3等差数列Ⅰ
- 格式:ppt
- 大小:657.00 KB
- 文档页数:13
等差数列与等比数列运算知识点:一.等差数列 1.等差数列基本概念⑴等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,常用字母d 表示. 即等差数列有递推公式:1(1)n n a a d n +-=≥. ⑵等差数列的通项公式为:1(1)n a a n d =+-.⑶等差中项:如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项,即2x yA +=. ⑷等差数列的前n 项和公式:211()(1)22n n n a a n n S na d An Bn +-==+=+. 1.等差数列通项公式的推导:2132121n n n n a a d a a da a d a a d----=-=-=-=,将这1n -个式子的等号两边分别相加得:1(1)n a a n d -=-,即1(1)n a a n d =+-.由等差数列的通项公式易知:()n m a a n m d -=-. 2.等差数列前n 项和公式的推导:1111()(2)[(1)]n S a a d a d a n d =+++++++-,把项的顺序反过来,可将n S 写成:()(2)[(1)]n n n n n S a a d a d a n d =+-+-++--,将这两式相加得:11112()()()()n n n n n S a a a a a a n a a =++++++=+,从而得到等差数列的前n 项和公式1()2n n n a a S +=,又1(1)n a a n d =+-, 得11()(1)22n n n a a n n S na d +-==+. 二.等比数列1. 等比数列的概念:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,常用字母(0)q q ≠表示.2. 等比数列的通项公式为:11n n a a q -=.3. 等比中项:如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,即2G xy =.两个正数(或两个负数)的等比中项有两个,它们互为相反数;一个正数与一个负数没有等比中项.1.等比数列通项公式的推导: 由等比数列的定义知:312412321,,,,,n n n n a a aa aq q q q q a a a a a ---===== 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即11n n a a q -=. 由等比数列的通项公式易知:n m nma q a -=.一、等差数列中基本量的运算:a 1,a n ,n ,d ,S n 知三求二 ①基本量运算{}28454565651.,6,6,....n a a a A S S B S S C S S D S S =-=<=<=(一星)是等差数列且则()解:1994500a a S S S +=⇒=⇒=.选B.{}18451845184518452.,0,....n a d A a a a a B a a a a C a a a a D a a a a ≠><+>+=(一星)如果是正项等差数列公差则()答案:B.3,4,3,2550,,.k .a a k S a k =(一星)等差数列前三项为前项和求的值答案:2,50a k ==7.(二星)(2015年全国1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 答案:B7.(三星)(全国1理科)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A.3B.4C.5D.6 解:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5,故选C.2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .4.(二星)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A.B.B.C. D.(3)(2016全国1卷理)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97解:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=.故选C .4.(2017全国1卷理)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为( ) A .1B .2C .4D .8解:45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②得()211524-=d624d = 4d =∴.选C3.(2018广州市调研理)在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =( )BA .2B .3C .2-D .3-4.(2018广州一模文)等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +(A )A .42n +B .4nC .21n +D .2n4.(2018全国1理)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a B A .12- B .10- C .10 D .129. (2019全国1卷理)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 解:由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .18.(2019全国1卷文)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-. (2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .14.(2019全国高考3卷理)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =________.414.(2019全国3卷文)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15. (2018广东一模文)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,则5a = .146. (2018广东一模文)等差数列()()()333log 2,log 3,log 42,x x x +的第四项等于( A )A .3B .4 C. 3log 18 D .3log 24 ②创新题1.(2016全国2卷文)等差数列{}n a 中,且344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.解:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.17.(2016全国2卷理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 解: ⑴设的公差为,,∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,; 当时,; 当时,.∴.(17)(2017届广州市调研文)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[= . 令][lg n n a b =,求数列}{n b 的前2000项和.解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=解得11=a ,2=d , 所以12-=n a n .(Ⅰ))]12[lg(][lg -==n a b n n , 当51≤≤n 时, 0)]12[lg(=-=n b n ;当506≤≤n 时, 1)]12[lg(=-=n b n ; 当50051≤≤n 时, 2)]12[lg(=-=n b n ; 当5012000n ≤≤时, 3)]12[lg(=-=n b n .所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯.③与其他内容结合4546.(){},10,15,___.n n a n S S S a ≥≤四星设等差数列的前项和为若则的最大值为4141115110235:3(23)3(2) 4. 4.1523S a d a a d a d a d S a d ≥+≥⎧⎧⇒⇒=+=-+++≤⎨⎨≤+≤⎩⎩解答案为二、等比数列中基本量的运算 ①基本量运算1.1,,,,9,.3,9.3,9.3,9.3,9a b c Ab ac B b ac C b ac D b ac --===-===-=-=-(一星)若成等比数列则()答案:B3102.,3,384,______a a ==(一星)等比数列中则通项公式为答案:332n n a -=⋅364714.,36,18,,____2n a a a a a n +=+===(一星)等比数列中答案:9n =13、(一星)(2015全国1)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .答案:67.(一星)(2015全国2理)等比数列{a n }满足a 1=3,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .84 答案:B12.(一星)(2015全国2文)已知等比数列满足,,则( ) A. 2 B. 1 C. D. 答案:C5.(二星)(全国理)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=A .7B .5C .-5D .-7 解:因为{}n a 是等比数列,所以56478a a a a ==-,所以47,a a 是方程2280x x --=的两根,解得4x =或2x =-。
新高考数学(理)数列03 等差数列(等差数列的和与性质)一、具体目标:等差数列 (1) 理解等差数列的概念.(2) 掌握等差数列的通项公式与前n 项和公式.(3) 能在具体的问题情境中识别数列的等差关系关系,并能用有关知识解决相应的问题. (4) 了解等差数列与一次函数的关系.等差数列的和与二次函数的关系及最值问题. 二、知识概述: 一)等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;()d m n a a m n-+=.说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . ,,成等差数列. 4.等差数列的前和的求和公式:. 5.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+【考点讲解】它前一项的差是同一个常数,那么此数列不是等差数列. 6.注意区分等差数列定义中同一个常数与常数的区别. 二)方法规律:1.等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 2.活用方程思想和化归思想在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+; 四个数成等差数列,一般设为3,,,3a d a d a d a d --++. 这对已知和,求数列各项,运算很方便.4.若判断一个数列既不是等差数列又不是等比数列,只需用123,,a a a 验证即可. 5.等差数列的前n 项和公式:若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a , 公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 三)等差数列的性质: 1.等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+{}n a(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.2.设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. 3.(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.4.如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.5.若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a S b S --=. 四)方法规律:1. 等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和 灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.等差数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用, 故应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.3.应用等差数列的性质要注意结合其通项公式、前n 项和公式.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向、形成解题策略. 五)等差数列的和1. 等差数列的前n 项和公式{}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶{}n a若已知首项1a 和末项n a ,则1()2n n n a a S +=,或等差数列{a n }的首项是1a ,公差是d ,则其前n 项和公式为1(1)2n n n S na d -=+. 2.等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.六)求等差数列前n 项和的最值,常用的方法:1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足100n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n nn a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =L 依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用.1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =-B . 310n a n =-C .228n S n n =- D .2122n S n n =- n a n a 【真题分析】【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【答案】A2.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =( )A .12-B .10-C .10D .12【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B . 【答案】B3.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D .8【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【答案】A4.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【答案】C5.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【答案】1006.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 【答案】47.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n的最小值为___________.【解析】法一:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.法二:等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,可得()()22224n a a n d n n =+-=-+-=-,()()()12818222n n a a n n n S n n +-===-,所以结合题意可知,n S 的最小值为4S 或5S ,即为10-. 【答案】 0,10-.8.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【答案】169.【2017课标II ,理15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ 。
数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。
2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
高三数学总复习讲义——等差数列1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。
用递推公式表示为或。
2、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。
3、等差中项的概念:如果,,成等差数列,那么叫做与的等差中项。
其中4、等差数列的前和的求和公式:。
5、等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是,如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则;说明:设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①奇偶;②;(Ⅱ)若项数为奇数,设共有项,则①偶奇;②。
6、数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
练习1.(01天津理,2)设S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.(06全国I)设是公差为正数的等差数列,若,,则()A. B. C. D.3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项4.(01全国理)设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.65.(06全国II)设S n是等差数列{a n}的前n项和,若=,则=A. B. C. D.6.(00全国)设{a n}为等差数列,S n为数列{a n}的前n项和,已知S7=7,S15=75,T n为数列{}的前n项和,求T n。
2022高考数学满分讲义:第三章 数列第1讲 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺 B .12.5尺 C .10.5尺 D .9.5尺 答案 A解析 从冬至起,十二个节气的日影长依次记为a 1,a 2,a 3,…,a 12,由题意,有a 1+a 4+a 7=37.5,根据等差数列的性质,得a 4=12.5,而a 12=4.5,设公差为d ,则⎩⎪⎨⎪⎧a 1+3d =12.5,a 1+11d =4.5,解得⎩⎪⎨⎪⎧a 1=15.5,d =-1,所以冬至的日影长为15.5尺.(2)已知点(n ,a n )在函数f (x )=2x-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =2164n s +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30解析 ∵点(n ,a n )在函数f (x )=2x -1的图象上,∴a n =2n -1(n ∈N *),∴{a n }是首项为a 1=1,公比q =2的等比数列,∴S n =1×(1-2n )1-2=2n-1,则b n =264n=2n -12(n ∈N *), ∴{b n }是首项为-10,公差为2的等差数列, ∴T n =-10n +n (n -1)2×2=n 2-11n =⎝⎛⎭⎫n -1122-1214. 又n ∈N *,∴T n 的最小值为T 5=T 6=⎝⎛⎭⎫122-1214=-30. 规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2 B .3 C .4 D .5 答案 C解析 ∵a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,2为公比的等比数列, ∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +1(1-210)1-2=215-25,即2k +1(210-1)=25(210-1), ∴2k +1=25,∴k +1=5,∴k =4.(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0 答案 ABC解析 设等差数列{a n }的公差为d ,由S 10=S 20,得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d .因为a 1>0,所以d <0,故A 正确;因为a 16=a 1+15d =-292d +15d =12d ,又d <0,所以a 16<0,故B 正确;因为a 15=a 1+14d =-292d +14d =-12d >0,a 16<0,所以S 15最大,即S n ≤S 15,故C 正确;S n =na 1+n (n -1)2d =n (n -30)2d ,若S n <0,又d <0,则n >30,故当且仅当n ≥31时,S n <0,故D 错误.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k . 2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( ) A .11 B .12 C .20 D .22 答案 D解析 结合等差数列的性质,可得a 5+a 7=2a 6=a 26, 又该数列为正项数列,可得a 6=2, 所以由S 2n +1=(2n +1)a n +1, 可得S 11=S 2×5+1=11a 6=22.(2)已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于( )A .2 020B .1 010C .2 D.12答案 A解析 ∵a 1a 2 020=1, ∴f (a 1)+f (a 2 020)=21+a 21+21+a 22 020=21+a 21+21+1a 21=21+a 21+2a 211+a 21=2, ∵{a n }为等比数列,则a 1a 2 020=a 2a 2 019=…=a 1 010a 1 011=1, ∴f (a 2)+f (a 2 019)=2,…,f (a 1 010)+f (a 1 011)=2, 即f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)=2×1 010=2 020. 规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( )A .12B .24C .30D .32 答案 D解析 设等比数列{a n }的公比为q , 则q =a 2+a 3+a 4a 1+a 2+a 3=21=2,所以a 6+a 7+a 8=(a 1+a 2+a 3)·q 5=1×25=32.(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40答案 B解析 ∵正项等比数列{a n }的前n 项和为S n , ∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等比数列, ∴10×(130-S 20)=(S 20-10)2, 解得S 20=40或S 20=-30(舍), 故S 40-S 30=270,∴S 40=400.考点三 等差数列、等比数列的探索与证明 核心提炼等差数列 等比数列 定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法 a n =a 1+(n -1)d a n =a 1·q n -1 中项法2a n =a n -1+a n +1a 2n =a n -1a n +1证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12(n ∈N *),b n =12[(a n +b n )-(a n -b n )]=12n -n +12(n ∈N *).易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1(n ∈N *).专题强化练一、单项选择题1.在等比数列{a n }中,若a 3=2,a 7=8,则a 5等于( ) A .4 B .-4 C .±4 D .5 答案 A解析 ∵数列{a n }为等比数列,且a 3=2,a 7=8, ∴a 25=a 3·a 7=2×8=16,则a 5=±4, ∵等比数列奇数项的符号相同,∴a 5=4.2.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n 等于( )A .2n -1B .2-21-n C .2-2n -1 D .21-n -1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2.由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 1(1-q n )1-q=2n-1,所以S n a n =2n -12n -1=2-21-n .方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12, ①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.3.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( ) A .a 6≤b 6 B .a 6≥b 6 C .a 12≤b 12 D .a 12≥b 12 答案 B解析 因为等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11,所以a 1+a 11=b 1+b 11=2a 6,所以a 6=a 1+a 112=b 1+b 112≥b 1b 11=b 6.当且仅当b 1=b 11时,取等号,此时数列{b n }的公比为1. 4.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C解析 由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,n -1(n ≥2)取代, 累加得a n n -a 11=ln n -ln 1,即a nn =2+ln n ,即a n =2n +n ln n (n ≥2),又a 1=2符合上式,故a n =2n +n ln n .5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=19C .S 9=81D .S 10=91 答案 D解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n >1,n ∈N *时是等差数列,公差为2, 又a 1=1,a 2=2,a n =2+(n -2)×2=2n -2(n >1,n ∈N *),∴a 9=2×9-2=16,a 10=2×10-2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选D.6.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m ,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为S n ,则( )A .S n 无限大B .S n <3(3+5)mC .S n =3(3+5)mD .S n 可以取100m答案 B解析 由题意可得,外围第2个正方形的边长为⎝⎛⎭⎫13m 2+⎝⎛⎭⎫23m 2=53m ; 外围第3个正方形的边长为⎝⎛⎭⎫13×53m 2+⎝⎛⎭⎫23×53m 2=59m ; ……外围第n 个正方形的边长为⎝⎛⎭⎫53n -1m .所以蜘蛛网的长度 S n =4m ⎣⎡⎦⎤1+53+59+…+⎝⎛⎭⎫53n -1 =4m ×1-⎝⎛⎭⎫53n1-53<4m ×11-53=3(3+5)m .故选B. 二、多项选择题7.(2020·厦门模拟)记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0 B .S n 的最大值为S 3 C .S 1=S 6 D .|a 3|<|a 5|答案 AC解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,则a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的取值情况不清楚,故S 3可能为最大值也可能为最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.8.已知等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项中正确的是( )A .0<q <1B .a 6>1C .T 12>1D .T 13>1答案 ABC解析 由于等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,所以(a 6-1)(a 7-1)<0,由题意得a 6>1,a 7<1,所以0<q <1,A ,B 正确;因为a 6a 7+1>2,所以a 6a 7>1,T 12=a 1·a 2·…·a 11·a 12=(a 6a 7)6>1,T 13=a 137<1,所以满足T n >1的最大正整数n 的值为12,C 正确,D 错误. 三、填空题9.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________. 答案 4解析 由题意知q ≠1,所以S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =na 1+n (n -1)2d +b 1(1-q n )1-q=d 2n 2+⎝⎛⎭⎫a 1-d 2n +b 11-q -b 1q n1-q =n 2-n +2n -1,所以⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,b11-q =-1,-b11-q q n=2n,解得d =2,q =2,所以d +q =4.10.(2020·北京市顺义区质检)设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =________,S 4S 2=________.答案 3 10解析 设等比数列的通项公式a n =a 1q n -1,又因为3a 1,2a 2,a 3成等差数列,所以2×2a 2=3a 1+a 3,即4a 1q =3a 1+a 1q 2,解得q =3或q =1(舍),S 4S 2=a 1(1-34)1-3a 1(1-32)1-3=1-341-32=10.11.(2020·潍坊模拟)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用a n表示解下n (n ≤9,n ∈N *)个圆环所需移动的最少次数,{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1(n 为偶数),2a n -1+2(n 为奇数),则解下5个圆环需最少移动________次. 答案 16解析 因为a 5=2a 4+2=2(2a 3-1)+2=4a 3,所以a 5=4a 3=4(2a 2+2)=8a 2+8=8(2a 1-1)+8=16a 1=16, 所以解下5个圆环需最少移动的次数为16.12.已知等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,且对任意的n ∈N *,都有A ≤2S n-1S n ≤B 恒成立,则B -A 的最小值为________. 答案136解析 ∵等比数列{a n }的首项为32,公比为-12,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12=1-⎝⎛⎭⎫-12n , 令t =⎝⎛⎭⎫-12n ,则-12≤t ≤14,S n =1-t , ∴34≤S n ≤32, ∴2S n -1S n 的最小值为16,最大值为73,又A ≤2S n -1S n ≤B 对任意n ∈N *恒成立,∴B -A 的最小值为73-16=136.四、解答题13.(2020·聊城模拟)在①a 5=b 3+b 5,②S 3=87,③a 9-a 10=b 1+b 2这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,________,a 1=b 6,若对于任意n ∈N *都有T n =2b n -1,且S n ≤S k (k 为常数),求正整数k 的值. 解 由T n =2b n -1,n ∈N *得, 当n =1时,b 1=1;当n ≥2时,T n -1=2b n -1-1, 从而b n =2b n -2b n -1,即b n =2b n -1,由此可知,数列{b n }是首项为1,公比为2的等比数列,故b n =2n -1.①当a 5=b 3+b 5时,a 1=32,a 5=20,设数列{a n }的公差为d ,则a 5=a 1+4d ,即20=32+4d ,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值.因此,正整数k 的值为11.②当S 3=87时,a 1=32,3a 2=87,设数列{a n }的公差为d ,则3(32+d )=87,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.③当a 9-a 10=b 1+b 2时,a 1=32,a 9-a 10=3,设数列{a n }的公差为d ,则-d =3,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.14.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0,所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2), 当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式), 所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列, 所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。
等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列; ⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+; ⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶; 当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 6.判断或证明数列是等差数列的方法有:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列; ⑶通项公式法:b kn a n +=(b k ,是常数)⇔{}n a 是等差数列;⑷前n 项和公式法:Bn An S n +=2(B A ,是常数,0≠A )⇔{}n a 是等差数列.1.重点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质.2.难点:利用等差数列的性质解决实际问题.3.重难点:正确理解等差数列的概念,灵活运用等差数列的性质解题.例题1已知n m ≠,且n a a a m ,,,,321和n b b b b m ,,,,,4321都是等差数列,则=--2313b b a a练习1已知函数.424)(x x x f +=则 ①=+)32()31(f f ;②=+++)20092008()20092()20091(f f f .例题2 ⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; ⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .练习2 已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn . 求证:数列{}n b 是等差数列.例题3 已知n S 为数列{}n a 的前n 项和,n n S n 211212+=;数列{}n b 满足:113=b , n n n b b b -=++122,其前9项和为.153⑴求数列{}n a 、{}n b 的通项公式; ⑵设n T 为数列{}n c 的前n 项和,)12)(112(6--=n n n b a c ,求使不等式57kT n >对+∈∀N n 都成立的最大正整数k 的值.练习3.已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由.例题4 已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b =,且1n T =,求n 的值.练习4已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a⑴当n 为何值时,n S 取得最大值; ⑵求208642a a a a a +++++ 的值; ⑶求数列{}n a 的前n 项和.n T例题5已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.练习5.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .家庭作业一、选择题:1.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{a n }中也为常数的项是( )A .S 7B .S 8C .S 13D .S 152.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( ) A .48 B .49 C .50 D .513.设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为( ) A .2 B .3 C .4 D .54.设S n 是等差数列{a n }的前n 项和,S 5=3(a 2+a 8),则a 5a 3的值为( )A.16B.13C.35D.565.等差数列{an}中,a1=8,a5=2,若在每相邻两项间各插入一个数,使之成等差数列,那么新的等差数列的公差是( ) A.34 B .-34C .-67 D .-16.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么数列{an +bn}的第37项为( )A .0B .37C .100D .-377.已知数列{an}满足a1=2,an +1-an =an +1•an ,那么a31等于( ) A .-358 B .-259 C .-130 D .-261 8.若数列{an}的通项公式an =2n +5,则此数列是( ) A .公差为2的等差数列 B .公差为5的等差数列 C .首项为5的等差数列 D .公差为n 的等差数列9.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )A .15B .30C .31D .64二、填空题:10.在等差数列{an}中,a3+a5=24,a2=3,则a6=________.11.已知等差数列{an}中,a2与a6的等差中项为5,a3与a7的等差中项为7,则an =________.12.在等差数列中,am =n ,an =m(m ≠n),则am +n =________.13.若关于x 的方程x2-x +a =0和x2-x +b =0(a ≠b)的四个根可组成首项为14的等差数列,则a +b 的值是________.15.设Sn 是等差数列{an}的前n 项和,a12=-8,S9=-9,则S16=________. 16.已知两个等差数列{an}和{bn}的前n 项和分别为An 和Bn ,且An Bn =7n +45n +3,则a6b6=________. 三、解答题:17、等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、已知:等差数列{n a }中,4a =14,前10项和18510=S .(1)求n a ; (2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .19、已知各项均为正数的数列{}n a 的首项11=a ,且1log log 212+=+n n a a ,数列{}n n a b -是等差数列,首项为1,公差为2,其中*∈N n .(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S.20、已知等差数列{}n a 的前n 项和为nS ,a2=4,S5=35.(Ⅰ)求数列{}n a 的前n 项和n S ;(Ⅱ)若数列{}n b 满足n a n b e =,求数列{}n b 的前n 项和nT21.已知:f(x)=-4+1x2,数列{an}的前n 项和为Sn ,点Pn ⎝⎛⎭⎪⎫an ,-1an +1在曲线y =f(x)上(n∈N*),且a1=1,an>0.(1)求数列{an}的通项公式;(2)数列{bn}的前n 项和为Tn ,且满足Tn +1a2n =Tna2n +1+16n2-8n -3,问:当b1为何值时,数列{bn}是等差数列.22.数列{an}满足an =3an -1+3n -1(n∈N *,n≥2),已知a3=95. (1)求a1,a2;(2)是否存在一个实数t ,使得bn =13n(an +t)(n∈N*),且{bn}为等差数列?若存在,则求出t 的值;若不存在,请说明理由.23.设f(x)=axx +a(a≠0),令a1=1,an +1=f(an),又bn =an·an+1,n∈N*. (1)证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1an 是等差数列;(2)求数列{an}的通项公式;(3)求数列{bn}的前n项和.。
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,这个常数叫做等差数列的公差,公差通常用字母公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=³或1(1)n n a a d n+-=³。
根据定义,当我们看到形如:d a a n n =--1、da a n n =--212、d aa n n=--1d a a n n =--111、211-++=n n na a a 、d S S n n =--1时,应能从中得到相应的等差数列。
的等差数列。
等差数列的判定方法1. 定义法:若d aa n n=--1或da an n =-+1(常数*ÎN n )Û {}n a 是等差数列.是等差数列.2.2.等差中项:数列等差中项:数列{}n a 是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a . 3.3.数列数列{}n a 是等差数列Ûbkn a n+=(其中b k ,是常数)。
是常数)。
4.4.数列数列{}n a 是等差数列Û2n S An Bn =+,(其中(其中A A 、B 是常数)。
是常数)。
等差数列的证明方法定义法:若d aa n n=--1或d a ann =-+1(常数*ÎN n )Û {}n a 是等差数列.例1.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是(是( )A.等比数列,但不是等差数列等比数列,但不是等差数列B.等差数列,但不是等比数列等差数列,但不是等比数列C.等差数列,而且也是等比数列等差数列,而且也是等比数列D.既非等比数列又非等差数列既非等比数列又非等差数列 答案:B ;解法一:a n =îíì³-==Þîíì³-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数≠常数 ∴{a n }是等差数列,但不是等比数列. 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-Î ,, 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a=1,=1得=2,=1+×2,项起开始为正数,则公差的取值范围是______ ______ ______ ;;11<11<=19(a 119)==120=ac(C )8 8 ((D )10 【答案】A 【解析】由角标性质得1952a a a +=,所以5a =5.=5.2.在等差数列{a n }中,a 2+a 6=3π2,则sin(2a 4-π3)=( ) A.32 B.12 C .-32 D .-12 答案 D 解析 ∵a 2+a 6=3π2,∴2a 4=3π2,∴sin(2a 4-π3)=sin(3π2-π3)=-cos π3=-12,选D. 1. (2009北京东城高三第一学期期末检测,理9)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为________________.答案:21-2。
环球雅思学科教师辅导学案辅导科目:数学 年级:高一 学科教师: 课 时 数: 3授课类型 等差数列与通项公式教学目的 掌握等差数列的通项公式与前n 项和公式.教学内容1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差都等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 就叫做这个数列的公差。
即1(2,)n n a a d n n N *--=≥∈ 2、等差中项若,,a A b 成等差数列,那么A 叫做,a b 的等差中项。
两个实数,a b 的等差中项只有一个,就是这两个数的算术平均数2a b+。
3、等差数列的性质①等差数列的通项公式*1(1)()()n m a a n d a n m d n N =+-=+-∈,n ma a d n m-=-。
5、知三求二等差数列有5个基本量,1,,,,n n a d n a S ,求解它们,多利用方程组的思想,知三求二。
注意要弄准它们的值。
6、特殊设法三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++。
同步讲解1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
1、设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列设{}n a 是等差数列,求证:以b n =na a a n+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
3、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
4、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
等差数列课标要求命题点五年考情命题分析预测1.理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.3.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.4.体会等差数列与一元一次函数的关系.等差数列的基本运算2023新高考卷ⅠT20;2023全国卷乙T18;2023全国卷甲T5;2022新高考卷ⅡT3;2022全国卷乙T13;2021新高考卷ⅡT17;2021北京T6;2019全国卷ⅠT9;2019全国卷ⅢT14本讲的命题热点为等差数列的基本运算、等差数列的判定与证明、等差数列的性质的应用、等差数列前n 项和的最值,在客观题和主观题中都有可能出现,难度中等.考查学生的函数与方程思想和数学运算能力.预计2025年高考命题稳定,重点掌握等差数列的通项公式和前n 项和公式及其变形应用,同时也要关注等差数列与其他知识的综合运用.等差数列的判定与证明2023新高考卷ⅠT7;2022全国卷甲T17;2021全国卷乙T19;2021全国卷甲T18等差数列的性质2020全国卷ⅡT4;2020新高考卷ⅠT14等差数列前n 项和的最值2022全国卷甲T17学生用书P0931.等差数列的概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的①差都等于②同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.(2)等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的③等差中项,且A =④+2.(3)等差数列的通项公式及其变形通项公式:⑤a n=a1+(n-1)d,其中a1是首项,d是公差.通项公式的变形:a n=a m+(n-m)d(m,n∈N*).由an=dn+(a1-d)可知,当d≠0时,a n可看作关于n的一次函数.规律总结等差数列的单调性当d>0时,数列{a n}为递增数列;当d<0时,数列{a n}为递减数列;当d=0时,数列{a n}为常数列.2.等差数列的前n项和(1)等差数列的前n项和公式:S n=(1+)2=⑥na1+(-1)2d.(2)由S n=na1+(-1)2d=2n2+(a1-2)n可知,当d≠0时,S n可看作关于n的二次函数,故可借助二次函数的图象和性质来研究S n的最值问题.3.等差数列的性质(1)等差数列项的性质设数列{a n},{b n}均为等差数列.a.若k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n,特别地,若p+q=2m,则⑦a p+a q=2a m.反之不一定成立.b.若{a n}公差为d,则{a2n}也是等差数列,公差为⑧2d.c.{pa n+qb n}(p,q为常数)也是等差数列.d.若{a n}与{b n}有公共项,则{a n}与{b n}的公共项从小到大排成的新数列也是等差数列,首项是第一个相同的公共项,公差是{a n}与{b n}的公差的⑨最小公倍数.e.若{a n}公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)组成公差为⑩md的等差数列,即下标成等差数列,则相应的项也成等差数列.f.若c是非零常数,则{}是等比数列.(2)等差数列前n项和的性质设S n为等差数列{a n}的前n项和.a.{}是等差数列,其首项等于⑪a1,公差是{a n}的公差的12.b.S m,S2m-S m,S3m-S2m,…(m∈N*)是等差数列.c.两个等差数列{a n},{b n}的前n项和S n,T n之间的关系为2-1=⑫.2-11.[教材改编]如果三角形的三个内角成等差数列,则中间角的大小为60°.解析由题意可设三个内角分别为x-d,x,x+d,则有(x-d)+x+(x+d)=180°,可得x=60°.2.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.解析由a7+a8+a9>0可得a8>0,由a7+a10<0可得a8+a9<0,所以a9<0,所以当n =8时,{a n}的前n项和最大.3.[教材改编]已知{a n}为等差数列,且a20=30,a30=20,则a50=0.解析由题意可得,公差d=20-3030-20=-1,所以a50=a20+30d=30-30=0.4.[教材改编]某公司购置了一台价值220万元的设备,随着设备在使用过程中老化,每经过一年,其价值减少20万元.当设备价值低于购进价值的5%时,设备将报废,则该机器最多使用10年.解析设使用n年后,该设备的价值为a n万元,则易知{a n}是以(220-20)为首项,-20为公差的等差数列,所以a n=(220-20)+(n-1)×(-20)=220-20n.令220-20n≥220×5%,得n≤10.45,所以该设备最多使用10年.5.已知等差数列{a n}的项数为奇数,其中所有奇数项和为290,所有偶数项和为261,则该数列的项数为19.解析设等差数列{a n}的前n项和为S n,项数为2k-1,则奇偶=-1=290261,解得k=10,则项数为2×10-1=19.6.[易错题]已知数列{a n}满足a1=1,a n+a n+1=n,则a20=9.解析因为a n+a n+1=n,所以a1+a2=1,a2+a3=2,…,a19+a20=19.因为a1=1,所以可得a1=1,a3=2,a5=3,a7=4,…,和a2=0,a4=1,a6=2,a8=3,…,奇数项、偶数项分别构成等差数列,所以a2k=k-1(k∈N*),所以a20=10-1=9.学生用书P094命题点1等差数列的基本运算例1[2023全国卷甲]记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=(C)A.25B.22C.20D.15解析解法一由a 2+a 6=10,可得2a 4=10,所以a 4=5,又a 4a 8=45,所以a 8=9.设等差数列{a n }的公差为d ,则d =8-48-4=9-54=1,又a 4=5,所以a 1=2,所以S 5=5a 1+5×42×d =20,故选C.解法二设等差数列{a n }的公差为d ,则由a 2+a 6=10,可得a 1+3d =5①,由a 4a 8=45,可得(a 1+3d )(a 1+7d )=45②,由①②可得a 1=2,d =1,所以S 5=5a 1+5×42×d=20,故选C.例2[2023新高考卷Ⅰ]设等差数列{a n }的公差为d ,且d >1.令b n =2+,记S n ,T n 分别为数列{a n },{b n }的前n 项和.(1)若3a 2=3a 1+a 3,S 3+T 3=21,求{a n }的通项公式;(2)若{b n }为等差数列,且S 99-T 99=99,求d .解析(1)因为3a 2=3a 1+a 3,所以3(a 2-a 1)=a 1+2d ,所以3d =a 1+2d ,所以a 1=d ,所以a n =nd .因为b n =2+,所以b n =2+B=r1,所以S 3=3(1+3)2=3(r3)2=6d ,T 3=b 1+b 2+b 3=2+3+4=9.因为S 3+T 3=21,所以6d +9=21,解得d =3或d =12,因为d >1,所以d =3.所以{a n }的通项公式为a n =3n .(2)因为b n =2+,且{b n }为等差数列,所以2b 2=b 1+b 3,即2×62=21+123,所以61+-11=61+2,所以12-3a 1d +2d 2=0,解得a 1=d 或a 1=2d .①当a 1=d 时,a n =nd ,所以b n =2+=2+B=r1,S 99=99(1+99)2=99(r99)2=99×50d ,T 99=99(1+99)2=99(2+100)2=99×51.因为S 99-T 99=99,所以99×50d -99×51=99,即50d 2-d -51=0,解得d =5150或d =-1(舍去).②当a 1=2d 时,a n =(n +1)d ,所以b n =2+=2+(r1)=,S 99=99(1+99)2=99(2r100)2=99×51d ,T 99=99(1+99)2=99(1+99)2=99×50.因为S 99-T 99=99,所以99×51d -99×50=99,即51d 2-d -50=0,解得d =-5051(舍去)或d =1(舍去).综上,d =5150.方法技巧1.等差数列基本运算中常用的数学思想方程思想等差数列中有五个量a 1,a n ,d ,n ,S n ,一般可“知三求二”,通过列方程(组)求解.整体思想将已知和所求都用a 1和d 表示,寻求两者之间的联系,整体代换求解.2.等差数列基本运算中常用的设元技巧若三个数成等差数列,可将三个数设为a -d ,a ,a +d ;若四个数成等差数列,可将四个数设为a -3d ,a -d ,a +d ,a +3d .训练1(1)[2021北京高考]已知{a n }和{b n }是两个等差数列,且(1≤k ≤5)是常值,若a 1=288,a 5=96,b 1=192,则b 3的值为(C)A.64 B.100C.128D.132解析因为{a n }和{b n }是两个等差数列,所以2a 3=a 1+a 5=288+96=384,所以a 3=192,又当1≤k ≤5时,是常值,所以33=11,即1923=288192,从而b 3=128.故选C.(2)[2022全国卷乙]记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =2.解析因为2S 3=3S 2+6,所以2(3a 1+3d )=3(2a 1+d )+6,化简得3d =6,解得d =2.命题点2等差数列的判定与证明例3[2021全国卷甲]已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{}是等差数列;③a 2=3a 1.解析①③⇒②.已知数列{a n }是等差数列,a 2=3a 1.设数列{a n}的公差为d,则a2=3a1=a1+d,故d=2a1,所以S n=na1+(-1)2d=n2a1.因为数列{a n}的各项均为正数,所以=n1,所以r1-=(n+1)1-n1=1(常数),所以数列{}是等差数列.①②⇒③.已知数列{a n}是等差数列,{}是等差数列.设数列{a n}的公差为d,则S n=na1+(-1)2d=12dn2+(a1-2)n.因为数列{}是等差数列,所以数列{}的通项是关于n的一次函数,则a1-2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{}的公差为d,则d>0,2-1=41-1=d,得a1=d2,所以=1+(n-1)d=nd,所以S n=n2d2,所以a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),a1=d2也满足上式,所以a n=2d2n-d2.因为a n-a n-1=2d2n-d2-[2d2(n-1)-d2]=2d2(常数)(n≥2),所以数列{a n}是等差数列.方法技巧等差数列的判定与证明的方法定义法a n-a n-1(n≥2,n∈N*)为同一常数⇔{a n}是等差数列=a n+a n-2(n≥3,n∈N*)成立⇔{a n}是等差数列等差中项法2a n-1通项公式法a n=pn+q(p,q为常数)对任意的正整数n都成立⇔{a n}是等差数列前n项和S n=An2+Bn(A,B为常数)对任意的正整数n都成立⇔{a n}是等差数列公式法训练2(1)[2023新高考卷Ⅰ]设S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{}为等差数列.则(C)A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解析若{a n}为等差数列,设其公差为d,则a n=a1+(n-1)d,所以S n=na1+(-1)2d,所以=a1+(n-1)·2,所以r1r1-=a1+(n+1-1)·2-[a1+(n-1)·2]=2,为常数,所以{}为等差数列,即甲⇒乙;若{}为等差数列,设其公差为t,则=11+(n-1)t=a1+(n-1)t,所以S n=na1+n(n-1)t,所以当n≥2时,a n=S n-S n-1=na1+n(n-1)t-[(n-1)a1+(n-1)(n-2)t]=a1+2(n-1)t,当n=1时,S1=a1也满足上式,所以a n=a1+2(n-1)t(n∈N*),所以a n+1-a n=a1+2(n+1-1)t -[a1+2(n-1)t]=2t,为常数,所以{a n}为等差数列,即甲⇐乙.所以甲是乙的充要条件,故选C.(2)[多选/2023福建莆田九中质检]已知数列{a n}的前n项和为S n,则下列结论正确的是(BCD)A.若数列{S n}为等差数列,则数列{a n}为等差数列B.若数列{}为等差数列,则数列{a n}为等差数列C.若数列{a n}和{2}均为等差数列,则S3=2a3D.若数列{a n}和{2}均为等差数列,则数列{a n}是常数列解析对于A,若数列{S n}为等差数列,设公差为d,可得a n=S n-S n-1=d(n≥2),但是首项a1的值不确定,所以数列{a n}不一定为等差数列,故选项A错误;对于B,若数列{}为等差数列,设公差为d',则=S1+(n-1)d',可得S n=nS1+n(n-1)d',当n=1时,a1=S1,当n≥2时,a n=S n-S n-1=nS1+n(n-1)d'-(n-1)S1-(n-1)(n-2)d'=S1+(2n-2)d',则a n-a n-1=2d'(n≥3),由a2=S1+2d',a1=S1,得a2-a1=2d',所以a n-a n-1=2d'(n≥2),故数列{a n}为等差数列,故选项B正确;对于C,由数列{a n}为等差数列,可设a n=kn+b,k,b为常数,则2=k2n2+2kbn+b2,所以2=k2n+2kb+2,因为数列{2}为等差数列,所以n≥2时,2--12-1=k2+2-2-1=k2+b2(1-1-1)为常数,则b2=0,所以b=0,故a n=kn,所以S3=a1+a2+a3=6k,又a3=3k,所以S3=2a3,故选项C正确;对于D,由数列{a n}为等差数列,可设a n=pn+q,p,q为常数,则2=p2n2+2pqn+q2,因为{2}为等差数列,所以2--12=(2n-1)p2+2pq为常数,则p=0,所以a n=q,则数列{a n}是常数列,故选项D正确.故选BCD.命题点3等差数列的性质例4(1)[新高考卷Ⅰ]将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为3n2-2n.解析{2n-1}与{3n-2}的第一个公共项为1,则易知{a n}是以1为首项,2×3=6为公差的等差数列,则S n=n+(-1)2×6=3n2-2n.(2)已知S n为等差数列{a n}的前n项和,且63=3,则129=53.解析设S3=m(m≠0),则S6=3m.因为{a n}为等差数列,所以S3,S6-S3,S9-S6,S12-S9,…成等差数列,公差为m,所以可推出S9=6m,S12=10m,故129=53.训练3(1)数列{a n},{b n}均为等差数列,且a1=-5,b1=-15,a2025+b2025=100,则数列{a n+b n}的前2025项和为81000.解析易得数列{a n+b n}为等差数列,首项为a1+b1=-20,∴{a n+b n}的前2025项和为2025×-20+1002=81000.(2)等差数列{a n},{b n}的前n项和分别为S n,T n,若=23r1,则1111=2132,1011=1932.解析由题意可得1111=211211=1+211+21=(1+21)×21÷2(1+21)×21÷2=2121=2×213×21+1=2132.由=23r1=2232+及等差数列前n项和性质可设S n=A·2n2,T n=A(3n2+n)(A≠0),∴a10=S10-S9=A(2×102-2×92)=38A,b11=T11-T10=A[(3×112+11)-(3×102+10)]=64A,∴1011=3864=1932.命题点4等差数列前n项和的最值例5[2022全国卷甲]记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列.(2)若a4,a7,a9成等比数列,求S n的最小值.解析(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,+2n+1=2a n+1(n+1)-2a n n+1,②-①,得2a n+1-a n=1,所以数列{a n}是公差为1的等差数列.化简得a n+1(2)由(1)知数列{a n}的公差为1.由72=a4a9,得(1+6)2=(a1+3)(a1+8),解得a1=-12.所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以当n=12或n=13时,S n取得最小值,最小值为-78.方法技巧求等差数列前n项和S n的最值的方法(1)通项法:①若a1>0,d<0,则S n必有最大值,n可用不等式组≥0,r1≤0来确定;②若a1<0,d>0,则S n必有最小值,n可用不等式组≤0,r1≥0来确定.(2)二次函数法:由于S n=2n2+(a1-2)n,故可用二次函数求最值的方法求S n的最值,结合n∈N*及二次函数图象的对称性来确定n的值.(3)不等式组法:一般情况下,S n最大时,有≥-1,≥r1(n≥2,n∈N*),解得n的范围,进而确定n的值和对应的S n的值(即S n的最值).训练4等差数列{a n}的前n项和为S n,若∀n∈N*,S n≤S7,则数列{a n}的通项公式可能是(B)A.a n=16-3nB.a n=15-2nC.a n=2n-14D.a n=2n-15解析因为数列{a n}是等差数列,且∀n∈N*,S n≤S7,所以该数列从第8项起为非正数,即a7≥0,a8≤0.对于A,a7=16-3×7=-5<0,故A不正确;对于B,a7=15-2×7=1>0,a8=15-2×8=-1<0,故B正确;对于C,a7=2×7-14=0,a8=2×8-14=2>0,故C不正确;对于D,a7=2×7-15=-1<0,故D不正确.故选B.1.[命题点1/2021新高考卷Ⅱ]记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式;(2)求使S n>a n成立的n的最小值.解析(1)设等差数列{a n }的公差为d (d ≠0),则由题意,得1+2=51+10,(1+p(1+3)=41+6,解得1=-4,=2,所以a n =a 1+(n -1)d =2n -6.(2)解法一S n =(1+)2=(2-10)2=n 2-5n ,则由n 2-5n >2n -6,整理得n 2-7n +6>0,解得n <1或n >6.因为n ∈N *,所以使S n >a n 成立的n 的最小值为7.解法二由S n >a n 得S n -1>0(n ≥2),即(1+-1)(-1)2>0,所以a 1+a n -1=2n -12>0,解得n >6,所以n 的最小值为7.2.[命题点2/多选]两个等差数列{a n }和{b n },其公差分别为d 1和d 2,其前n 项和分别为S n 和T n ,则下列说法正确的是(AB)A.若{}为等差数列,则d 1=2a 1B.若{S n +T n }为等差数列,则d 1+d 2=0C.若{a n b n }为等差数列,则d 1=d 2=0D.若b n ∈N *,则{}也为等差数列,且公差为d 1+d 2解析由题意得S n =12n 2+(a 1-12)n ,T n =22n 2+(b 1-22)n .若数列{}为等差数列,则由等差数列通项公式的特征,可得a 1-12=0,即d 1=2a 1,所以选项A 正确;S n +T n =1+22n 2+(a 1+b 1-12-22)n ,由等差数列通项公式的特征,可得1+22=0,即d 1+d 2=0,所以选项B 正确;当d 1=0或d 2=0时,数列{a n b n }为等差数列,所以选项C 错误;因为a n =a 1+(n -1)d 1,b n =b 1+(n -1)d 2,b n ∈N *,所以=1+(-1)2=a 1+[b 1+(n -1)d 2-1]d 1=(a 1+b 1d 1-d 1)+(n -1)d 1d 2,可知数列{}是等差数列,且公差为d 1d 2,所以选项D 错误.故选AB.3.[命题点2/2021全国卷乙]记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2+1=2.(1)证明:数列{b n }是等差数列.(2)求{a n }的通项公式.解析(1)因为b n 是数列{S n }的前n 项积,所以当n ≥2时,S n =-1,代入2+1=2可得,2-1+1=2,整理可得2b n-1+1=2b n,即b n-b n-1=12(n≥2).又21+11=31=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)由(1)可知,b n=r22,则2+2r2=2,所以S n=r2r1,当n=1时,a1=S1=32,当n≥2时,a n=S n-S n-1=r2r1-r1=-1(r1).当n=1时,a1=32≠-11×2=-12,故a n =1,1(r1),≥2.4.[命题点4]在等差数列{a n}中,若109<-1,且它的前n项和S n 有最大值,则使S n>0成立的正整数n的最大值是(C)A.15B.16C.17D.14解析因为等差数列{a n}的前n项和有最大值,所以等差数列{a n}为递减数列,又109<-1,所以a9>0,a10<0,所以a9+a10<0,所以S18=18(1+18)2=9(a9+a10)<0,且S17=17(1+17)2=17a9>0.故使得S n>0成立的正整数n的最大值为17.学生用书·练习帮P3031.[2024河南名校模拟]设S n是等差数列{a n}的前n项和,若a2+a5+a8=15,则S9=(C)A.15B.30C.45D.60解析由题意得a 2+a 5+a 8=3a 5=15,所以a 5=5,所以S 9=9(1+9)2=9a 5=45.故选C.2.[2024湖北武汉模拟]已知等差数列{a n }的前n 项和为S n .若S 1=3,22+44=18,则S 5=(C)A.21B.48C.75D.83解析解法一令b n =,则数列{b n }为等差数列.b 1=11=3,22+44=b 2+b 4=18,设数列{b n }的公差为d ,则3+d +3+3d =18,解得d =3,∴b n =3n ,即=3n .∴S n =3n 2,故S 5=3×52=75.故选C.解法二设等差数列{a n }的公差为d ,则=B 1+(-1)2=a 1+-12d ,又因为a 1=S 1=3,则22+44=a 1+2+a 1+32d =2a 1+2d =6+2d =18,解得d =6,因此S 5=5a 1+5×42d =5a 1+10d =5×3+10×6=75.故选C.3.[2024吉林白城模拟]已知等差数列{a n }是递增数列,且满足a 3+a 5=14,a 2a 6=33,则a 1a 7=(C)A.33 B.16C.13D.12解析由等差数列的性质,得a 2+a 6=a 3+a 5=14,又a 2a 6=33,解得2=3,6=11或2=11,6=3,又{a n }是递增数列,∴2=3,6=11,∴d =6-26-2=2,∴a 1a 7=(a 2-d )(a 6+d )=(3-2)×(11+2)=13.故选C.4.[2023陕西宝鸡模拟]已知首项为2的等差数列{a n }的前30项中,奇数项的和为A ,偶数项的和为B ,且B -A =45,则a n =(B )A.3n -2B.3n -1C.3n +1D.3n +2解析在等差数列{a n }中,首项a 1=2,设其公差为d ,由前30项中奇数项的和为A ,偶数项的和为B ,且B -A =45,可得-a 1+a 2-…-a 29+a 30=15d =45,解得d =3,∴a n =a 1+(n -1)d =2+3(n -1),即a n =3n -1,故选B.5.[多选/2024山东模拟]已知等差数列{a n }的前n 项和为S n ,公差为d ,a 3=a 1-4,S 7=154,则(AC)A.d =-2B.a1=30C.-320是数列{a n}中的项D.S n取得最大值时,n=14解析由题意可得a3=a1+2d=a1-4,即d=-2,A正确;S7=154=7a1+7×62d⇒a1=28,B错误;a n=a1+(n-1)d=30-2n,令a n=-320,得n=175,即C正确;S n=(1+)2=n(29-n),结合二次函数图象的对称性及单调性,可知当n=14或n=15时,S n取得最大值,即D错误.故选AC.6.[2023广州市二检]在数列{a n}中,a1=2,a m+n=a m+a n(m,n∈N*),若a k a k+1=440,则正整数k=10.解析解法一令m=1,则a n+1=a n+a1,即a n+1-a n=2,所以数列{a n}是以2为首项,2为公差的等差数列,即a n=2+(n-1)×2=2n,又k为正整数,所以a k a k+1=2k×2(k+1)=440,即k(k+1)=110,解得k=10或k=-11(舍去).故填10.解法二(列举法)令m=n=1,则a2=a1+a1=4;令m=1,n=2,则a3=a1+a2=6;令m=n=2,则a4=a2+a2=8.通过观察找规律可知,数列{a n}是以2为首项,2为公差的等差数列,即a n=2+(n-1)×2=2n,又k为正整数,所以a k a k+1=2k×2(k+1)=440,即k(k+1)=110,解得k=10或k=-11(舍去).故填10.7.[2024江西抚州模拟改编]在数列{a n}中,已知a n+1-a n=a n+2-a n+1,a1013=1,则该数列前2025项的和S2025=2025.解析由a n+1-a n=a n+2-a n+1可知,数列{a n}为等差数列,所以a1+a2025=2a1013=2,所以S2025=(1+2025)×20252=2×20252=2025.8.[2024广州大学附属中学模拟]设数列{a n}和{b n}都为等差数列,记它们的前n项和分别为S n和T n,若=2-12r1,则=r2.解析由数列{a n}和{b n}都为等差数列,且=2-12r1,令a n=k(2n-1),b n=k(2n+1),k≠0,k为常数,因此等差数列{a n}的首项a1=k,等差数列{b n}的首项b1=3k,所以=1+2·1+2·=1+1+=+(2-1)3+(2r1)=r2.9.[2024浙江普陀中学模拟]已知正项数列{a n}的前n项和为S n,a1=2.(1)记c n=r1·r1,证明:数列{c n}的前n项和T n<12.(2)若S n=2a n+14-2n+3(n∈N*),证明:数列{2}为等差数列,并求{a n}的通项公式.解析(1)∵c n=r1·r1=1-1r1,∴T n=11-12+12-13+13-14+…+1-1-1+1-1r1=11-1r1=12-1r1.∵数列{a n}为正项数列,∴S n+1>0,∴12-1r1<12,即T n<12.=2a n-1+14-2n+2,(2)当n≥2且n∈N*时,S n-1∴a n=S n-S n-1=2a n+14-2n+3-2a n-1-14+2n+2=2a n-2a n-1-2n+2,整理可得a n-2a n-1=2n+2,∴2--12-1=4(n≥2),当n=1时,a1=S1=2a1+14-21+3,得a1=2,12=1,∴数列{2}是以1为首项,4为公差的等差数列,∴2=1+4(n-1)=4n-3,∴a n=(4n-3)·2n.10.[2024四川南充校考]若一个凸n(n∈N*)边形的最小内角为95°,其他内角依次增加10°,则n的值为(B)A.6或12B.6C.8D.12解析由题知该凸n边形所有内角的取值范围为(0°,180°),内角和为(n-2)·180°.因为最小内角为95°,其他内角依次增加10°,所以它的所有内角按从小到大的顺序排列构成等差数列,且最大内角为95°+(n-1)·10°=(10n+85)°,所以(n-2)·180=(95+10r85)2,即n2-18n+72=0,解得n=6或n=12,当n=12时,95°+(12-1)×10°>180°,不合题意,舍去,故n=6,故选B.11.[2024湖北孝感高中模拟]设等差数列{a n}的前n项和为S n,满足2a3-a5=7,a2+S7=12,则S n的最大值为(B)A.14B.16C.18D.20解析设{a n}的公差为d,则由题意得2a3-a5=2(a1+2d)-(a1+4d)=a1=7,a2+S7=(a1+d)+(7a1+7×62d)=56+22d=12,d=-2.因此S n=7n+(-1)2×(-2)=-(n-4)2+16≤16,故S n的最大值为16.故选B.12.[全国卷Ⅱ]北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)(C)A.3699块B.3474块C.3402块D.3339块解析由题意知,由天心石开始向外的每环的扇面形石板块数构成一个等差数列,记为{a n},设数列{a n}的公差为d,前n项和为S n,易知其首项a1=9,d=9,所以a n=a1+(n -1)d=9n.由等差数列的性质知S n,S2n-S n,S3n-S2n也成等差数列,所以(S3n-S2n)-(S2n-S n)=S2n-2S n,即729=2(9+18)2-2×(9+9)2,解得n=9,所以三层共有扇面形石板的块数为S3n=S27=27×(9+27×9)2=3402.故选C.13.[2024江西吉安万安中学模拟]已知正项数列{a n}的前n项和为S n,若{a n}与{}均为等差数列,请写出一个满足题意的{a n}的通项公式:a n=2n-1(答案不唯一).解析令数列{a n}的公差为d,显然a1>0,由{}是等差数列,得1+3=22,即1+31+3=221+,两边平方得4a1+d=2312+31,两边平方并整理得d=2a1,则a n=a1+(n-1)d=(2n-1)a1,此时S n=1+2·n=n2a1,=n1,有r1-=1为常数,即{}是等差数列,所以数列{a n}的通项公式是a n=(2n-1)a1(a1>0),取a1=1,得a n=2n-1.14.已知正项数列{a n},其前n项和S n满足a n(2S n-a n)=1(n∈N*).(1)求证:数列{2}是等差数列,并求出S n的表达式.(2)数列{a n}中是否存在连续三项a k,+1,+2,使得1,1r1,1r2构成等差数列?请说明理由.解析(1)依题意知,正项数列{a n}中,12=1,得a1=1,当n≥2时,a n=S n-S n-1,则(S n-S n-1)[2S n-(S n-S n-1)]=1,整理得,2--12=1,又12=12=1,∴数列{2}是以1为首项,1为公差的等差数列,∴2=n(n∈N*),∴S n=.(2)数列{a n}中不存在连续三项a k,a k+1,a k+2,使得1,1r1,1r2构成等差数列.理由如下:当n≥2时,a n=S n-S n-1=--1,∵当n=1时,a1=1,符合上式,∴a n=--1(n∈N*),∴1==+-1,假设数列{a n}中存在连续三项a k,a k+1,a k+2,使得1,1r1,1r2构成等差数列,则2(+1+)=+-1++2++1,即+1+=-1++2,两边同时平方,得k+1+k+2+1·=k-1+k+2+2-1·+2,∴(k+1)k=(k-1)(k+2),整理得k2+k=k2+k-2,得0=-2,又0≠-2,∴假设错误,∴数列{a n}中不存在连续三项a k,a k+1,a k+2,使得1,1r1,1r2构成等差数列. 15.[等差数列与向量综合]已知S n,T n分别为等差数列{a n},{b n}的前n项和,=3r24r5,设点A是直线BC外一点,点P是直线BC上一点,且A =2+43A +λA ,则实数λ的值为(B)A.2825B.-925C.325D.18253×5+24×5+5解析因为P,B,C三点共线,所以2+43+λ=1,所以233+λ=1,33=1+52×51+52×5=55==1725,所以233+λ=3425+λ=1,λ=-925.故选B.16.记等差数列{a n}的前n项和为S n,若a6=18,S10=165,b n=cos(π),为奇数,sin(π),为偶数,则b1+b2+b3+…+b2025=-1013.解析设数列{a n}的公差为d,则a6=a1+5d=18,S10=10a1+45d=165,得a1=3,d=3,所以a n=3+(n-1)×3=3n,当n为奇数时,b n=cos(3nπ)=-1,当n为偶数时,b n=sin(3nπ)=0,故b1+b2+b3+…+b2025=-1013.。
等差数列的定义与性质基本知识点1 定义:1n n a a d +-=(d 为常数),(累加)q pn d n a a n+=-+=)1(1等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和:(倒序相加)Bn An 2+=-+=+=d n n n a a a n S n n 2)1(2)(112、等差数列的证明与判断:证明方法:①递推关系(定义):)(1*+∈=-N n d d a a n n 为常数,②等差中项法:112+-+=n n na a a )1(>n判断方法:③通项公式q pn d n a a n +=-+=)1(1(其中p,q 为常数)④前n 项和Bn An 2+=-+=+=d n n n a a a n Sn n2)1(2)(11(A,B 为常数) 等差概念及其基本公式应用1.(2013年高考辽宁卷(文))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题 A .12,p pB .34,p pC .23,p pD .14,p p2、已知{}n a 是等差数列,124a a +=,7828a a +=,则10S 等于( ) A .64 B .100 C .110 D .1203.如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( )A 1a 8a >45a aB 8a 1a <45a aC 1a +8a >4a +5aD 1a 8a =45a a 等差性质(1)一个等差数列。
按照一定规则选出来还是等差。
1.(课标Ⅱ卷)已知等差数列{}n a 的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732n a a a a -++++ .(2)若,2k q p n m =+=+则k q p n m a a a a a 2=+=+1、在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.3002、在等差数列}{n a 中,已知1254=+a a ,那么它的前8项和=8S ( ) A 12 B 24 C 36 D 483.在等差数列{n a }中,若3a +4a +10a +11a =200,则5a +7a +9a =(3)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2 1.在等差数列}{n a 中,若18,063-==S S ,则=9S2、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++= (4)数列奇数项与偶数项的关系: ① 项数为偶数n 2的等差数列{}n a ,有nd S S =-奇偶,1+=n n a a S S 偶奇. ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S 。
”表示) 1-n a a mn a a -1)项和有最大值可由项和有最小值可由的值 +abq 1q 1333[ ))(()nnan n a 432nn n p3+++n n a a b b qq a q p q a n n n n 111++n )112)n)(33)1)3) 12-n 得:1-n)n2n11n n33)())))344344)n n n n 1-11-n n nn n n 1)n n )(1+n n n=11)31()31()31()31(232++-+-++-+---Λn n =1311)31(11++---n=11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n 说明:若本题中取1,31=-=h k ,则有n n n n a a a a 3131112+=++++即得即得}31{1n n a a ++为常数列,n n a a 311++ 131-+=n n a a 1231a a +==Λ 37312=+=故可转化为例13。
例18.已知数列{}n a 满足11=a ,22=a,n n n a a a 313212+=++求n a . 解:设)(112n n n n sa a t sa a -=-+++⇒n n n sta a t s a -+=++12)(⎪⎪⎩⎪⎪⎨⎧-==+⇒3132st t s ⎪⎩⎪⎨⎧-==⇒311t s 或⎪⎩⎪⎨⎧=-=131t s 则条件可以化为)(31112n n n n a a a a --=-+++{}n n a a -⇒+1是以首项为112=-a a ,公比为31-的等比数列,所以11)31(-+-=-n n n a a .问题转化为利用累加法求数列的通项的问题,解得1)31(4347---=n n a .点评:递推式为nn n qa pa a +=++12(p 、q 为常数)时,可以设)(112nn n n sa a t sa a -=-+++,其待定常数s 、t由p t s =+,q st -=求出,从而化归为上述已知题型.求出,从而化归为上述已知题型.五、特征根法1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
等差数列知识总结
1、定义
1(2)n n a a d n --=≥ 1(1)n n a a d n +-=≥
注意:
①数列{}n a ,{}n b 是等差数列,数列{}n n ma kb +也是等差数列 ②若0d >,数列{}n a 为递增数列,若0d <,数列{}n a 为递减数列,若0d =,数列{}n a 为常数列
2、等差中项
若,,a A b 成等差数列,则2a b A +=;
若112(2)n n n a a a n -+=+≥,数列{}n a 是等差数列.
3、等差数列的通项公式
1(1)n a a n d =+-
①推导方法:归纳法、累加法
②公式的变形:()n m a a m n d -=-
③公式的形式(可以用来判断等差数列):n a pn q =+(,p q 为常数) ④若p q s t +=+,则p q s t a a a a +=+
4、等差数列的前n 项和
1(+)2n n n a a S =,1(1)2
n n n S na d -=+ 注意:
①推导方法:倒序相加法
②“片段和”性质:数列{}n a 是等差数列,则232,,m m m m m S S S S S --也是等差数列
③公式的形式(可以用来判断等差数列):2n S An Bn =+(,A B 为常数)
④n S 的最值问题
⑤数列{||}n a 的求和问题。
§6.2 等差数列一.课程目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.二.知识梳理1.定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数).2.通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .3.前n 项和公式等差数列的前n 项和公式:22111)()(n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).3.等差数列的常用性质已知数列{a n }是等差数列,S n 是{a n }的前n 项和.(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+=(2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。
特别的,当p n m 2=+时,p n m a a a 2=+(3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列.4.与等差数列各项和相关的性质(1)若}{n a 是等差数列,则}{n S n 也是等差数列,其首项与}{n a 的首项相同,公差为}{n a 的公差的21。
等差数列一.等差数列知识点: 知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k kS S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 64 5. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。
等差数列教案(优秀)数学等差数列教案篇一教学目标:1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2、过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3、情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:等差数列的概念及通项公式。
教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:多媒体、实物投影仪教学过程:一、复习引入:1、回忆上一节课学习数列的定义,请举出一个具体的例子。
表示数列有哪几种方法,列举法、通项公式、递推公式。
我们这节课接着学习一类特殊的数列,等差数列。
2、由生活中具体的数列实例引入(1)。
国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2二、新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为0.20,-2在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。
[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。