半导体a谱仪实验报告
- 格式:doc
- 大小:2.23 MB
- 文档页数:9
学号 姓名 实验室 实验时间:第 11 周 星期 三 第 9-11 节 指导老师 实验名称半导体电阻率的测量实验目的1.掌握电阻率的概念和意义。
2.掌握四探针法测量电阻率的原理。
3.熟悉SDY —4型四探针测试仪的操作。
实验设备 及型号 SDY —4型四探针测试仪软件硬件 原理:1. 电阻率对任意薄层半导体,有R wρ=□,其中ρ为半导体的电阻率,单位为cm Ω⋅。
有1ρσ=,σ即半导体的电导率,单位为/S cm 。
有n p nq pq σμμ=+。
∴1n pnq pq ρμμ=+。
电阻率取决于载流子浓度和载流子迁移率。
其中,载流子在半导体中运动受到电离杂质、晶格振动(声学波散射、光学波散射)散射。
有1111isoμμμμ=++。
(i μ、s μ、o μ分别表示只有一种散射机制(电离杂质、声学波、光学波)存在时的迁移率。
)迁移率与杂质浓度和温度有关,同时,载流子浓度也与杂质浓度和温度密切相关。
所以电阻率随杂志浓度和温度而异。
轻掺杂时,电阻率与杂质浓度成简单的反比关系;杂质浓度增高时,曲线严重偏离直线。
温度较低时,电阻率随温度升高而下降;室温下,电阻率随温度升高而增大;高温时,电阻率随温度升高而急剧下降。
2.四探针法测电阻率将四根排成一条直线的探针以一定的压力垂直地压在被测样品表面上,在1、4探针间通过电流I (mA ),2、3探针间就产生一定的电压V(mV)。
按下列公式计算样品的方块电阻:()()V W D F F W Fsp I S S ρ=⨯⨯⨯⨯ cm Ω⋅其中,D:样品直径;S :平均探针间距;W :样品厚度; Fsp :探针修正系数;F(W/S):样品厚度修正系数; F(D/S):样品直径修正系数; I :1、4探针流过的电流值; V :2、3探针间取出的电压值。
3. SDY —4型四探针测试仪的使用设计思想及流程图实 验原 理及 实 验 步骤源代码及注释实验步骤面板介绍:K7:电流换向按键K6:测量/电流方式选择按键(开机时自动在电流位)K5:/Rρ□测量选择按键(开机时自动设置在R□)K4、K3、K2、K1:测量电流量程选择按键W1:电流粗调电位器W2:电流细调电位器L:主机数字及状态显示器实验内容及步骤:1.开启主机电源,预热5分钟。
半导体器件综合测试实验报告1实验⽬的了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。
掌握半导体管特性图⽰仪的使⽤⽅法,掌握测量晶体管输⼊输出特性的测量⽅法;测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全⾯分析、讨论。
2实验内容测试3AX31B、3DG6D的放⼤、饱和、击穿等特性曲线,根据图⽰曲线计算晶体管的放⼤倍数;测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。
3实验仪器XJ4810图⽰仪、⽰波器、三极管、霍尔效应实验装置。
4实验原理4.1三极管的主要参数4.1.1 直流放⼤系数共发射极直流放⼤系数ββ=-( 4-1)(I I)/IC CEO B时,β可近似表⽰为当I IC CEOβ=( 4-2)I/IC B4.1.2 交流放⼤系数共发射极交流放⼤系数β定义为集电极电流变化量与基极电流变化量之⽐,即CE CBv i i β=?=?常数( 4-3)4.1.3 反向击穿电压当三极管内的两个PN 结上承受的反向电压超过规定值时,也会发⽣击穿,其击穿原理和⼆极管类似,但三极管的反向击穿电压不仅与管⼦⾃⾝的特性有关,⽽且还取决于外部电路的接法。
4.2霍尔效应霍尔效应是导电材料中的电流与磁场相互作⽤⽽产⽣电动势的效应,从本质上讲,霍尔效应是运动的带电粒⼦在磁场中受洛仑兹⼒的作⽤⽽引起的偏转。
当带电粒⼦(电⼦或空⽳)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的⽅向上产⽣正负电荷在不同侧的聚积,从⽽形成附加的横向电场。
图4-1 霍尔效应⽰意图如图4-1所⽰,磁场B 位于Z 的正向,与之垂直的半导体薄⽚上沿X 正向通以电流sI (称为控制电流或⼯作电流),假设载流⼦为电⼦(N 型半导体材料),它沿着与电流s I 相反的X 负向运动。
由于洛伦兹⼒L f 的作⽤,电⼦即向图中虚线箭头所指的位于y 轴负⽅向的B 侧偏转,并使B 侧形成电⼦积累,⽽相对的A 侧形成正电荷积累。
半导体物理实验报告实验一 半导体的霍尔效应实验目的1、了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2、学习用“对称测量法”消除副效应的影响,测量试样的VH-IS 和VH-IM 曲线。
3、确定试样的导电类型、载流子浓度以及迁移率。
实验仪器霍尔效应实验组合仪实验步骤⑴ 开关机前,测试仪的“IS 调节”和“IM 调节”旋钮均置零位(即逆时针旋到底)。
⑵ 按图1.2 连接测试仪与实验仪之间各组连线。
注意:①样品各电极引线与对应的双刀开关之间的连线已由制造厂家连接好,请勿再动!②严禁将测试仪的励磁电源“IM 输出”误接到实验仪的 “IS 输入”或“VH、V 输出”处,否则,一旦通电,霍尔样品即遭损坏!样品共有三对电极,其中A 、A/或C 、C/用于测量霍尔电压H V ,A 、C 或A/、C/用于测量电导,D 、E 为样品工作电流电极。
样品的几何尺寸为:d=0.5mm ,b=4.0mm ,A 、C 电极间距l=3.0mm 。
仪器出产前,霍尔片已调至中心位置。
霍尔片性脆易碎,电极甚细易断,严防撞击,或用手去摸,否则,即遭损坏! 霍尔片放置在电磁铁空隙中间,在需要调节霍尔片位置时,必须谨慎,切勿随意改变y 轴方向的高度,以免霍尔片与磁极面磨擦而受损。
⑶ 接通电源,预热数分钟,电流表显示“.000”( 当按下“测量选择”键时 )或“0.00”(放开“测量选择”键时),电压表显示为“0.00”。
⑷ 置“测量选择”于IS 挡(放键),电流表所示的值即随“IS 调节”旋钮顺时针转动而增大,其变化范围为0-10mA ,此时电压表所示读数为“不等势”电压值,它随IS 增大而增大,IS 换向,VH极性改号(此乃“不等势”电压值,可通过“对称测量法”予以消除)。
图1.2 实验线路连接装置图⑸ 置“测量选择”于IM 挡(按键),顺时针转动“IM 调节” 旋钮,电流表变化范围为0-1A 。
此时H V 值随IM 增大而增大,IM 换向,VH极性改号(其绝对值随IM 流向不同而异,此乃副效应而致,可通过“对称测量法”予以消除)。
竭诚为您提供优质文档/双击可除半导体基础实验报告篇一:半导体物理实验报告电子科技大学半导体物理实验报告姓名:艾合麦提江学号:20XX033040008班级:固电四班实验一半导体电学特性测试测量半导体霍尔系数具有十分重要的意义。
根据霍尔系数的符号可以判断材料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。
霍尔效应是半导体磁敏器件的物理基础。
1980年发现的量子霍尔效应对科技进步具有重大意义。
早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。
1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。
本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。
一、实验原理如图,一矩形半导体薄片,当沿其x方向通有均匀电流I,沿Z方向加有均匀磁感应强度的磁场时,则在y方向上产生电势差。
这种想象叫霍尔效应。
所生电势差用Vh表示,成为霍尔电压,其相应的电场称为霍尔电场ey。
实验表明,在弱磁场下,ey同J(电流密度)和b成正比ey=RhJb(1)式中Rh为比例系数,称为霍尔系数。
在不同的温度范围,Rh有不同的表达式。
在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p的p型样品Rh?1?0(2)pq式中q为电子电量。
对电子浓度为n的n型样品Rh??1?0nq(3)当考虑载流子速度的统计分布时,式(2)、(3)应分别修改为??h?1??h?1Rh??Rh???pqnq??p??n(4)式中μh为霍尔迁移率。
μ为电导迁移率。
对于简单能带结构??h?(5)h??h?p??nγh称为霍尔因子,其值与半导体内的散射机制有关,对晶格散射γh=3π/8=1.18;对电离杂质散射γh=315π/512=1.93,在一般粗略计算中,γh可近似取为1.在半导体中主要由一种载流子导电的情况下,电导率为?n?nq?n和?p?pq?p(6)由(4)式得到Rh?ph?p和Rh?nh?n(7)测得Rh和σ后,μh为已知,再由μ(n,T)实验曲线用逐步逼近法查得μ,即可由式(4)算得n或p。
半导体实训报告内容1. 实训背景和目的本次半导体实训是为了加深对半导体器件的理论知识的理解,并通过实际操作进一步巩固掌握相关技能。
通过实训,我们的目标是能够独立完成半导体器件的制备和测试,并对实验结果进行准确分析和解释。
2. 实训内容本次实训主要包括以下几个方面的内容:2.1 半导体材料的制备首先,我们学习了半导体材料的制备方法,包括单晶生长方法、薄膜制备方法等。
在实训中,我们采用了金属有机化学气相沉积(MOCVD)方法制备了一种常用的半导体材料。
2.2 半导体器件的制备在实训过程中,我们学习了半导体器件的制备工艺,包括光刻、腐蚀、沉积等工序。
我们根据实际情况,选择了适当的工艺参数,并利用现代的微纳加工技术成功制备了一种典型的半导体器件。
2.3 半导体器件的测试与分析在完成器件制备后,我们进行了一系列的测试和分析。
通过使用光学显微镜、扫描电子显微镜等测试设备,我们观察和分析了器件的形貌和性能。
同时,我们还使用了电学测试设备对器件的电学特性进行了精确测试。
最终,我们得到了一系列准确的测试结果和相关数据。
3. 实训收获通过本次实训,我们收获了以下几点:3.1 深入理解半导体器件的制备原理和工艺通过参与和实际操作,我们更深入地理解了半导体器件的制备原理和工艺。
我们了解了各种制备方法的优缺点,并了解了如何选择合适的工艺参数。
3.2 熟练掌握半导体器件的测试方法在实验中,我们使用了多种测试设备和手段来对半导体器件进行测试。
通过实际操作,我们掌握了这些测试方法的使用技巧,并能够准确地获取和分析测试数据。
3.3 培养了团队合作和问题解决能力在实训过程中,我们需要与团队成员密切合作,共同完成器件的制备和测试。
这培养了我们的团队合作和沟通能力。
同时,在实验中遇到问题时,我们需要积极思考和解决,提升了我们的问题解决能力。
4. 实训总结通过本次半导体实训,我们在理论和实践层面都加深了对半导体器件的理解。
我们掌握了相关的制备和测试技能,并进一步培养了团队合作和问题解决能力。
一、实验目的1. 了解半导体材料的基本性质和制备方法;2. 掌握半导体器件的基本原理和制备技术;3. 提高半导体器件性能,优化制备工艺;4. 培养团队协作和创新能力。
二、实验原理半导体材料是一种介于导体和绝缘体之间的材料,具有独特的电子特性。
在半导体材料中,电子和空穴的浓度较低,但通过掺杂、能带弯曲、复合等机制,可以实现对电子和空穴的调控,从而实现半导体器件的功能。
本实验主要研究半导体材料的制备和器件制备技术。
实验内容包括:1. 半导体材料的制备:通过化学气相沉积(CVD)或物理气相沉积(PVD)等方法,制备高纯度、高均匀性的半导体薄膜;2. 半导体器件的制备:采用光刻、蚀刻、离子注入、化学气相沉积等方法,制备半导体器件;3. 器件性能测试:通过半导体参数测试仪等设备,测试器件的电学、光学、热学等性能。
三、实验步骤1. 实验一:半导体材料制备(1)选择合适的半导体材料,如硅、锗等;(2)采用CVD或PVD等方法,制备高纯度、高均匀性的半导体薄膜;(3)对薄膜进行表征,如透射电子显微镜(TEM)、X射线衍射(XRD)等。
2. 实验二:半导体器件制备(1)设计器件结构,如PN结、MOS器件等;(2)采用光刻、蚀刻、离子注入、化学气相沉积等方法,制备半导体器件;(3)对器件进行表征,如扫描电子显微镜(SEM)、能谱仪(EDS)等。
3. 实验三:器件性能测试(1)使用半导体参数测试仪等设备,测试器件的电学、光学、热学等性能;(2)分析器件性能,优化制备工艺;(3)撰写实验报告,总结实验结果。
四、实验结果与分析1. 实验一:制备的半导体薄膜具有高纯度、高均匀性,薄膜厚度、掺杂浓度等参数满足器件制备要求。
2. 实验二:制备的半导体器件结构完整,表面光滑,器件性能满足设计要求。
3. 实验三:测试的器件性能良好,电学、光学、热学等参数均达到预期目标。
通过对器件性能的分析,发现以下问题:(1)器件制备过程中,存在一定程度的缺陷,如针孔、台阶等;(2)器件性能受制备工艺、材料等因素影响较大。
半导体实验报告
《半导体实验报告》
摘要:
本实验旨在研究半导体材料的电学性质,通过测量半导体材料的电阻率和载流子浓度,探讨其在电子学领域的应用。
实验结果表明,半导体材料具有较高的电阻率和可控制的载流子浓度,适用于制作各种电子器件。
引言:
半导体材料是一种介于导体和绝缘体之间的材料,具有独特的电学性质。
在现代电子学领域,半导体材料被广泛应用于各种器件中,如晶体管、二极管等。
本实验旨在通过测量半导体材料的电阻率和载流子浓度,探讨其在电子学领域的应用。
实验方法:
1. 准备实验所需的硅片样品和测量设备。
2. 测量不同温度下硅片的电阻率,并绘制电阻率随温度变化的曲线。
3. 通过霍尔效应测量硅片中的载流子浓度,并计算出载流子浓度的大小。
实验结果:
1. 实验结果表明,硅片的电阻率随温度的变化呈现出一定的规律性,且在一定温度范围内变化较小。
2. 通过霍尔效应测量得到硅片中的载流子浓度为10^16 cm^-3,说明硅片中的载流子浓度较高。
讨论:
根据实验结果,可以得出以下结论:
1. 半导体材料的电阻率随温度的变化较小,适用于制作稳定性较高的电子器件。
2. 半导体材料具有较高的载流子浓度,可以通过控制载流子浓度来实现对器件
性能的调节。
结论:
本实验通过测量半导体材料的电阻率和载流子浓度,得出了半导体材料在电子
学领域的应用潜力。
半导体材料具有稳定的电学性质,适用于制作各种电子器件,对于现代电子学领域具有重要的意义。
半导体物理实验报告
班级:
学号:
姓名:
实验一 MOS结构C—V特性测试一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
当栅压在形成反型层之前迅速突变时,高频C-V特性将发生怎样的变化?
实验二霍尔效应测量载流子浓度实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
如何通过洛仑兹力方向和输出霍尔电压的正负来判断半导体样品的极性?
实验三霍尔效应测量载流子迁移率实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
思考样品尺寸参数误差会给霍尔效应测试实验带来怎样的误差?
实验四太阳能电池光伏效应实验
实验四太阳能电池光伏效应实验一、实验目的
二、实验器材
三、实验说明
四、实验内容和步骤
五、实验结果整理
六、实验心得体会
七、回答思考题
为什么要把PN结串联起来用作太阳能电池?串联数目多少是由那些因素决定?。
半导体实验报告一、实验目的本次半导体实验旨在深入了解半导体材料的特性和相关器件的工作原理,通过实验操作和数据测量,掌握半导体物理性能的测试方法,以及分析和解决实验中遇到的问题。
二、实验原理(一)半导体的导电特性半导体的导电能力介于导体和绝缘体之间,其电导率会随着温度、杂质浓度等因素的变化而发生显著改变。
这是由于半导体中的载流子(电子和空穴)浓度受到这些因素的影响。
(二)PN 结的形成与特性当 P 型半导体和 N 型半导体接触时,会在接触面形成 PN 结。
PN 结具有单向导电性,即在正向偏置时导通,反向偏置时截止。
(三)半导体器件的工作原理以二极管为例,其核心就是 PN 结。
当二极管正向偏置时,电流容易通过;反向偏置时,只有极小的反向饱和电流。
三、实验设备与材料(一)实验设备1、半导体特性测试仪2、数字示波器3、电源4、恒温箱(二)实验材料1、硅二极管若干2、锗二极管若干3、不同掺杂浓度的半导体样品四、实验步骤(一)测量二极管的伏安特性1、将二极管接入测试电路,缓慢改变施加在二极管两端的电压,从正向 0V 开始,逐步增加到较大的正向电压,然后再从 0V 开始,逐步增加到较大的反向电压。
2、记录不同电压下通过二极管的电流值。
(二)研究温度对二极管特性的影响1、将二极管放入恒温箱,设置不同的温度(如 20℃、50℃、80℃等)。
2、在每个温度下,重复测量二极管的伏安特性。
(三)测量半导体样品的电阻随温度的变化1、用四探针法测量半导体样品在不同温度下的电阻值。
2、记录温度和对应的电阻值。
五、实验数据与结果(一)二极管伏安特性1、硅二极管正向特性:在较低的正向电压下,电流增长缓慢;当电压超过一定阈值后,电流迅速增加。
反向特性:反向电流很小,且随着反向电压的增加基本保持不变,直到达到反向击穿电压。
2、锗二极管正向特性:与硅二极管相比,正向导通电压较低。
反向特性:反向饱和电流较大。
(二)温度对二极管特性的影响随着温度升高,二极管的正向导通电压降低,反向饱和电流增大。
第1篇一、实验目的1. 熟悉半导体材料的性质,掌握半导体材料的制备方法。
2. 学习使用四探针法测量半导体材料的电阻率和薄层电阻。
3. 掌握半导体材料霍尔系数和电导率的测量方法。
4. 了解太阳能电池的工作原理,并进行性能测试。
二、实验原理1. 半导体材料:半导体材料具有介于导体和绝缘体之间的电导率,其电导率受温度、掺杂浓度等因素影响。
本实验所用的半导体材料为硅(Si)。
2. 四探针法:四探针法是一种测量半导体材料电阻率和薄层电阻的常用方法。
通过测量电流在半导体材料中流过时,电压的变化,可以得到材料的电阻率和薄层电阻。
3. 霍尔效应:霍尔效应是一种测量半导体材料霍尔系数和电导率的方法。
当半导体材料中存在磁场时,载流子在运动过程中会受到洛伦兹力的作用,导致载流子在垂直于电流和磁场的方向上产生横向电场,从而产生霍尔电压。
4. 太阳能电池:太阳能电池是一种将光能转化为电能的装置。
本实验所用的太阳能电池为硅太阳能电池,其工作原理是光生电子-空穴对在PN结处分离,产生电流。
三、实验仪器与材料1. 实验仪器:四探针测试仪、霍尔效应测试仪、太阳能电池测试仪、数字多用表、温度计等。
2. 实验材料:硅(Si)半导体材料、太阳能电池等。
四、实验步骤1. 四探针法测量半导体材料电阻率和薄层电阻(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在四探针测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算电阻率和薄层电阻。
2. 霍尔效应测量半导体材料霍尔系数和电导率(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在霍尔效应测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算霍尔系数和电导率。
3. 太阳能电池性能测试(1)将硅太阳能电池放置在太阳能电池测试仪上。
(2)按照仪器操作步骤进行测试,记录实验数据。
(3)计算太阳能电池的短路电流、开路电压、填充因子等参数。
五、实验结果与分析1. 四探针法测量半导体材料电阻率和薄层电阻根据实验数据,计算得到硅半导体材料的电阻率和薄层电阻分别为:ρ =0.3Ω·m,Rt = 0.1Ω。
实训项目4 半导体元件的的检测训练一、实训概要本章主要介绍半导体元件的基本知识,要求读者掌握各种半导体元件的作用、命名方法、结构特点、主要参数及检测方法等内容。
特别是要能正确识别各类二极管、三极管及可控硅,并熟悉这些元件的检测及代换要领。
二、实训目的1、认识各种不同类别的半导体器件的命名规则及查询方法。
2、了解各种不同半导体的基本用途3、掌握各类半导体器件的检测方法4、掌握使用、更换半导体的基本方法。
三、实训原理1、半导体元件概述1)半导体元件的分类半导体元件是以半导体材料为基体构成的,半导体元件的种类很多,按电极数目及元件特点来分,可分为二极管、三极管、可控硅、场效应管、集成电路等类型。
按所用的半导体材料来分,可分为硅半导体元件、锗半导体元件及其他半导体元件。
2)半导体元件的命名(1)国产半导体元件的命名方法国产半导体元件的型号共由五部分组成,见教材表所示。
例如,2CW15这个元件是一个稳压二极管。
3DD15D这个元件是一个低频大功率三极管。
(2)日本半导体元件的命名方法日本半导体元件的命名方法与我国不同,它虽然也由五部分组成,但各部分含义已发生了变化。
详细情况见教材表所示。
例如,1S1555这个元件是一个普通二极管。
再如,2SA733这个元件是一个PNP型高频三极管。
(3)美国半导体元件的命名方法美国半导体元件也由五部分组成,各部分的含义见教材表所示。
例如,1N4007这个元件,“1”表示二极管,“N”代表EIA注册标志;“4007”表示EIA登记号。
再如2N3055这个元件,“2”表示三极管;“N”表示EIA注册标志;“3055”表示EIA登记号。
(4)欧洲半导体元件的命名方法欧洲半导体元件一般由四部分组成,各部分含义见教材表所示。
例如BU508A这个元件,“B”表示硅材料;“U”表示大功率开关管;“508”表示通用半导体器件登记号,“A”表示分档。
2、二极管二极管实际上就是一个PN结,它的基本特性是单向导电性。
一、实验目的1. 了解半导体材料的基本特性。
2. 学习半导体器件的基本原理和结构。
3. 掌握半导体器件的测试方法。
4. 培养学生的动手能力和实验技能。
二、实验原理半导体材料是一种导电能力介于导体和绝缘体之间的材料。
本实验主要研究半导体二极管和晶体管的特性。
1. 半导体二极管:二极管是一种具有单向导电特性的半导体器件。
其正向导通时,正向电压达到一定值后,电流迅速增大;反向截止时,反向电压增加,电流几乎为零。
2. 晶体管:晶体管是一种放大器件,具有电流放大作用。
本实验主要研究晶体管的电流放大特性。
三、实验仪器与材料1. 仪器:万用表、信号发生器、示波器、半导体二极管、晶体管(NPN和PNP 型)、电阻、电容等。
2. 材料:实验电路图、实验数据记录表等。
四、实验步骤1. 半导体二极管特性测试(1)搭建实验电路,如图1所示。
(2)使用万用表测量二极管的正向电压和反向电压。
(3)观察并记录二极管的正向导通和反向截止特性。
2. 晶体管放大特性测试(1)搭建实验电路,如图2所示。
(2)使用信号发生器产生一定频率和幅值的正弦波信号。
(3)使用示波器观察输入信号和输出信号的变化。
(4)调节电阻值,观察晶体管的电流放大特性。
五、实验数据与分析1. 半导体二极管特性测试(1)正向电压:Vf = 0.7V(2)反向电压:Vr = 20V(3)二极管导通和截止特性符合理论分析。
2. 晶体管放大特性测试(1)输入信号:频率f = 1kHz,幅值Vp-p = 1V(2)输出信号:频率f = 1kHz,幅值Vp-p = 10V(3)晶体管放大倍数:A = Vp-p_out / Vp-p_in = 10六、实验结论1. 本实验成功验证了半导体二极管和晶体管的基本特性和工作原理。
2. 通过实验,加深了对半导体器件的理解,提高了动手能力和实验技能。
七、实验反思1. 在实验过程中,需要注意实验仪器的使用方法和注意事项。
2. 在搭建实验电路时,要严格按照电路图进行,确保电路连接正确。
五、实验数据记录及分析1、未抽真空与抽真空区别及定性分析记录数据如下:(偏压:6V,放大倍数:0.71×20=14.2)条件峰道址峰计数测量时间左道址左计数右道址右计数分辨率未抽3486 312 397 3423 157 3530 157 3.069% 已抽3981 764 246 3970 384 3988.5 384 0.465% 定性分析:①抽真空后谱线的能量分辨率大大提高,这是因为α粒子在空气中射程很短,一般只有数个厘米,存在空气的时候不仅影响探测能量的峰位,也造成了探测能量的展宽。
②不抽真空时峰道址明显小于抽真空,这部分损失的能量即α粒子穿过空气损失的能量。
2、偏压的选择偏压(V) 6 12 30 60 90 120峰道址3981 4007 4022 4026 4030 4031峰计数764 680 879 1038 903 1075左道址3970 3996 4011 4016.4 4019.3 4021右道址3988.5 4014.3 4028.6 4034 4036.4 4038测量时间246 218 266 319 263 312左计数384 345 424 519 451 533右计数384 340 439 519 451 536分辨率0.465% 0.457% 0.438% 0.437% 0.424% 0.422%选择能量分辨率最低时对应的偏压即120V 为工作偏压。
3、能量标定及相对强度测定 实验通过测量241Am 中峰能量为 5.486MeV 和239Pu 中峰能量为5.157MeV 所对应的峰道址进行能量标定,并求得239Pu α谱中未知能量峰的峰能量。
做出定标曲线,并进行拟合如下图由图像得能量道数关系为E=-0.01547+0.00137×C 求得未知峰能量为5.51248MeV 。
放射源峰道址 峰计数 左道址 右道址 左计数 右计数 测量时间 分辨率 已知源 241Am 4030 1129 4021.3 4038.5 564 564 338 0.427% 239Pu 3789 263 3773.6 3796.8 131 131 509 0.612% 未知源239Pu40357640224040.537385090.458%同时对241Am进行强度测量:峰位计数道址能谱总面积各峰的面积所占比例2148366.256% 一号峰(主峰)1129403032424二号峰3054001710721.919%。
实验报告
课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1. 了解PSpice 软件常用菜单和命令的使用 2. 掌握PSpice 中电路图的输入和编辑方法
3. 学习PSpice 分析设置、仿真、波形查看的方法 4. 学习半导体器件的特性的仿真分析方法
二、实验内容和原理
1. 二极管伏安特性曲线的绘制
2. 二极管正向导通特性和反向特性波形 3. 二极管伏安特性与温度的关系 4. 正弦交流下二极管的瞬态电压波形 5. 三极管共射放大电路的输入和输出曲线 6. 三极管共射放大电路输出曲线与温度的关系
三、主要仪器设备
1. 电脑
2. PSpice 9.2软件
四、操作方法和实验步骤
1. 二极管伏安特性曲线的绘制
绘制电路图如右图所示 各元件参数如下 D1N4001 VDC=0 R1=1000
定义横坐标为V(D1)
纵坐标为I(D1)
专业:________________ 姓名:________________
学号:________________ 日期:________________ 地点:________________
装
订
线
R1
D1D1N4001。
半导体器件物理实验报告格式[5篇模版]第一篇:半导体器件物理实验报告格式微电子学院《半导体器件实验》实验报告实验名称:作者姓名:作者学号:同作者:实验日期:实验报告应包含以下相关内容:实验名称:一、实验目的二、实验原理三、实验内容四、实验方法五、实验器材及注意事项六、实验数据与结果七、数据分析八、回答问题实验报告要求:1.使用实验报告用纸;2.每份报告不少于3页手写体,不含封皮和签字后的实验原始数据部分;3.必须加装实验报告封皮,本文中第一页内容,打印后填写相关信息。
4.实验报告格式为:封皮、内容和实验原始数据。
第二篇:半导体器件物理教学内容和要点教学内容和要点第一章半导体物理基础第二节载流子的统计分布一、能带中的电子和空穴浓度二、本征半导体三、只有一种杂质的半导体四、杂质补偿半导体第三节简并半导体一、载流子浓度二、发生简并化的条件第四节载流子的散射一、格波与声子二、载流子散射三、平均自由时间与弛豫时间四、散射机构第五节载流子的输运一、漂移运动迁移率电导率二、扩散运动和扩散电流三、流密度和电流密度四、非均匀半导体中的自建场第六节非平衡载流子一、非平衡载流子的产生与复合二、准费米能级和修正欧姆定律三、复合机制四、半导体中的基本控制方程:连续性方程和泊松方程第二章 PN结第一节热平衡PN结一、PN结的概念:同质结、异质结、同型结、异型结、金属-半导体结突变结、缓变结、线性缓变结二、硅PN结平面工艺流程(多媒体演示图2.1)三、空间电荷区、内建电场与电势四、采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区形成的过程五、利用热平衡时载流子浓度分布与自建电势的关系求中性区电势及PN结空间电荷区两侧的内建电势差六、解poisson’s Eq 求突变结空间电荷区内电场分布、电势分布、内建电势差和空间电荷区宽度(利用耗尽近似)第二节加偏压的P-N结一、画出热平衡和正、反偏压下PN结的能带图,定性说明PN结的单向导电性二、导出空间电荷区边界处少子的边界条件,解释PN结的正向注入和反向抽取现象第三节理想P-N结的直流电流-电压特性一、解扩散方程导出理想PN结稳态少子分布表达式,电流分布表达式,电流-电压关系二、说明理想PN结中反向电流产生的机制(扩散区内热产生载流子电流)第四节空间电荷区的复合电流和产生电流一、复合电流二、产生电流第五节隧道电流一、隧道电流产生的条件二、隧道二极管的基本性质(多媒体演示 Fig2.12)第六节 I-V特性的温度依赖关系一、反向饱和电流和温度的关系二、I-V特性的温度依赖关系第七节耗尽层电容,求杂质分布和变容二极管一、PN结C-V特性二、过渡电容的概念及相关公式推导求杂质分布的程序(多媒体演示 Fig2.19)三、变容二极管第八节小讯号交流分析一、交流小信号条件下求解连续性方程,导出少子分布,电流分布和总电流公式二、扩散电容与交流导纳三、交流小信号等效电路第九节电荷贮存和反响瞬变一、反向瞬变及电荷贮存效应二、利用电荷控制方程求解τs三、阶跃恢复二极管基本理论第十节 P-N结击穿一、PN结击穿二、两种击穿机制,PN结雪崩击穿基本理论的推导三、计算机辅助计算例题2-3及相关习题第三章双极结型晶体管第一节双极结型晶体管的结构一、了解晶体管发展的历史过程二、BJT的基本结构和工艺过程(多媒体图3.1)概述第二节基本工作原理一、理想BJT的基本工作原理二、四种工作模式三、放大作用(多媒体Fig3.6)四、电流分量(多媒体Fig3.7)五、电流增益(多媒体Fig3.8 3.9)第三节理想双极结型晶体管中的电流传输一、理想BJT中的电流传输:解扩散方程求各区少子分布和电流分布二、正向有源模式三、电流增益~集电极电流关系第四节爱拜耳斯-莫尔(Ebers-Moll)方程一、四种工作模式下少子浓度边界条件及少子分布二、E-M模型等效电路三、E-M方程推导第五节缓变基区晶体管一、基区杂质浓度梯度引起的内建电场及对载流子的漂移作用二、少子浓度推导三、电流推导四、基区输运因子推导第六节基区扩展电阻和电流集聚一、基区扩展电阻二、电流集聚效应第七节基区宽度调变效应一、基区宽度调变效应(EARLY效应)二、hFE和ICE0的改变第八节晶体管的频率响应一、基本概念:小信号共基极与共射极电流增益(α,hfe),共基极截止频率和共射极截止频率(Wɑ ,Wß),增益-频率带宽或称为特征频率(WT),二、公式(3-36)、(3-65)和(3-66)的推导三、影响截止频率的四个主要因素:τB、τE、τC、τD及相关推导四、Kirk效应第九节混接π型等效电路一、参数:gm、gbe、CD 的推导二、等效电路图(图3-23)三、证明公式(3-85)、(3-86)第十节晶体管的开关特性一、开关作用二、影响开关时间的四个主要因素:td、tr、tf、ts三、解电荷控制方程求贮存时间ts第十一节击穿电压一、两种击穿机制二、计算机辅助计算:习题阅读§3.12、§3.13、§3.14第四章金属—半导体结第一节肖特基势垒一、肖特基势垒的形成二、加偏压的肖特基势垒三、M-S结构的C-V特性及其应用第二节界面态对势垒高度的影响一、界面态二、被界面态钳制的费米能级第三节镜像力对势垒高度的影响一、镜像力二、肖特基势垒高度降低第四节肖特基势垒二极管的电流电压特性一、热电子发射二、理查德-杜师曼方程第五节肖特基势垒二极管的结构一、简单结构二、金属搭接结构三、保护环结构第六节金属-绝缘体-半导体肖特基势垒二极管一、基本结构二、工作原理第七节肖特基势垒二极管和PN结二极管之间的比较一、开启电压二、反向电流三、温度特性第八节肖特基势垒二极管的应用一、肖特基势垒检波器或混频器二、肖特基势垒钳位晶体管第九节欧姆接触一、欧姆接触的定义和应用二、形成欧姆接触的两种方法第五章结型场效应晶体管和金属-半导体场效应晶体管第一节JFET的基本结构和工作过程一、两种N沟道JFET二、工作原理第二节理想JFET的I-V特性一、基本假设二、夹断电压三、I-V特性第三节静态特性一、线性区二、饱和区第四节小信号参数和等效电路一、参数:gl gml gm CG二、JFET小信号等效电路图第五节JFET的截止频率一、输入电流和输出电流二、截止频率第六节夹断后的JFET性能一、沟道长度调制效应二、漏极电阻第七节金属-半导体场效应晶体管一、基本结构二、阈值电压和夹断电压三、I-V特性第八节 JFET和MESFET的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型阅读§5.8 §5.9 第六章金属-氧化物-场效应晶体管第一节理想MOS结构的表面空间电荷区一、MOSFET的基本结构(多媒体演示Fig6-1)二、半导体表面空间电荷区的形成三、利用电磁场边界条件导出电场与电荷的关系公式(6-1)四、载流子的积累、耗尽和反型五、载流子浓度表达式六、三种情况下MOS结构能带图七、反型和强反型条件,MOSFET工作的物理基础第二节理想MOS电容器一、基本假设二、C~V特性:积累区,平带情况,耗尽区,反型区三、沟道电导与阈值电压:定义公式(6-53)和(6-55)的推导第三节沟道电导与阈值电压一、定义二、公式(6-53)和(6-55)的推导第四节实际MOS的电容—电压特性一、M-S功函数差引起的能带弯曲以及相应的平带电压,考虑到M-S功函数差,MOS结构的能带图的画法二、平带电压的概念三、界面电荷与氧化层内电荷引起的能带弯曲以及相应的平带电压四、四种电荷以及特性平带电压的计算五、实际MOS的阈值电压和C~V曲线第五节 MOS场效应晶体管一、基本结构和工作原理二、静态特性第六节等效电路和频率响应一、参数:gd gm rd二、等效电路三、截止频率第七节亚阈值区一、亚阈值概念二、MOSFET的亚阈值概念第九节 MOS场效应晶体管的类型一、N—沟增强型 N—沟耗尽型二、P—沟增强型 P—沟耗尽型第十节器件尺寸比例MOSFET制造工艺一、P沟道工艺二、N沟道工艺三、硅栅工艺四、离子注入工艺第七章太阳电池和光电二极管第一节半导体中光吸收一、两种光吸收过程二、吸收系数三、吸收限第二节 PN结的光生伏打效应一、利用能带分析光电转换的物理过程(多媒体演示)二、光生电动势,开路电压,短路电流,光生电流(光电流)第三节太阳电池的I-V特性一、理想太阳电池的等效电路二、根据等效电路写出I-V公式,I-V曲线图(比较:根据电流分量写出I-V公式)三、实际太阳能电池的等效电路四、根据实际电池的等效电路写出I-V公式五、RS对I-V特性的影响第四节太阳电池的效率一、计算 Vmp Imp Pm二、效率的概念η=FFVOCIL⨯100% Pin第五节光产生电流和收集效率一、“P在N上”结构,光照,GL=αΦOe-αx少子满足的扩散方程二、例1-1,求少子分布,电流分布三、计算光子收集效率:ηcol=JptJnGΦO讨论:波长长短对吸收系数的影响少子扩散长度和吸收系数对收集效率的影响理解Fig7-9,Fig7-10所反映的物理意义第六节提高太阳能电池效率的考虑一、光谱考虑(多媒体演示)二、最大功率考虑三、串联电阻考虑四、表面反射的影响五、聚光作用第七节肖特基势垒和MIS太阳电池一、基本结构和能带图二、工作原理和特点阅读§7.8 第九节光电二极管一、基本工作原理二、P-I-N光电二极管三、雪崩光电二极管四、金属-半导体光电二极管第十节光电二极管的特性参数一、量子效率和响应度二、响应速度三、噪声特性、信噪比、噪声等效功率(NEP)四、探测率(D)、比探测率(D*)第八章发光二极管与半导体激光器第一节辐射复合与非辐射复合一、辐射复合:带间辐射复合,浅施主和主带之间的复合,施主-受主对(D-A 对)复合,深能级复合,激子复合,等电子陷阱复合二、非辐射复合:多声子跃迁,俄歇过程(多媒体演示),表面复合第二节 LED的基本结构和工作过程一、基本结构二、工作原理(能带图)第三节 LED的特性参数一、I-V特性二:量子效率:注射效率γ、辐射效率ηr、内量子效率ηi,逸出概率ηo、外量子效率三、提高外量子效率的途径,光学窗口四、光谱分布,峰值半高宽 FWHM,峰值波长,主波长,亮度第四节可见光LED一、GaP LED二、GaAs1-xPx LED三、GaN LED 第五节红外 LED 一、性能特点二、应用光隔离器阅读§8.6 , §8.7 , §8.8 , §8.9 , §8.10(不做作业和考试要求)第九章集成器件第十章电荷转移器件第一节电荷转移一、CCD基本结构和工作过程二、电荷转移第二节深耗尽状态和表面势阱一、深耗尽状态—非热平衡状态二、公式(10-8)的导出第三节 MOS电容的瞬态特性深耗尽状态的能带图一、热弛豫时间二、信号电荷的影响第四节信息电荷的输运转换效率一、电荷转移的三个因素二、转移效率、填充速率和排空率第五节电极排列和CCD制造工艺一、三相CCD二、二相CCD 第六节体内(埋入)沟道CCD一、表面态对转移损耗和噪声特性的影响二、体内(埋入)沟道CCD的基本结构和工作原理第七节电荷的注入、检测和再生一、电注入与光注入二、电荷检测电荷读出法三、电荷束的周期性再生或刷新第八节集成斗链器件一、BBD的基本结构二、工作原理三、性能第九节电荷耦合图象器件一、行图象器二、面图象器三、工作原理和应用主要参考书目孟庆巨、刘海波、孟庆辉编著《半导体器件物理》,科学出版社,2005第二次印刷。
实验6:半导体α谱仪实验目的1.了解α谱仪的工作原理及其特性。
2.掌握应用谱仪测量α粒子能谱的方法。
3.测定241Am核素的α衰变的相对强度。
内容1.调整谱仪参量,测量不同偏压下的α粒子能量,并确定探测器的工作偏压。
2.测定谱仪的能量分辨率,并进行能量刻度。
3.测量未知α源的能谱,并确定α粒子能量。
原理半导体α谱仪的组成如图1所示。
金硅面垒探测器是用一片N型硅,蒸上一薄层金(100-2000A),接近金膜的那一层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。
探测器工作加反向偏压。
α粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测出幅度的分布,从而给出带电粒子的能谱。
偏置放大器的作用是当多道分析器的道数不够用时,利用它切割、展宽脉冲幅度,以利于脉冲幅度的精确分析。
为了提高谱仪的能量分辨率,探测器要放在真空室中。
另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。
金硅面垒型半导体α谱仪具有能量分辨率高、能量线性范围宽、脉冲上升时间快、体积小和价格便宜等优点,在α粒子及其它重带电粒子能谱测量中有着广泛的应用。
带电粒子进入灵敏区,损失能量产生电子空穴对。
形成一对电子空穴所需的能量w,与半导体材料有关,与入射粒子的类型和能量无关。
对于硅,在300K时,w为3.62eV,77K时为3.76eV。
对于锗,在77K时w为2.96eV。
若灵敏区的厚度大于入射粒子在硅中的射程,则带电粒子的能量E 全部损失在其中,产生的总电荷量Q 等于e w E )/(。
w E /为产生的电子空穴对数,e 为电子电量。
由于外加偏压,灵敏区的电场强度很大,产生的电子空穴对全部被收集,最后在两极形成电荷脉冲。
通常在半导体探测器设备中使用电荷灵敏前置放大器。
它的输出信号与输入到放大器的电荷量成正比。
探测器的结电容d C 是探测器偏压的函数,如果核辐射在探测器中产生电荷量为Q ,那么探测器输出脉冲幅度是d C Q /。
因此,由于探测器偏压的微小变化所造成的d C 变化将影响输出脉冲的幅度。
事实上,电源电压的变化就可以产生偏压近种微小变化。
此外,根据被测粒子的射程调节探测器的灵敏区厚度时,也往往需要改变探测器的偏压。
要减少这些变化对输出脉冲幅度的影响,前级放大器对半导体探测器系统的性能越着重要的作用。
图2表示典型探测器的等效电路和前置放大器的第一级。
其中一K 是放大器的开环增益,f C 是反馈电容,1C 是放大器的总输入电容,它等于'',C C C d +是放大器插件电缆等寄生电容。
前置放大器的输入信号是d C Q /,它的等到效输入电容近似等于f KC ,只要1C KC f >>,那么前置放大器的输出电压为ff C QC K C KQ V -=++-=)1(10 ( 1 )这样一来,由于选用了电荷灵敏放大器作为前级放大器,它的输出信号与输入电荷Q 成正比,而与探测器的结电容d C 无关。
1.确定半导体探测器偏压对N 型硅,探测器灵敏区的厚度n d 和结电容d C 与探测器偏压V 的关系如下:)()(5.02`1m V d n n μρ≈( 2 ))/()(101.22214cm F V C n d μμρ-⨯= (3 )其中n ρ为材料电阻率()cm ⋅Ω。
因灵敏区的厚度和结电容的大小决定于外加偏压,所以偏压的选择首先要使入射粒子的能量全部损耗在灵敏区中和由它所产生的电荷完全被收集,电子空穴复合和陷落的影响可以忽略。
其次还需考虑到探测器的结电容对前置放大器来说还起着噪声的作用。
电荷灵敏放大器的噪声水平随外接电容的增加而增加,探测器的结电容就相当它的外接电容。
因此提高偏压降低结电容可以相当它的外接电容。
因此提高偏压降低电容可以相当地减少噪声,增加值号幅度,提高信噪比,从而改善探测器的能量分辨率。
从上述两点来看,要求偏压加得高一点,但是偏压过高,探测器的漏电流也增大而使分辨率变坏。
因此为了得到最佳能量分辨率,探测器的偏压应选择最佳范围。
实验上最佳能量分辨率可通过测量不同偏压下的α谱线求得。
如图3所示。
并由此实验数据,分别作出一组峰位和能量分辨率对应不同偏压的曲线如图4、图5。
分析以上结果,确定出探测器最佳偏压值。
2. α谱仪的能量刻度和能量分辨率谱仪的能量刻度就是确定α粒子能量与脉冲幅度大小以谱线峰位在多道分析器中的道址表示。
α谱仪系统的能量刻度有两种方法:(1) 用一个239Pu 、241Am 、244Cm 混合的α刻度源,已知各核素α粒子的能量,测出该能量在多道分析器上所对应的道址,作能量对应道址的刻度曲线,并表示为:E Gd E +=( 4 )E 为α粒子能量(keV )。
d 为对应E 谱峰所在道址(道)。
G 是直线斜率(keV/每道),称为刻度常数。
0E 是直线截距(keV )。
它表示由于α粒子穿过探测器金层表面所损失的能量。
(2) 一个已知能量的单能α源,配合线性良好的精密脉冲发生器来作能量刻度。
这是在α源种类较少的实验条件下常用的方法。
一般谱仪的能量刻度线性可达0.1%左右。
在与能量刻度相同的测量条件下(如偏压、放大倍数、几何条件等),测量求知能量α谱。
根据能量刻度曲线就可以确定α粒子的能量。
常用α谱仪的刻度源能量可查核素常用表。
α谱仪的能量分辨率也用谱线的半宽度FWHM 表示。
FWHM 是谱线峰最大计数一半处的宽度,以keV 表示。
在实用中,谱仪的能量分辨率还用能量展宽的相对百分比表示。
例如本实验采用金硅面垒探测器,灵敏面积为502m m ,测得241Am 源的5.48MeV 的α粒子谱线宽度为17keV(0.3%)。
半导体探测器的突出优点是它的能量分辨率高,影响能量分辨率的主要因素有①产生电子空穴对数和能量损失的统计涨落)(n E ∆;②探测器噪声)(D E ∆;③电子学噪声,主要是前置放大器的噪声)(c E ∆;④探测器的窗厚和放射源的厚度引起能量不均匀性所造成的能量展宽)(s E ∆。
实验测出谱线的展宽E ∆是由以上因素所造成影响的总和,表示为()2/1222Se D n E E E E E ∆+∆+∆+∆=∆ ( 5 )3. 用偏置放大器来扩宽能谱,测量241Am 的α衰变相对强度在实际应用中,常常需要降低系统的G 值。
由于半导体探测器的能量分辨率比较高,一般可达千分之几。
当多道分析器的道数不够时,道宽对α能谱测量的影响就很大。
例如,若实验使用的多道分析器为256道,对于6MeV 的峰位于满道址刻度情况下,得到最小G 值为25keV/每道。
如果我们要观察能量相差只有50keV 的两个α峰(例如241Am ),而这两个峰位的间隔只有2道,因而在谱形上不能将两个峰分开,这就需要降低系统的刻度常数G 值。
在图1的实验装置中增加一个偏置放大器,它的作用是将输入脉冲切割一定阈值后,将超过阈部分再放大,然后送入到低道数的多道分析器中去分析,使得我们感兴趣的那一部分能谱得到展宽,这样就把原来不能分开的几个谱峰分开了。
241Am 的衰变图如图6,其衰变时放出的α粒子有五种能量。
由实验测出241Am 的α谱如图7。
直接由多道脉冲分析器求出第i 个能量峰的总计数i S 。
由总的衰变率∑=iiSS γ,求出241Am 各个能量α粒子的相对强度α。
S5=iS1,/-=iγi装置简易α谱仪全套,FH1903,1台;精密脉冲放大器,FH1013,1个;1024道脉冲幅度分析器,FH451,1台;示波器、机械泵,各一台;金硅面垒探测器,GM-8-Ⅲ-A,1块;放射源:239Pu、241Am、244Cm混合刻度源,一个;210Po、239Pu、241Am电沉积α源各一各。
步骤1.连接仪器如图1,将α源(210Po)放入真空室、抽真空,调整谱仪工作参数,用示波器测量脉冲幅度随偏压变化的范围。
并测量抽真空与不抽真空条件下输出波形的变化。
2.选择多道分析器的参量,测量α谱,改变偏压为5、10、30、60、100、120伏分别测量不同偏压下的α谱线,确定最佳偏压值。
3.测量239Pu、241Am、244Cm混合α刻度源的能谱。
作出能量刻度曲线,用最小二乘法直线拟合,求出G和E o。
并利用241Am谱峰的半宽度,确定谱仪的能量分辨率(keV)。
在同样测量条件下测出未知α源的能谱。
4.用一个已知能量为5.48MeV的241Am α源和精密脉冲发生器来作谱仪能量刻度。
所有实验曲线半宽度以上各点的相对误差要求小于5%。
实验数据处理与分析1)对于241Am ,确定最佳偏压:由上表可以知道当施加偏压后峰位的峰位道址增加,当电压偏压加到60v 的时候计数率变化的不大,趋于饱和,分辨率也差不多不变。
从表中数据可看出金硅面垒型探测器的能量分辨率很高。
本次试验所选取的偏压为60v 。
2)对于241Am ,偏压为60v 时的测量:测量时间Δt=921s3)对239Pu 的能谱进行测量:测量时间Δt=925s观察可以发现239Pu 的二号峰的道址为2832与241Am 的一号峰(主峰)道址一样,但其计数与241Am 相比却很低(计数时间很接近),可以说明所谓的其二号峰是241Am 发射出的射线,并不是其发出的射线,这可能是由于239Pu 含有少量杂质的241Am 导致的,应当将其二号峰舍去。
4)能量刻度偏压/vΔt/s峰位计数峰位计数率峰位道址左半高宽道址 右半高宽道址FWHMη0 702.00 710.00 1.0114 2328.00 2303.80 2362.00 58.20 2.500% 6 358.00 1082.00 3.0223 2806.00 2797.75 2813.00 15.25 0.543% 12 310.00 1094.00 3.5290 2816.00 2809.50 2822.50 13.00 0.462% 30 340.00 1304.00 3.8353 2823.00 2818.00 2831.00 13.00 0.461% 60 291.00 1038.00 3.5670 2829.00 2820.50 2833.50 13.00 0.460% 90 239.00 904.00 3.7824 2832.00 2824.00 2836.50 12.50 0.441% 120 318.00 1237.00 3.8899 2832.00 2823.00 2836.50 13.50 0.477%峰位计数道址 峰的范围 能谱总面积 各峰的面积 各峰面积所占比例一号峰(主峰) 31742832 2845至2813 59431 43421 73.06%二号峰 407 2802 2813至2786 10286 17.31%三号峰 124 2778 2786至2744 3073 5.17%峰位计数道址 一号峰(主峰) 2392660 二号峰 462832道址 对应的能量/Mev241Am 一号峰 2832 5.486 239Pu 一号峰 2660 5.155对以上表格的数据进行线性拟合得到如下数据与图:Linear model Poly1: f(x) = p1*x + p2 Coefficients:p1 = 0.001924 p2 = 0.03605Goodness of fit: SSE: 3.944e-030 R-square: 1Adjusted R-square: NaN RMSE: NaN令道址为X ,能量为Y ,可得其关系式为:0.036050.00192X Y += 可到241Am 的子峰对应的能量为:道址 对应的能量/Mev 能量理论值/Mev相对误差二号峰 2802 5.41589 5.443 -0.498%三号峰 2778 5.369815)实验误差分析实验偏压必须足够大,使得a 射线能量沉积完全,同时使结电容的大小降低以提高信噪比,但与此同时使得探测器的漏电流的变大。