2)圆柱母线底面(3)圆锥母线(4)圆台母线上底面下底面垂直于两底的腰OO′12、一个无盖的正方体盒子展开后的平面图如图所示,A,B,C就是展开图上的三点,则在正方体盒子中,∠ABC=________、[答案] 90°[解析] 折叠后的正方体如图,A、B、C恰为正方体一个面上的三个顶点,∴∠ABC=90°、三、解答题13、已知正方体ABCD-A1B1C1D1,图(1)中截去的就是什么几何体?图(2)中截去一部分,其中HG∥AD∥EF,剩下的几何体就是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?[解析] 三棱锥五棱柱A1B1BEH-D1C1CFG长方体14、如下图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于桌面上,再将容器倾斜,随着倾斜程度的不同,水的形状就是否成棱柱体、[解析] 形成棱柱体15、一个几何体的表面展开平面图如图、(1)该几何体就是哪种几何体;(2)该几何体中与“祝”字面相对的就是哪个面?与“您”字面相对的就是哪个面?[解析] (1)该几何体就是四棱台;(2)与“祝”相对的面就是“前”,与“您”相对的面就是“程”、16、依据下图中各种物体的形状,指出它们所属几何体的类型、[解析] (1)(7)为球体,(2)为圆柱体,(3)为圆锥体,(4)为圆台体,(5)为棱锥体,(6)为棱柱体[点评] 识图能力就是一项重要的基本功,就是学习立体几何的重要内容、。
«1.1空间几何体的结构》同步练习1.1.1柱、锥、台、球的结构特征分蹇星础1 .棱台不一定具有的性质是(A.两底面相似B.侧面都是梯形C.侧棱都相等D .侧棱延长后都交于一点A. 1个B. 2个 C . 3个D. 4个了( i)、(2)两部分后,这两部分几何体的形状是(i)( 2)都是棱台图Ki-i-24 .过棱长都为i的三棱柱底面一边的截面是(A.三角形B.三角形或梯形C.不是梯形的四边形D .梯形5.如图Ki-i-3,一个直三棱柱ABC-A i B i C i的各棱长都为2, E, F分别是AB, AQ I的中点,则EF的长是()2.如图K1-1-1 ,3.如图Ki-i-2, 在长方体ABCD -A i B i C i D i中, EF // B i C i,用平面BCFE把这个长方体分成A. (i)是棱柱,(2)是棱台B. (i)是棱台,(2)是棱柱C. (i)( 2)都是棱柱17图Ki- i-3r⑵CB◎ F G538A. 2 B p C.75 D.羽6•一个正方体的六个面上分别有字母A, B, C, D, E, F,如图K1-1-4是此正方体的两种不同放置,则与D面相对的面上的字母是 _________ .图K1-1-4学能提丹7 •在四棱锥的四个侧面中,直角三角形最多可有()A. 1个B. 2个C. 3个D. 4个8.长方体ABCD - A i B i C i D i的棱AB= 3, AD = 4, AA i= 5,则长方体的对角线长为9•在图K1-1-6所示的4个平面图形中,哪几个是各侧棱都相等的四面体(如图K1-1-5)的展开图?其序号是_______ (把你认为正确的序号都填上).4>图K1-1-5①图K1-1-61.1. 2圆柱、圆锥、圆台、球及简单组合体的结构特征分蹇星础1 .有下列命题:① 在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;② 圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③ 在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④ 圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A .①②B .②③C .①③D .②④2 .下列说法中正确的是( )A .以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D •圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径 3. (2013年江西一模)如图K1-1-7,已知正方体 ABCD -A i B i C i D i 上、下底面中心分别为 O i , O 2将正方体绕直线O i O 2旋转一周, 5•已知圆台的上、下底面半径为 2, 4,则过其高的中点平行于底面的截面面积为[来源:学&科3网za&x&q 其中由线段 BC i 旋转所得图形是( )4 .一个球内有一内接长方体,其长、 A . 5 &B . 2 诵5 V2 D. 2 c.\f 5宽、高分别为 5, 4, 3,则球的半径为(BDA. 4 nB. 9 nC. 24 nD. 12n6•已知球的半径为R,在球面上任取两点A, B,过A, B作球的截面,其中截面半径为R的圆面有_______________ 个.7 .用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是下面的哪几种:①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球.学能提丹8 •作一个圆柱的内接正三棱柱,又作这个三棱柱的内切圆柱,那么这两个圆柱的底面半径之比为.9.已知一个圆台的上、下底面半径分别是 1 cm ,2 cm,截得圆台的圆锥的母线长为12 cm.求圆台的母线长.10. —个正方体内接于高为40 cm,底面半径为30 cm的圆锥中,求正方体的棱长.。
1.1空间几何体的结构特征练习1.下列关于棱柱的说法错误的是().A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱D.棱柱至少有五个面【解析】对于A,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫作棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱.【答案】C2.以下命题正确的是().A.直角三角形绕一边所在直线旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体还是圆柱C.以平行于圆锥底面的截面截去一个小圆锥后剩余部分是圆台D.棱锥截去一个小棱锥后剩余部分是棱台【解析】直角三角形只有绕直角边所在直线旋转才能得到圆锥,故A错误;对B,只有两个截面与圆柱底面平行时,它们之间才是圆柱;对D,只有当截面与棱锥底面平行时,剩余部分才是棱台.【答案】C3.下图是由哪个平面图形旋转得到的.【解析】几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得.【答案】(1)4.如图所示,一个圆锥的高为2,母线与轴的夹角为30°.求圆锥的母线长以及圆锥的轴截面的面积.【解析】母线长l==,底面半径r=2·tan 30°=,所以S=×2××2=,即圆锥的轴截面的面积是.5.如图,一个封闭的正方体,它的六个面各标出A、B、C、D、E、F这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A、B、C对面的字母分别是().A.D,E,FB.F,D,EC.E,F,DD.E,D,F【解析】(法一)观察第一个图形,可见标有A,B,C字母的三个面交于同一个顶点,再看图形二可知,D的对面必为B,排除选项A,C;同样的道理结合第一图与第三图可知,F对面应为A,排除D选项,∴选B.(法二)由三个图可知,与C相邻的四个面为A、B、D、F,故C对面必为E.排除A、C、D,选B.【答案】B6.如图所示,在三棱台A'B'C'-ABC,截去三棱锥A'-ABC,则剩余部分是().A.三棱锥B.四棱锥C.三棱柱D.三棱台【解析】剩余部分是四棱锥A'-BB'C'C.【答案】B7.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是图中的.【解析】一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,截圆柱得到的是矩形除去一条边,截圆锥得到的是三角形除去一条边或抛物线的一个部分,截面为轴截面时得(1),其他位置时可得(5).【答案】(1)(5)8.一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?【解析】(1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.9.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是.【解析】根据棱柱的定义及结构特征来判断.在棱柱中因为有水的部分和无水的部分始终有两个面平行,而其余各面易证是平行四边形,故①正确;而随着倾斜程度的不同,水面EFGH的面积是会改变的,但仍为矩形,故②错误;③正确.【答案】①③10.如图,在三棱锥V-ABC中,VA=VB=VC=2,∠AVB=∠BVC=∠CVA=40°,过A作截面AEF分别交VB,VC于点E,F.求截面△AEF周长的最小值.【解析】将三棱锥V-ABC沿侧棱VA剪开,将其侧面展开,平铺在一个平面上,如图所示,则AE+EF+FA=AE+EF+FA1.因为AE+EF+FA1≥AA1,线段AA1(即A,E,F,A1四点共线时)的长即为所求△AEF周长的最小值.作VD⊥AA1,垂足为D,由VA=VA1,知D为AA1的中点.由已知∠AVB=∠BVC=∠CVA1=40°,∴∠AVD=60°.∴AD=VA sin 60°=2×=3.∴AA1=6.∴所求截面△AEF周长的最小值是6.。
第1课时空间几何体的结构特征基础达标(水平一)1.下列几何体中是棱柱有().A.5个B.4个C.3个D.2个【解析】由棱柱的定义知,①③为棱柱.【答案】D2.如果一个棱锥的各条棱长都相等,那么这个棱锥一定不是().A.三棱锥B.四棱锥C.五棱锥D.六棱锥【解析】由题意可知,每个侧面均为等边三角形,每个侧面的顶角为60°,若是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此这个棱锥一定不是六棱锥.【答案】D3.如图所示的几何体,关于其结构特征,下列说法不正确的是().A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形【解析】该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,故四边形ABCD是它的一个截面而不是一个面.选D.【答案】D4.如图所示,从三棱台A'B'C'-ABC中截去三棱锥A'-ABC,则剩余部分是().A.三棱锥B.四棱锥C.三棱柱D.三棱台【解析】剩余部分是四棱锥A'-BB'C'C.【答案】B5.若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为.【解析】如图,设等边三角形ABC为圆锥的轴截面,由题意知,圆锥的母线长为△ABC的边长.∵S△ABC=AB2,∴=AB2,解得AB=2.【答案】26.一圆锥的母线长为6,底面半径为3,用该圆锥截一圆台,截得圆台的母线长为4,则圆台的另一底面半径为.【解析】作轴截面如图,则==,∴r=1.【答案】17.一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”面相对的是哪个面?与“你”面相对的是哪个面?【解析】(1)该几何体是四棱台;(2)与“祝”面相对的是“前”面,与“你”面相对的是“程”面.拓展提升(水平二)8.下列说法正确的是().A.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B.两底面平行,并且各侧棱也互相平行的多面体是棱柱C.棱锥的侧面可以是四边形D.棱柱中两个互相平行的平面一定是棱柱的底面【解析】A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确.【答案】B9.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,则该截面把圆锥母线分为两段的长度比是().A.1∶(+1)B.1∶3C.1∶(-1)D.1∶【解析】由圆锥的截面性质可知,截面仍是圆,设r1与r2分别表示截面与底面圆的半径,l1与l2表示母线被截得的线段,则===,所以l1∶l2=1∶(-1).【答案】C10.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,AC=6,∠ACB=90°,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是.【解析】将点A1、B、C1、C放在同一平面内(如图),故问题转化为平面上两点之间线段最短来处理,即(CP+PA1)min=CA1.由题易知A1C1=6,CC1=,∠A1C1C=135°,由余弦定理可求得CA1=5.【答案】511.如图所示,已知圆锥的母线长为6 cm,底面直径为3 cm,在母线OA上有一点B,AB=2 cm,求由A点绕圆锥侧面一周到B点的最短距离.【解析】设侧面展开的扇形圆心角为n.由题意知底面周长为3π cm,则=3π,解得n=90°.如图,在展开扇形中,∠AOB'=90°,OB'=4 cm.在Rt△AOB'中,AB'===2 cm.故由A点绕圆锥侧面一周到B点的最短距离为2 cm.精美句子1、善思则能“从无字句处读书”。
高一数学下1.1空间几何体的结构特征
一、选择题:
1.直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( ) A .平面 B .曲面 C .直线 D .锥面 2.一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( ) A .棱锥 B .棱柱 C .平面 D .长方体 3.有关平面的说法错误的是 ( )
A .平面一般用希腊字母α、β、γ…来命名,如平面α…
B .平面是处处平直的面
C .平面是有边界的面
D .平面是无限延展的
4.下面的图形可以构成正方体的是 ( )
A B C D
5.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是 ( ) A .等边三角形 B .等腰直角三角形 C .顶角为30°的等腰三角形 D .其他等腰三角形 6.A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 7.四棱锥的四个侧面中,直角三角最多可能有 ( ) A .1 B .2 C .3 D .4 8.下列命题中正确的是 ( ) A .由五个平面围成的多面体只能是四棱锥 B .棱锥的高线可能在几何体之外 C .仅有一组对面平行的六面体是棱台 D .有一个面是多边形,其余各面是三角形的几何体是棱锥 9.长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到
C ′的最短矩离是
( )
A .5
B .7
C .29
D .37
10.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},
则 ( ) A .E F D C B A ⊂⊂⊂⊂⊂ B .A C B F D E ⊂⊂⊂⊂⊂ C .C A B D F E ⊂⊂⊂⊂⊂ D .它们之间不都存在包含关系 二、填空题:.
11.线段AB 长为5cm ,在水平面上向右平移4cm 后记为CD ,将CD 沿铅垂线方向向下移动3cm 后记为C ′
D ′,再将C ′D ′沿水平方向向左移4cm 记为A ′B ′,依次连结构成长方体ABCD —A ′B ′C ′D ′. ①该长方体的高为 ;
②平面A ′B ′C ′D ′与面CD D ′C ′间的距离为 ;
③A 到面BC C ′B ′的距离为 .
12.已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.
13.下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题:
①如果A在多面体的底面,那么哪一面会在上
面;
②如果面F在前面,从左边看是面B,那么哪一个
面会在上面;
③如果从左面看是面C,面D在后面,那么哪一
个面会在上面.
14.长方体ABCD—A1B1C1D1中,AB=2,BC=3,
AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是.
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)
15.(12分)根据图中所给的图形制成几何体后,哪些点重合在一起.
16.(12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由.
17.(12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高.
18.(12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长.19.(14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的
面积.
20.(14分)有在正方形ABCD 中,E 、F 分别为AB 、BC 的中点,现在沿DE 、DF 及EF 把△ADE 、△CDF
和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P . 问:
①依据题意制作这个几何体;
②这个几何体有几个面构成,每个面的三角形为什么三角形; ③若正方形边长为a ,则每个面的三角形面积为多少.
参考答案(一)
一、DBCCA DDBAB
二、11.①3CM ②4CM ③5CM ; 12.圆锥、圆台、圆锥; 13.①F ②C ③A ; 14.52.
三、15.解:J 与N ,A 、M 与D ,H 与E ,G 与F ,B 与C.
16.解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几
何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点. 小结:棱台的定义,除了用它作判定之外,至少还有三项用途: ①为保证侧棱延长后交于一点,可以先画棱锥再画棱台;
②如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;
③可以利用两底是相似多边形进行有关推算.
17.分析:棱台的有关计算都包含在三个直角梯形B E BE E E O O B B O O ''''''和,及两个直角三角形OBE 和E B O '''∆中,
而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两底面的外接圆半径(B O OB '',)内切圆半径(E O OE '',)的差,特别是正三、正四、正六棱台.
略解:h
OO B F h EE B G ='=''='=',
2
222)(222
)(21)(2
1
)(22a b c a b c h a b BG a b BF --=--=∴-=-=
'=-
-=--h c b a c b a 22221412
4()()
18.解:设圆锥的母线长为l ,圆台上、下底半径为r R ,.
l l r R l l l cm -=∴-=∴=101014403()
答:圆锥的母线长为
403
cm. 19.解:设底面正三角形的边长为a ,在RT △SOM 中SO=h ,SM=n ,所以OM=
2
2l n -,又MO=
6
3a ,即a =
2
23
6l n -,
)(3343222l n a s ABC -==
∴∆,截面面积为)(34
322l n -. 20.解:①略.
②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP .由平几知识可知DE =DF ,∠DPE =∠EPF =∠DPF =90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形. ③由②可知,DE =DF =5a ,EF=2a ,所以,S
△DEF
=
2
3
a 2。
DP=2a ,EP =FP =a ,
所以S △DPE = S △DPF = a 2
,S △EPF =
2
1
a 2
.。