正交试验设计与数据处理
- 格式:ppt
- 大小:1.08 MB
- 文档页数:83
第8章正交试验设计的方差分析前面我们讨论了如何安排正交试验以及用极差分析法(即直观分析法)对试验结果进行计算分析.极差分析法简单明了,通俗易懂,计算工作量少,便于普及推广.但这种方法不能把试验中由于试验条件的改变引起的数据波动,同试验误差引起的数据波动区分开来.也就是说,不能区分因素各水平对应的试验结果间的差异,究竟是由于因素水平不同引起的,还是由于试验误差引起的,即不知道试验的精度.同时,对影响试验结果的各个因素的重要程度,既不能给出精确的定量估计,也不能提供一个标准,用来判断所考察的因素的作用是否显著.为了弥补极差分析法的不足,对试验结果的分析可采用方差分析法.8.1 正交试验方差分析的基本步骤在第2章中我们已经介绍过,方差分析的基本思想是将数据的总偏差平方和(S T)分解为因素的偏差平方和(S A、S B)和误差的偏差平方和(S e),然后将偏差平方和除以相对应的自由度(f)得到方差(V A、V B),最后利用因素方差与误差方差之比(V A/V e,V B/V e),作F检验,即可判断因素的作用是否显著.正交试验设计的方差分析也是按这样的步骤进行的,所不同的是这是考虑的是多因素试验的方差分析,而第2章中只考虑单因素和双因素试验的方差分析.一、计算1.偏差平方和与自由度的计算方差分析的关键是偏差平方和的分解,现在以最简单的L 4(23)正交表上安排的试验为例来说明(见表8-1,板书).不考虑哪些因素安排在哪些列上(即表头设计时),设试验结果为x 1、x 2、x 3和x 4. 总的偏差平方和:4)(241221212_T x n T x x x S i i ni ini i T -=-=-=∑∑∑=== T=∑=ni i x 1=(x 21+x 22+x 23+x 24)-41(x 4321x x x +++)2 整理后可得 43=(24232221x x x x +++) 21- (434232413121x x x x x x x x x x x x +++++) 第1列各水平偏差平方和为S 1=22_21_2_11_)(2)(x K x K -+-=2[221211)42()42(TK T K -+-] =2[T K T K T K T K 2111222122114141164164--+++] =222121141)(21T K K -+ )(211141K K x T i i +==∑= =24321243221)(41])()[(21x x x x x x x x +++-+++=)(21)(4143214232413124232221x x x x x x x x x x x x x x x x --+++-+++表8-1 L 4(23)正交表及计算表注: K ij 表示第j 列第i 水平的指标值之和;ij K __表示第j 列第i 水平的平均指标值;T 表示指标值总和;__x 表示平均指标值. 同理,第2、3列各水平的偏差平方和S 2、S 3为)(21)(4141)(21)()(23241434231212423222122232132__23__2__13__3x x x x x x x x x x x x x x x x T K K x K x K S --+++-+++=-+=-+-= 由此可得S T =S 1+S 2+S 3 (8-1)式(8-1)是正交表L 4(23)的总偏差平方和的分解公式,即L 4(23)的总偏差平方和等于各列偏差平方和之和.若在L 4(23)正交表的第1列和第2列分别安排二水平因素A 、B ,在不考虑A 、B 因素间交互作用的情况下,则第3列(空列)是误差列.)(21)(4141)(21)(2)(24231433241212423222122222122__22__2__12__2x x x x x x x x x x x x x x x x T K K x K x K S --+++-+++=-+=-+-=同样也可以证明S T =S A +S B +S e (8-2)上式也是总偏差平方和的分解公式,即总偏差平方和等于各列因素的偏差平方和与误差的偏差平方和之和.我们可以把上例推广到一般情况:用饱和正交表L n (m k )安排试验(见表8-2,p160),总的试验次数为n ,每个因素的水平数为m ,则每个水平作r 次试验,r=mn. 试验结果为x 1,x 2,x 3,…,x n .令∑∑∑=======ni i T ni i ni i x Q x n x nT CT x T 121__21,1,,则总偏差平方和为CT Q n T x x x S T ni ini i T -=-=-=∑∑==21212__)( (8-3)列偏差平方和为),,2,1(1)(21212__k i CT Q n T K r x K r S j m i ij mi ij j =-=-=-=∑∑== (8-4) 其中∑==m i ij j K r Q 121特别地, 当m=2(即二水平)时, 式(8-4)可表示成:2212212221221222122221)(1)(1)(2)(1)()(1j j j j j j j j jj j j j K K nK K n K K n K K n K K n m n T K K r S -=+-+=+-+=-+= (8-5) 列偏差平方和S j 是第j 列中各水平对应的试验数据平均值与总平均值的偏差平方和,它反映了该列水平变动所引起的试验数据的波动.若该列安排的是因素,就称S j 为该因素的偏差平方和;若该列安排的是交互作用,就称S j 为该交互作用的偏差平方和;若该列为空列,则S j 表示由于试验误差和未被考察的某些交互作用或某些条件因素所引起的波动.在正交试验设计中,通常把空列的偏差平方和作为试验误差的偏差平方和,虽然它属于模型误差,一般比试验误差大(当作安全系数考虑),但用它作为试验误差进行显著性检验,可使检验结果更可靠些。
江苏大学农工院试验设计:高建明(Z1416013)【混合正交试验设计+均匀试验设计+回归试验设计】一、混合正交试验基质架上自动摊铺机多因素摊铺效率试验与分析为提高该摊铺设备在高架栽培床的基质摊铺作业效率,对影响其作业效率的主要5个因素(A/B/C/D/E)进行考察分析,主要包括:刮板面积(dm²)、上料机构倾斜角(°)、出料口口径(dm²)、基质相对湿度RH(%)与两刮板间距(dm)。
1.试验因素及水平本次正交试验考察了刮板面积、上料机构倾斜角、出料口口径、基质相对湿度与两刮板间距对摊铺机摊铺效率的影响。
其中,刮板面积、上料机构倾斜角、基质相对湿度三个因素有5水平;出料口口径与两刮板间距有3水平。
参考因素、水平如表1所示:水平因素刮板面积(dm²)上料机构倾斜角(°)基质相对湿度(%)出料口口径(dm²)两刮板间距(dm)1 2.0 60 30 3 0.22 2.5 65 40 4.5 0.33 3.0 70 50 6 0.44 3.5 75 605 4.0 80 702、正交表选择本次试验对5个因素进行了讨论,其中,3个因素选择5水平,2个因素选择3水平。
不考虑影响因素之间的交互作用,故选用L(56)正交试验表来安排25实验。
3、表头设计试验号因素摊铺效率(亩/h)刮板面积(dm²)上料机构倾斜角(°)基质相对湿度(%)出料口口径(dm²)两刮板间距(dm)空列1 1(2)1(60)1(30)1(3.0)1(0.2) 12 1 2(65)2(40)2(4.5) 2(0.3) 23 1 3(70)3(50)3(6.0) 3(0.4) 34 1 4(75)4(60)4[2] 4[2] 45 1 5(80)5(70)5[3] 5[3] 56 2(2.5) 1 2 3 4[2] 57 2 2 3 4[2] 5[3] 18 2 3 4 5[3] 1 29 2 4 5 1 2 310 2 5 1 2 3 411 3(3.0) 1 3 5[3] 2 412 3 2 4 1 3 513 3 3 5 2 4[2] 114 3 4 1 3 5[3] 215 3 5 2 4[2] 1 316 4(3.5) 1 4 2 5[3] 317 4 2 5 3 1 418 4 3 1 4[2] 2 519 4 4 2 5[3] 3 120 4 5 3 1 4[2] 221 5(4.0) 1 5 4[2] 3 222 5 2 1 5[3] 4[2] 323 5 3 2 1 5[3] 424 5 4 3 2 1 525 5 5 4 3 2 1二、 均匀设计一、为提高基质摊铺设备在高架无土栽培床上的摊铺作业效率,结合实际生产需要,现对影响其作业效率的主要3个因素(A/B/C),6水平进行考察分析,主要包括:刮板面积(dm ²)、上料机构倾斜角(°)、出料口口径(dm ²)。
实验设计与数据处理第二次作业正交实验设计与数据处理姓名:班级:学号拟水平法:某啤酒厂实验期用不发芽的大麦制造啤酒新工艺的过程中,选择因素、水平及结果如下,不考虑交互作用,考察粉状粒越高越好,采用拟水平法将因素D的水平一136重复一次作为第二水平,(表一),按L9(34)安排实验,得到结果如表二,请分别进行直观分析、方差分析,并找出最好的工艺条件。
表一:因素水平表表二:实验设计及结果1.正交试验设计结果的直观分析法表三:试验方案及试验结果分析因素主次 C A B D优方案C1A3B3D1图一:趋势图2.正交试验设计结果的方差分析法表4正交实验的实验方案及结果分析试验号 A B C D粉状粒y i/%1 2 3 4 5 611122212312312323112331264.2553.2539.2544.2528.2553.25赤霉素浓度 /(mg/kg) 氨水浓度/% 吸氨量/g 底水/g粉状粒,y i /%⑴计算离差平方和: T=∑=91i iy=64.25+53.25+39.25+44.25+28.25+53.25+41.25+60.25+61.25=445.25 Q=∑=912i i y =64.252+53.252+39.252+44.252+28.252+53.252+41.252+60.252+61.252 =23179.06P=211⎪⎭⎫⎝⎛∑=n i i y n =T 2/n=445.252/9=22027.51SS T =21∑=-⎪⎭⎫ ⎝⎛-ni i y y =21121⎪⎭⎫ ⎝⎛-∑∑==n i i n i i y n y =Q-P=23179.06-22027.51=1151.55对于3水平正交实验的方差分析,由于r=3,所以任一列(第j 列)的离差平方和为:SS J =⎪⎭⎫⎝⎛∑=3123i i K n -PSS A =3/9(156.752+125.752+162.752)-22027.51=262.89 SS B =3/9(149.752+141.752+153.752)-22027.51=24.89 SS C =3/9(177.752+158.752+108.752)-22027.51=846.89因素D 的第一水平重复了6次,第二水平重复了3次,所以D 因素引起的离差平方和为:SS D =K12/6+K32/3-P=301.52/6+143.752/3-22027.51=10.89 误差的离差平方和为: SSe=SS T -(SS A +SS B +SS C +SS D )=1151.55-(262.89+24.89+846.89+10.89)=5.99 ⑵计算自由度:总自由度:dfT=n-1=9-1=8各因素自由度:dfA=dfB=dfC=r-1=3-1=2 dfD=2-1=1dfe=dfT-(dfA+dfB+dfC+dfD )=8-(2+2+2+1)=1 ⑶计算均方:(不考虑交互作用) MS A =SS A /dfA=262.89/2=131.445 MS B =SS B /dfB=24.89/2=12.445 MS C =SS C /dfC=846.89/2=423.45MS D=SS D/dfD=10.89/1=10.89MSe=SSe/dfe=5.99/1=5.99⑷计算F值:F A=MS A/MSe=131.445/5.99=21.94F B=MS B/MSe=12.445/5.99=2.08F C=MS C/MSe=423.45/5.99=70.69F D=MS D/MSe=10.89/5.99=1.82⑸F检验:查得临界值F0.10(2,1)=49.5,F0.10(1,1)=39.86,所以对于给定的显著性水平0.10,因素C对试验结果有显著影响。
第7章 正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
7.1 单指标正交试验设计及其极差分析极差分析法简称R 法。
它包括计算和判断两个步骤,其内容如图7-1所示。
图7-1 R 法示意图图中,K jm 为第j 列因素m 水平所对应的试验指标和,K jm 为K jm 的平均值。
由K jm 的大小可以判断j 因素的优水平和各因素的水平组合,即最优组合。
R j 为第j 列因素的极差,即第j 列因素各水平下平均指标值的最大值与最小值之差:R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )R j 反映了第j 列因素的水平变动时,试验指标的变动幅度。
R j 越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j的大小,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。
一、确定因素的优水平和最优水平组合例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。
试验结果的极差分析过程,如表7-1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y i 表示,列于表6-6和表7-1的最后一列。
表7-1 试验方案及结果分析计算示例:因素A 的第1水平A 1所对应的试验指标之和及其平均值分别为:K A1=y 1+y 2+y 3=0+17+24=41,=1A K 31K A1=13.7同理,对因素A 的第2水平A 2和第3水平A 3,有K A2=y 4+y 5+y 6=12+47+28=87,=2A K 31K A2=29 K A3=y 7+y 8+y 9=1+18+42=61,=3A K 31K A3=20.3由表7-1或表6-6可以看出,考察因素A 进行的三组试验中(A 1,A 2,A 3),B 、C 、D 各水平都只出现了一次,且由于B 、C 、D 间无交互作用,所以B 、C 、D 因素的各水平的不同组合对试验指标无影响,因此,对A 1、A 2和A 3来说,三组试验的试验条件是完全一样的。
正交实验设计与数据处理在食品科学技术研究中的应用【摘要】数据处理是对数据的采集、存储、检索、加工、变换和传输。
数据的形式可以是数字、文字、图形或声音等。
数据经过解释并赋予一定的意义之后,便成为信息。
数据处理的基本目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取并推导出对于某些特定的人们来说是有价值、有意义的数据。
本文介绍了正交试验设计的方法并举例说明了该方法在食品科学技术研究中的应用。
【关键词】实验设计方法;正交试验;在食品科学中的应用;正交分析法引言正交设计方法是处理多因素试验的一种科学的试验方法,它利用一种规范化的表- 正交表,合理安排试验,用这种方法只进行较少次数的试验便可判断出较优的条件; 若再对试验结果进行简单的统计分析,还可以更全面、更系统地掌握试验结果,作出正确的判断。
影响小麦秸秆粉碎性能的因素有很多,很有必要利用正交设计方法对其各种因素影响的关键程度和每个因素的最优水平进行科学的分析和确定。
实验设计指科学研究的一般程序的知识,它包括从问题的提出、假说的形成、变量的选择等等一直到结果的分析、论文的写作一系列内容。
它给研究者展示如何进行科学研究的概貌,试图解决研究的全过程。
实验设计的活动包括如下:1.建立与研究假说有关的统计假说;2.确定实验中使用的实验处理(自变量)和必须控制的多余条件(额外变量);3.确定实验中需要的实验单元(被试)的数量及被试抽样的总体;4.确定将实验条件分配给被试的方法;5.确定实验中每个被试要记载的测量(因变量)和使用的统计分析。
研究者在实验前根据研究目的拟定的实验计划及方法策略。
其主要内容是合理安排实验程序,并提出将如何对实验数据作统计分析、心理实验设计的主要步骤可归纳为:①根据研究目的提出假设;②拟定验证假设的方法、程序;③选择适当的处理、分析实验数据的统计方法。
常用的实验设计方法有:正交试验设计法、均匀实验设计法、单纯形优化法、双水平单纯形优化法、回归正交设计法等。
试验设计与数据处理方法总述及总结王亚丽(数学与信息科学学院 08统计1班 081120132)摘要:实验设计与数据处理是一门非常有用的学科,是研究如何经济合理安排试验可以解决社会中存在的生产问题等,对现实生产有很重要的指导意义。
因此本文根据试验设计与数据处理进行了总述与总结,以期达到学习、理解、掌握的以及灵活运用的目的。
1 试验设计与数据处理基本知识总述1.1试验设计与数据处理的基本思想试验设计与数据处理是数理统计学中的一个重要分支。
它是以概率论、数理统计及线性代数为理论基础,结合一定的专业知识和实践经验,研究如何经济、合理地安排实验方案以及系统、科学地分析处理试验结果的一项科学技术,从而解决了长期以来在试验领域中,传统的试验方法对于多因素试验往往只能被动地处理试验数据,而对试验方案的设计及试验过程的控制显得无能为力这一问题。
1.2试验设计与数据处理的作用(1)有助于研究者掌握试验因素对试验考察指标影响的规律性,即各因素的水平改变时指标的变化情况。
(2)有助于分清试验因素对试验考察指标影响的大小顺序,找出主要因素。
(3)有助于反映试验因素之间的相互影响情况,即因素间是否存在交互作用。
(4)能正确估计和有效控制试验误差,提高试验的精度。
(5)能较为迅速地优选出最佳工艺条件(或称最优方案),并能预估或控制一定条件下的试验指标值及其波动范围。
(6)根据试验因素对试验考察指标影响规律的分析,可以深入揭示事物内在规律,明确进一步试验研究的方向。
1.3试验设计与数据处理应遵循的原则(1)重复原则:重可复试验是减少和估计随机误差的的基本手段。
(2)随机化原则:随机化原则可有效排除非试验因素的干扰,从而可正确、无偏地估计试验误差,并可保证试验数据的独立性和随机性。
(3)局部控制原则:局部控制是指在试验时采取一定的技术措施方法减少非试验因素对试验结果的影响。
用图形表示如下:2试验设计与数据处理方法总述和总结2.1方差分析(1)概念:方差分析是用来检验两个或两个以上样本的平均值差异的显著程度。
第6章正交试验设计主要内容:一、概述二、正交试验设计结果的直观分析法三、正交试验设计结果的方差分析法正交试验法:在优选区内利用正交表科学地安排试验点,通过试验结果的数据分析,缩小优选范围,或者得到较优点的多因素试验方法。
6.1 概述引例—多因素的试验设计问题•指标—收率•因素—(1)原料A的用量 (2)原料B的用量(3)液固比C (4)反应温度D(5)反应压力E (6)催化剂的用量F(7)反应时间G (8)搅拌强度H•水平—8个因素各取3个水平•进行全面搭配的试验次数为: 38=6561 次•科学问题:能否只做其中一小部分试验,通过数据分析来达到全面试验的效果呢?6.1.1 正交表(一)正交表的代号及含义常用正交表的形式为:L(r m)n式中,L ──正交表的符号;n ──要做的试验次数;r ──因素的水平数;m ── 最多允许安排的因素个数。
(27)完全试验次数:128如:L8L(313)完全试验次数:1594323(二)正交表的形式(1)等水平正交表:指各个因素的水平数都相等的正交表。
如L8(27),L27(313)(2)混合水平正交表:指试验中各因素的水平数不相等的正交表如L8(41×24),L24(3×4×24)(三)正交表的特点(1)每一列中,不同的数字出现的次数相等,即对任何一个因素,不同水平的试验次数是一样的。
(2)任意两列中,同一横行的两个数字构成有序数对,每种数对出现的次数是相同,即任何两个因素之间都是交叉分组的全面试验。
(三)正交试验设计的分类6.1.2 正交试验设计的优点①能在所有试验方案中均匀地挑选出代表性强的少数试验方案。
②通过对这些少数试验方案的结果进行统计分析,可以推出较优的方案,而且所得到的较优方案往往不包含在这些少数试验方案中。
③对试验结果作进一步的分析,可以得到试验结果之外的更多信息。
例如,各试验因素对试验结果影响的重要程度、各因素对试验结果的影响趋势等。