根据MATLAB的图像伪彩色管理
- 格式:doc
- 大小:867.59 KB
- 文档页数:10
利用Matlab进行图像处理的常用方法概述:图像处理是数字信号处理的一个重要分支,也是计算机视觉领域的核心内容之一。
随着计算机技术的不断发展,利用Matlab进行图像处理的方法变得越来越重要。
本文将介绍一些常用的Matlab图像处理方法,包括图像的读取与显示、图像的预处理、图像的滤波处理、基本的图像增强方法以及图像的分割与检测等。
一、图像的读取与显示在Matlab中,可以使用imread函数直接读取图像。
通过指定图像的路径,我们可以将图像读取为一个矩阵,并且可以选择性地将其转换为灰度图像或彩色图像。
对于灰度图像,可以使用imshow函数将其显示出来,也可以使用imwrite函数将其保存为指定格式的图像文件。
对于彩色图像,可以使用imshow函数直接显示,也可以使用imwrite函数保存为指定格式的图像文件。
此外,还可以使用impixel函数获取图像中指定像素点的RGB值。
二、图像的预处理图像的预处理是指在进一步处理之前对图像进行调整和修复以消除图像中的噪声和不良的影响。
常用的图像预处理方法包括图像的平滑处理、图像增强和图像修复等。
1. 图像平滑处理:常用的图像平滑方法有均值滤波、中值滤波和高斯滤波等。
其中,均值滤波将每个像素点的值替换为其周围像素点的平均值,中值滤波将每个像素点的值替换为其周围像素点的中值,高斯滤波则通过加权平均的方式平滑图像。
2. 图像增强:图像增强是指通过一些方法提高图像的质量和信息内容。
常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化等。
直方图均衡化通过调整图像的灰度分布,以提高图像的对比度和细节。
对比度拉伸是通过将图像的像素值线性拉伸到整个灰度范围内,以增强图像的对比度。
锐化则是通过增强图像的边缘和细节,使图像更加清晰。
三、图像的滤波处理图像的滤波处理是指通过对图像进行一系列滤波操作,来提取图像中的特征和信息。
常用的图像滤波方法包括模板滤波、频域滤波和小波变换等。
1. 模板滤波:模板滤波是基于局部像素邻域的滤波方法,通过定义一个滤波模板,将其与图像进行卷积操作,从而实现图像的滤波。
光电图像处理2021年 4月(一)彩色图像的增强1.研究目的及意义人类传递的信息有70%是视觉信息.图像信息是传递信息的重要媒体和手段。
但是在生活中,常常由于光线不充足,在获得图像后会发现图像亮度不够,导致景物无法看清楚。
为了研究和分析图像,需对图像进行必要的处理。
对于数字图像常用的处理方法就是用图像增强技术来改善图像的像质。
图像增强是指按特定的需要突出一幅图像的某些信息,同时,削弱或去除某些不需要的信息的处理方法。
其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。
处理的结果使图像更适合于人的视觉特性或机器的识别系统。
图像增强技术主要是针对灰度图来作用。
其手段是修改直方图。
在图像处理中色彩的运用是很重要的,原因有两个:第一,在自动图像分析中色彩是一个有力的描述工具,它通常可使从一个场景中识别和抽取日标的处理得到简化;第二,人们对图像进行分析时,人眼区别的灰度层次大约只有二十几种,但却能够识别成千上万的色彩。
彩色图像中含有较大的信息量;而且人眼对色彩的识别和区分能力可以达到灰度辨别能力的百倍以上,所以彩色图像的增强对从图像中获得更多的信息有着非常重要的作用。
2.理论基础图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息达到强调图像的整体或局部特征的目的。
常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。
图像增强技术主要分为两类:频域增强法和空域增强法。
频域增强法主要是利用各种频域滤波器进行图像平滑或锐化处理,然后进行变换域反变換来增强图像;空域增强法是直接针对图像中的像素,对图像的灰度进行处理。
空域法属于直接增强的方法,它包括扩展对比度的灰度变换和直方图变换.清除噪声的平滑法和增强边缘的锐化法。
图像增强原理:设原始图像在(x,y)处的灰度为f(x,y),而增强后的灰度为g(x,y),则图像的增强可表示为将在(x,y)处的灰度f(x,y)映射为g(x,y),可表示为g(x,y)=T[f(x,y)],针对灰度图像。
伪彩色图像处理一、伪彩色处理的原理伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布图像。
由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。
因此,伪色彩处理的主要目的是为了提高人眼对图像细节的分辨能力,以达到图像增强的目的。
伪彩色处理的基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。
对黑白图像中不同的灰度赋予不同的彩色。
设f(x,y)为一幅黑白图像,R(x,y),G(x,y),B(x,y)为f值得注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
伪彩色处理技术的实现方法有多种,如密度分层法、灰度级-彩色变换法、频域滤波法等等。
其中灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。
该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。
同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。
这种方法变换后的图像视觉效果好。
二、伪彩色处理之灰度级-彩色变换法以上是一组典型的灰度级-彩色变换的传递函数。
其中图(a )、(b )、(c )分别表示红色、绿色、蓝色的传递函数,图(d )是三种彩色传递函数组合在一起的情况。
由图(a )可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。
凡灰度级大于3L/4的像素均被转变成最亮的红色。
其他的颜色以此类推。
三、灰度级-彩色变换法的Matlab 实现,其程序如下:I=imread(' F:\yyu\happy\DSC01015.jpeg'); %读入灰度图像image2g.jpgI=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;;B(i,j)=-4*i(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=R(i,j);G2C(i,j,3)=R(i,j);endendG2C=G2C/256;Figure;Inshow(G2C);四、总结伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。
南京信息工程大学滨江学院基于MATLAB的数字图像处理的彩色图像处理专业:电子信工程学生姓名:***指导教师:***完成时间:2022年4月26日摘要自20世纪70年代以来,由于数字技术和计算机技术的迅猛发展,给数字图像处理(Digital Image Processing)提供了先进的技术手段。
图像科学从信息处理、自动控制系统理论、计算机科学、数据通信等学科中脱颖而出,成为研究图像信息的获取、传输、存储、变换、显示、理解和综合利用的新兴学科。
数字图像处理在实际中得到了广泛应用。
特别是在遥感、航空航天、通信、生物和医学、安全监控、工业生产、视频和多媒体、机器人视觉、物理和化学分析、公安和军事等领域.它在国家安全、经济发展和日常生活中已经起到越来越重要的作用。
由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。
关键字颜色空间彩色图像分割彩色空间转换彩色变换目录引言 (1)1 MATLAB图像处理工具箱及数字图像处理基本过程简介 (2)1.1 常用图像操作 (2)1.2 图像增强功能 (2)1.3边缘检测和图像分割功能 (3)1,4图像变换功能 (4)2 MATLAB中彩色图像表示 (4)2.1RGB图像 (4)2.2索引图像 (6)2.3处理RGB和索引图像 (6)3 彩色图像处理 (6)3.1读入一幅RGB图像,将其分别转换到CMY空间、HSI空间并显示 (6)3.2彩色空间滤波 (8)参考文献 (9)致谢 (9)引言MATLAB 语言是由美国MathWorks 公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。
MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。
伪彩色图像处理一、伪彩色处理的原理伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布图像。
由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。
因此,伪色彩处理的主要目的是为了提高人眼对图像细节的分辨能力,以达到图像增强的目的。
伪彩色处理的基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。
对黑白图像中不同的灰度赋予不同的彩色。
设f(x,y)为一幅黑白图像,R(x,y),G(x,y),B(x,y)为f值得注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
伪彩色处理技术的实现方法有多种,如密度分层法、灰度级-彩色变换法、频域滤波法等等。
其中灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。
该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。
同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。
这种方法变换后的图像视觉效果好。
二、伪彩色处理之灰度级-彩色变换法以上是一组典型的灰度级-彩色变换的传递函数。
其中图(a )、(b )、(c )分别表示红色、绿色、蓝色的传递函数,图(d )是三种彩色传递函数组合在一起的情况。
由图(a )可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。
凡灰度级大于3L/4的像素均被转变成最亮的红色。
其他的颜色以此类推。
三、灰度级-彩色变换法的Matlab 实现,其程序如下:I=imread(' F:\yyu\happy\DSC01015.jpeg'); %读入灰度图像image2g.jpg I=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;;B(i,j)=-4*i(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=R(i,j);G2C(i,j,3)=R(i,j);endendG2C=G2C/256;Figure;Inshow(G2C);四、总结伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。
伪彩色处理是一种将灰度图像映射到彩色图像的方法,使得图像更易于理解和分析。
在Matlab中,可以使用以下步骤进行伪彩色处理。
1. 导入图像:首先,需要导入要进行伪彩色处理的灰度图像。
可以使用`imread`函数读取图像文件,并存储为一个矩阵。
```matlabgray_image = imread('gray_image.jpg');```2. 灰度图像增强(可选):如果原始灰度图像对比度较低或者需要增强图像的细节,可以在进行伪彩色处理之前应用一些图像增强算法,例如直方图均衡化或对比度拉伸等。
```matlabenhanced_image = histeq(gray_image);```3. 伪彩色映射:伪彩色处理的关键步骤是将灰度值映射到一个彩色空间。
常用的方法有灰度级别映射和伪彩色映射表两种。
- 灰度级别映射:使用colormap函数将灰度图像转换为彩色图像。
Matlab提供了许多内置的colormap函数,例如jet、hot、cool等。
可以根据需要选择合适的colormap函数。
```matlabcolor_image = ind2rgb(gray_image, jet(256));```- 伪彩色映射表:可以自定义一个伪彩色映射表,用于将灰度值映射到RGB颜色空间。
伪彩色映射表是一个256x3的矩阵,每一行对应一个灰度级别和相应的RGB颜色值。
```matlab% 创建伪彩色映射表color_map = zeros(256, 3);color_map(:, 1) = linspace(0, 1, 256); % 红色通道color_map(:, 2) = linspace(0, 1, 256); % 绿色通道color_map(:, 3) = linspace(0, 1, 256); % 蓝色通道% 使用伪彩色映射表进行映射color_image = ind2rgb(gray_image, color_map);```4. 图像显示:最后,使用`imshow`函数显示伪彩色图像。
实验二图像锐化及伪彩色处理
一、实验目的:
1、掌握图像锐化、伪彩色处理的基本原理和基本方法,加深对其的感性认识,巩固所学理论知识。
2、编写MATLAB程序,采用不同算子对图像进行锐化处理。
3、编写MATLAB程序,实现对灰度图像的伪彩色处理。
4、学会比较图像处理结果并分析原因。
二、实验要求
1.能够对单色图像进行伪彩色处理,能够分析彩色图像。
2.能够自行评价各主要算子在无噪声条件下和噪声条件下的锐化性能。
完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。
三、实验仪器
PC一台,MATLAB软件。
(一) 试分别用roberts、sobel 、Prewitt、log四种算子编写MATLAB程序对Miss.bmp图像及添加高斯噪声的Miss图像进行锐化,提取边缘信息。
要求:
1. 显示原图像和对其锐化后的各个图像,并分别为之命名为:“原始图像”、“Robert算子锐化结果”、“sobel算子锐化结果”、“Prewitt算子锐化结果”、“高斯-拉普拉斯算子锐化结果”
2. 显示添加噪声的图像及对其锐化后的各个图像,并分别为之命名为:“添加噪声后的图像”、“Robert算子锐化结果”、“sobel算子锐化结果”、“Prewitt算子锐化结果”、“高斯-拉普拉斯算子锐化结果”
3.比较几种方法的锐化效果,并分析原因
程序实现
(二) 运行下列采用8个灰度级密度分割的伪彩色变换程序,观察结果,并分别采用2、16、32个灰度级进行伪彩色处理,编程后运行,观察并比较结果。
(三)采用灰度级彩色变换的方法,编写MATLAB程序,实现Miss.bmp图像的灰度级彩色变换。
基于matlab伪彩色图像处理研究与实现作者:陈燕凤来源:《大东方》2015年第08期摘要:图像处理是一门很有价值的学科,在科学技术不断发展的今天它的技术已趋于成熟。
同时图像之间的处理,在实际应用中也显的越来越重要。
本文主要讲述数字图像处理中伪彩色处理,因为人眼对彩色的分辨能力远远大于黑白灰度分辨率,因此伪彩色处理能增强观察者对图像信息的检测能力。
关键词:伪彩色处理;直方图均衡化;彩色图像一、引言伪彩色处理是用彩色来代替像素灰度值的一种技术,因人眼对彩色的分辨率远高于对灰度差的分辨率,我们可用来识别灰度差较小的像素。
灰度图像中,如果相邻像素点的灰度相差不大,人眼将无法从图像中提取相应的信息,因为人眼只能辨别一幅图像中的四到五种灰度级,却能辨别近千种的彩色,为了挥发人眼对颜色的辨别能力,用不同的颜色代表不同的灰度,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。
二、伪彩色图像处理基本原理伪彩色图像处理是指基于一种指定的规则对灰度值赋以颜色的处理,主要应用于人目视观察和解释单幅图像或序列图像中的灰度级事件。
由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。
这是一种视觉效果明显而技术又不是很复杂的图像增强技术。
灰度图像中,如果相邻像素点的灰度相差不大,人眼将无法从图像中提取相应的信息,因为人眼可以辨别几千种色调和强度,而相比之下只能辨别几十种灰度,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。
伪彩色处理主要依靠三基色RGB 混合出所需要的颜色,对规定的灰度级范围做对应的RGB分量0-255色调变换即可使对应的灰度范围变为彩色。
例如R(X,Y)和G(X,Y)分量叠加可以得出Y(X,Y),调节R (X,Y)和G(X,Y)在0-255之间变化又可以得出不同强度的Y(X,Y)。
三、伪彩色图像处理的方法与实现1.真实景物图像的像素逐个地映射为另一种颜色,使目标在原图像中更突出例如把景物映射成奇异彩色,比本色更引人注目,这样适应人眼对颜色的灵敏度,提高鉴别能力,用遥感多光谱图象处理成假彩色,以获得更多信息。
图像颜色R G B调整的M A T L A B实现------------------------------------------作者------------------------------------------日期摘要Matlab是当今最优秀的科技应用软件之一,它一强大的科学计算与可视化功能,简单易用,开放式可扩展环境,特别是所附带的30多种面向不同领域工具箱支持,使得它在许多科学领域中成为计算机辅助设计与分析,算法研究和应用开发的基本工具盒首选平台在图像处理中,Matlab也得到了广泛的应用,例如图像变换,设计FIR滤波器,图像增强,四叉树分解,边缘检测,小波分析等等。
不同的颜色空间在描述图像的颜色时侧重点不同。
如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器和彩色摄象机,HSI(色调、饱和度、亮度)更符合人描述和解释颜色的方式(或称为HSV,色调、饱和度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)是用于NTSC规定的电视系统格式,YUV(亮度、色差、色差)是用于PAL规定的电视系统格式,YCbCr(亮度单一要素、蓝色与参考值的差值、红色与参考值的差值)在数字影像中广泛应用。
彩色图像的处理有时需要将图像数据在不同的颜色空间中表示,因此,图像的颜色空间之间的转换成为一项有意义的工作。
其中RGB在颜色空间转换中其关键作用,是各个空间转换的桥梁。
Matlab中的颜色空间转换只涉及到了RGB、HSV、YCbCr、YIQ等,没有包含lαβ和其它颜色空间的转换。
关键字:Matlab,图像处理,RGB武汉理工大学本科生能力拓展训练任务书学生姓名专业班级:指导教师:工作单位:自动化学院题目: 图像颜色RGB调整的MATLAB实现初始条件: PC机,MATLAB要求完成的主要任务:对24bits彩色图像的颜色,使用RGB颜色模型,来对其进处理。
图像伪彩色处理近几年来,随着多媒体技术和因特网的迅速发展和普及,数字图像处理技术受到了前所未有的广泛重视,出现了许多新的应用领域。
最显著的是数字图像处理技术已经从工业领域、实验室走入了商业领域及办公室,甚至走入了人们的日常生活。
由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。
伪彩色处理是根据特定的准则对灰度值赋以彩色的处理。
由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。
这是一种视觉效果明显而技术又不是很复杂的图像增强技术。
灰度图像中,如果相邻像素点的灰度相差大,人眼将无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。
同时MATLAB 技术对于我们实现数字图像处理是一种非常有效的实用工具。
1.引言进入21世纪以来,随着微电子技术、计算机技术、现代通信技术的飞速发展,人类社会正健步迈入信息化时代。
在人类所接收到的全部信息中,70%以上的通过视觉得到的。
因此对数字图像进行有效地处理变换十分重要,而且彩色图像占很大的比例,所以,对彩色图像的处理显得尤为重要。
其中伪彩色处理技术就是一项很重要的图像处理技术。
伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布的图像。
由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。
这是一种视觉效果明显而技术又不是很复杂的图像增强技术。
灰度图像中,如果相邻像素点的灰度相差大,人眼将无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像后,人眼就可以提高对图像细节的辨别力,提取更多的信息量。
因此,伪彩色处理的主要目的是为了提高人眼对图像的细节的分辨能力,以达到图像增强的目的。
伪彩色图像处理技术已经被广泛应用于遥感和医学图像处理中,适用于航摄、遥感图片和云图判读、X光片等方面。
基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。
黑白图像中不同的灰度级赋予不同的彩色。
2.算法设 f(x,y)为一副黑白图像,R(x,y),G(x,y),B(x,y)为f(x,y) 映射到RGB空间的三个颜色分量,则伪彩色处理可以表示为:给定不同的映射函数就能将灰度图像转化为不同的伪彩色图像。
需要注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
在实际应用中,通常是为了提高图像分辨率而进行伪彩色处理,所以应采用分辨效果最好的映射函数。
伪彩色处理技术的实现方法有多种,如灰度分层法、灰度级-彩色变换法、频域滤波法等等。
A.密度分层法①理论基础及公式推导密度分层法是把灰度图像的灰度级从0(黑)到M0(白)分成N个区间Ii(i=1,2,…,N),给每个区间Ii指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。
该方法比较简单、直观。
缺点是变换出的彩色数目有限。
灰度是描述灰度图像内容的最直接的视觉特征,它指黑白图像中点的颜色深度,范围一般从0到255白色为255,黑色为0,中间的数字从小到大表示由黑到百的过渡色,即可以表示不同的灰度等级。
灰度切分示意图如下图:设原始黑白图像的灰度范围为:0≤f(x,y)≤L用k+1灰度等级把该灰度范围分为k段:I0,I1,...,Ik I0=0(黑),Ik=L(白)映射每一段灰度成一种颜色,映射关系为:ɡ(x,y)= C1 (I(i-1)≤f(x,y)≤I(i);i=1,2...k)这里ɡ(x,y)为输出的伪彩色图像;Ci为灰度在[I(i-1),I(i)]中时所映射成的彩色。
经过这种映射处理后,原始黑白图像f(x,y)就变成了伪彩色图像ɡ(x,y)。
若原始图像f(x,y)就编程了伪彩色图像ɡ(x,y)。
若原始图像f(x,y)的灰度分布遍及上述k个灰度段,则伪彩色图像ɡ(x,y)就具有k中彩色。
②仿真结果及分析:灰度图像:密度分层图像:分层级数为8:分层级数为16:分层级数为64:③结果分析:优点:密度分层伪彩色图像简单易行、直观,仅用硬件就可以实现。
缺点:所得伪彩色图像彩色生硬,彩色数目有限,且量化噪声大(即分割误差)。
密度分层级数越大,图像分辨率越高,量化噪声越小。
为了减少量化噪声,就必须增加分割级数。
这不但导致设备复杂,而且彩色漂移现象严重。
主要用于传感、医学图像处理中。
B灰度级—彩色变换法①理论基础及公式推导灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。
该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。
同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。
灰度级-彩色变换伪色彩处理过程见下图。
通过这种方法变换后的图像视觉效果好。
一组典型的灰度级-彩色变换的传递函数如下图所示。
其中图(a)、(b)、(c)分别表示红色、绿色、蓝色的传递函数,图(d)是三种彩色传递函数组合在一起的情况。
由图(a)可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。
凡灰度级大于3L/4的像素均被转变成最亮的红色。
其他的颜色以此类推。
②仿真结果及分析③结果分析:从仿真图中可以看出,图像从灰度图像转换成了彩色图像,密度分层法所得伪彩色图像彩色生硬,且量化噪声大(即分割误差),而灰度级-彩色变换法所得图像是多种颜色渐变的连续彩色图像,更加具有层次感,变换后的图像视觉效果更好。
伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
C.频域滤波法①理论基础及公式推导频率滤波法首先把灰度图像经傅立叶变换到频率域,在频率域内用三个不同传递特性的滤波器分离成三个独立分量;然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(如直方图均衡化)最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,得到一幅彩色图像。
频域滤波法输出图像的伪彩色与原图像的灰度级无关,而是取决于灰度图像中不同的频率成分。
如果为了突出图像中高频成分(即图像的细节)而将其变为蓝色,则只需要将蓝通道滤波器设计成高通滤波器。
如果要抑制图像中某种频率成分,那么可以设计一个带阻滤波器来达到目的。
②仿真结果及分析③结果分析:从仿真图中可以看出,图像从灰度图像转换成了彩色图像。
频域滤波法得到的伪彩色图像和灰度级-彩色变换法所得的伪彩色图像不一样,两种方法各有千秋。
进一步说明,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
4.结论伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。
它是一种很实用的图像增强技术,主要用于提高人眼对图像的分辨能力。
这种处理可以用计算机来完成,也可以用专用硬件设备来实现。
伪彩色图像处理技术已经被广泛应用于遥感和医学图像处理中,例如,它适用于航摄、遥感图片和云图判读、X光片等方面。
通过此次课程设计,使我更加扎实的掌握了有关图像处理方面的知识,在设计过程中虽然遇到了一些问题,但经过反复思考和与同学交流,找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。
实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。
附录:MATLAB仿真代码①密度分层法仿真代码I = imread('郁金香.jpg');I = rgb2gray(I)imshow(I); %显示灰度图像G2C = grayslice(I,8); % 密度分层figure;imshow(G2C,hot(8)); %显示伪彩色图像②灰度级—彩色变换法I=imread('郁金香.jpg');subplot(221),imshow(I);title('原图像');I=rgb2gray(I);subplot(222),imshow(I);title('灰度图像');I=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2;R(i,j)=0;G(i,j)=L;B(i,j)=-4*I(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=G(i,j);G2C(i,j,3)=B(i,j);endendG2C= G2C/256;subplot(223),imshow(G2C);title('伪彩色图像');③频域滤波法i=imread('郁金香.jpg')subplot(221),imshow(i);title('原图像');i=rgb2gray(i);subplot(222),imshow(i);title('灰度图像');[M,N]=size(i);F=fft2(i);fftshift(F);Rcut=100;Gcut=200;Bcenter=150;Bwidth=100;Bu0=10;Bv0=10;for u=1:Mfor v=1:ND(u,v)=sqrt(u^2+v^2);RH(u,v)=1/(1+(sqrt(2)-1)*(D(u,v)/Rcut)^2);GH(u,v)=1/(1+(sqrt(2)-1)*(Gcut/D(u,v))^2);BD(u,v)=sqrt((u-Bu0)^2+(v-Bv0)^2);BH(u,v)=1-1/(1+BD(u,v)*Bwidth/((BD(u,v))^2-(Bcenter)^2)^2); endendR=RH.*F;Rcolor=ifft2(R);G=GH.*F;Gcolor=ifft2(G);B=BH.*F;Bcolor=ifft2(B);Rcolor=real(Rcolor)/256;Gcolor=real(Gcolor)/256;Bcolor=real(Bcolor)/256;for i=1:Mfor j=1:NG2C(i,j,1)=Rcolor(i,j);G2C(i,j,2)=Gcolor(i,j);G2C(i,j,3)=Bcolor(i,j);endendG2C=abs(G2C);subplot(223),imshow(G2C);title('伪彩色图像');。