二氧化铅电极演示教学
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
Ti/SnO2-Sb2O5/PbO2电极的制备及降解性能分析1 引言随着工业的快速发展,各种废水特别是有机废水的排放量日益增加,严重影响了水体环境.有机废水具有成分复杂、可生化性差等特点,传统的生物处理法很难达到排放标准(Liu et al., 2012;Andrade et al., 2007;Dai et al., 2013).电催化氧化法由于其设备体积小、无二次污染、自动化程度高且易于控制、能与其他方法结合使用、反应推动力大、有机物能被完全矿化等优点而在难生物降解有机废水处理中呈现广阔的应用前景(温青,2008;Duan et al., 2013; Yang et al., 2009).二氧化铅(PbO2)由于其析氧电位较高、价格低廉、耐腐蚀性良好而被视为一种性能优异的阳极材料(Zheng et al., 2011;Wang et al., 2010;An et al., 2012).但由于在电解过程中产生的活性氧与钛基体反应生成不导电的TiO2,表面PbO2活性层从基体上脱落,导致电极的使用寿命缩短(褚秋霞等,2009).目前,对PbO2电极的研究主要集中在添加中间层来改善电极的使用寿命,以及对表面活性层改性来提高电极的电催化活性上.例如,徐浩等(2012)研究了Pb3O4中间层的引入提高钛基体PbO2电极使用寿命的原因;Duan等(2012)的研究表明,在PbO2表面活性层掺入十二烷基苯磺酸钠(LAS)和碳纳米管(CNT)可以显著增大电极活性层的比表面积,提高催化活性;Recio等(2011)的研究表明,在网状玻璃碳上电沉积PbO2电极对甲基橙有较好的处理效果.但目前对电极降解性能的研究主要集中在单一污染物上(Zheng et al., 2011; Duan et al., 2013),比较PbO2电极对不同类型有机物降解效果的研究还比较少见.因此,本文采用溶胶凝胶法和电沉积法分别制备Ti/SnO2-Sb2O5/PbO2电极,并采用线性扫描、SEM、降解测试等方法研究了其对苯酚、靛蓝胭脂红、甲基橙3种有机物的降解效果,考察PbO2电极降解不同结构有机物的选择性.2 实验部分2.1 电极的制备钛板(厚度0.5 mm)用砂纸打磨后,剪切成1 cm×8 cm大小,经碱洗除油酸洗刻蚀后用蒸馏水冲洗,保存在3%(质量分数)草酸溶液中待用.将处理好的钛板用浸渍提拉机在锡锑溶胶中浸渍涂膜,涂覆2次后在100 ℃烘箱中干燥10 min;然后在350 ℃马弗炉中煅烧10 min,反复涂膜9次;最后一次在500 ℃下煅烧2 h,即得锡锑中间层(陈野等,2013).将15 g Pb(NO3)2、0.05 g NaF溶于100 mL蒸馏水中,用浓HNO3调节pH至1~2得到电沉积液,以制备好中间层的电极为阳极、石墨电极为阴极,在电沉积液中在10 mA · cm-2电流密度下电沉积90 min即得Ti/SnO2-Sb2O5/PbO2电极.2.2 电极中间层和活性层的表征采用JSM-6480型扫描电子显微镜(日本电子公司)对电极中间层和表面活性层的表面形貌进行分析,其中,加速电压为20 kV.XRD测试是在D/Max2500型X射线衍射仪(日本岛津公司)上进行,Cu靶Kα射线,管电压为40 kV,管电流150 mA,2θ范围为20°~80°,扫描速度为每分钟15°.2.3 电化学测试采用SP-240型电化学工作站(法国Bio-Logic公司)对电极进行电化学测试,饱和甘汞电极为参比电极,铂片为对电极,线性伏安测试扫描范围为0~2 V(vs.SCE),扫描速度为10 mV · s-1,支持电解质为0.053 mol · L-1 Na2SO4,电解液中存在污染物时其浓度为5 mg · L-1;交流阻抗测试频率范围为1 mHz~100 kHz,外加电压为1.8 V,支持电解质为0.053 mol · L-1 Na2SO4.2.4 降解性能测试采用恒电流法降解目标物,电流密度为20 mA · cm-2,电极工作面积6 cm2,目标物初始浓度100 mg · L-1,支持电解质为0.25 mol · L-1 Na2SO4,不同时间取样用分光光度法测定污染物浓度.COD采用GB11914-89重铬酸盐法测定.3 结果与讨论3.1 电极表面的XRD分析图 1是电极表面的XRD图谱,在2θ为31.62°、35.94°、48.72°、62.72°、66.78°处有比较明显的衍射峰,与β-PbO2的标准PDF卡片(41-1492)数据相符,图谱中未发现其他的特征峰,制得的电极表面镀层主要晶相为β型PbO2,未发现有锡锑氧化物和钛的特征衍射峰.表明PbO2完全覆盖了锡锑中间层,表面没有钛基体和锡锑氧化物中间层裸露.图 1 Ti/SnO2-Sb2O5/PbO2电极表面的XRD图谱3.2 电极的形貌分析电极锡锑氧化物中间层和Ti/SnO2-Sb2O5/PbO2电极的形貌见图 2.从图 2a中可以看出,中间层表面均匀分布着细小的裂纹,裂纹是在煅烧过程中由于锡氧化物的界面张力而形成的.中间层SEM图显示,在中间层涂覆层数为9层时钛基体被完全覆盖,没有钛基体裸露,可以避免在电沉积表面活性层时基体的钝化,从而提高电极的使用寿命.从图 2b可以观察到电极表面PbO2活性层比较致密,颗粒间未发现有明显裂纹,电极致密的表面结构能有效防止活性氧向中间层和基体的扩散,避免基体的钝化,电极表面较粗糙的微观结构增大了电极的比表面积,能提供更多的活性点位,有利于增加电极的催化活性.图 2 电极中间层(a)和电极表面活性层(b)的SEM图图 3为Ti/PbO2电极与Ti/SnO2-Sb2O5/PbO2电极的断面SEM,其中,A、D区域为钛基体,B、F区域为PbO2活性层,C、G区域为环氧树脂固化剂,E区域为锡锑中间层.从图中可以看出,A、B之间的界面较清晰,D、E界面相对A、B界面较粗糙一些,E、F之间无明显界面.这是由于Ti4+、Sn4+、Sb5+、Pb2+的离子半径分别为0.068、0.069、0.060、0.084 nm,Ti4+与Pb2+离子半径相差过大,很难形成固溶体而Ti4+与Sn4+离子半径几乎相等,可以形成锡钛氧化物的固溶体,提高电极的稳定性和导电性,锑的掺入使二氧化锡晶格中形成了更多的电子空位,降低了电极中间层的电阻率,同时影响了表面PbO2活性层的沉积电位(Yang et al., 2009),使颗粒粒径更细小.PbO2活性层填补了锡锑中间层的裂纹,导致中间层与表层的界面不明显,这种结构有利于提高基体与活性层之间的结合力.图 3 Ti/PbO2电极断面(a)和Ti/SnO2-Sb2O5/PbO2电极断面(b)的SEM图3.3 电极的电化学测试图 4为Ti/SnO2-Sb2O5/PbO2电极在不同电解液中测得的LSV曲线,由于PbO2电极的氧与铅原子数之比不是严格意义上的2 ∶ 1,活性层中还存在二价铅,因而 4条曲线在1.1 V处都存在一个氧化峰,为二价铅被氧化为四价铅所产生.线性伏安扫描曲线在0.7 V前后存在一个明显的氧化峰,这可能是由污染物在电极表面直接氧化产生(Duan et al., 2013).当电解液中无污染物时电极析氧电位为1.41 V时,当电解液中存在苯酚、靛蓝胭脂红、甲基橙时电极析氧电位分别为1.54、1.55、1.52 V,当电解液中存在污染物时电极的析氧电位提高,这可能是由于目标污染物物吸附在电极表面,优先与电极表面产生的金属过氧化物反应,抑制了电极表面活性氧的析出.图 4 Ti/SnO2-Sb2O5/PbO2电极线性伏安曲线图 5为Ti/PbO2电极与Ti/SnO2-Sb2O5/PbO2电极的交流阻抗谱.从图 5中可以看出,Ti/PbO2电极的物理阻抗为2.5 Ω,电化学阻抗为143 Ω,而Ti/SnO2-Sb2O5/PbO2电极的物理阻抗为33 Ω,电化学阻抗为12 Ω.由于锡锑氧化物作为一种半导体其导电性不理想,因此,导致了Ti/SnO2-Sb2O5/PbO2电极的物理阻抗远大于Ti/PbO2电极.而Ti/SnO2-Sb2O5/PbO2电极的电化学阻抗远小于Ti/PbO2电极表明,锡锑氧化物中间层的存在会极大地降低电极的电化学阻抗,改善电极的电化学性能,提高催化性能.图 5 Ti/PbO2电极与Ti/SnO2-Sb2O5/PbO2电极的交流阻抗谱3.4 电极的降解性能测试分析图 6为Ti/SnO2-Sb2O5/PbO2和Ti /PbO2电极降解3种污染物时去除率随时间的变化曲线.图 6a表明,Ti/SnO2-Sb2O5/PbO2电极降解靛蓝胭脂红60 min时去除率可达100%,降解甲基橙120 min时去除率为86%,降解苯酚180 min时去除率为90%.Ti/SnO2-Sb2O5/PbO2电极对3种污染物的降解都符合一级反应动力学方程,污染物为靛蓝胭脂红、甲基橙和苯酚时反应速率常数分别为0.050、0.019和0.017 min-1,对靛蓝胭脂红降解速率较快.图 6 Ti/SnO2-Sb2O5/PbO2电极和Ti /PbO2电极降解不同目标物时的去除率图 7为Ti/SnO2-Sb2O5/PbO2电极在降解3种污染物过程中COD去除率随时间变化曲线.图 7结果表明,在降解时间为3 h时,污染物为甲基橙、苯酚、靛蓝胭脂红时的COD去除率分别为55%、45%、40%.污染物去除率及其COD去除率结果表明,3种污染物的降解过程都包括电化学转化和电化学燃烧两部分,污染物为甲基橙时COD 去除率最高,降解较为彻底;而降解靛蓝胭脂红时尽管污染物本身去除率在1 h内到达100%,但降解时间为3 h时其COD去除率只有40%,这表明靛蓝胭脂红在降解过程中生成了难电催化氧化的中间产物;苯酚在降解3 h时去除完全,其COD去除率随时间增加而逐渐升高,3 h时达到45%.图 7 电极降解不同目标物时的COD去除率图 8为Ti/SnO2-Sb2O5/PbO2电极和Ti/ PbO2电极降解3种污染物时电压随时间的变化曲线.图 8表明,在恒电流条件下降解3种污染物,过程中电压变化较小,表明电极比较稳定.Ti/SnO2-Sb2O5/PbO2电极降解靛蓝胭脂红、甲基橙、苯酚时电压分别为4.73、4.88、5.07 V,Ti/PbO2电极降解靛蓝胭脂红、甲基橙、苯酚时电压分别为8.30、10.01、9.50 V,在相同条件下,Ti/SnO2-Sb2O5/PbO2电极降解污染物所需的槽电压较Ti/PbO2电极低50%.结合图 5中两种电极的交流阻抗图谱,槽电压的降低可能是由于锡锑氧化物中间层的制备使电极表面的电化学反应更容易发生,在相同电流密度下槽电压的大幅度降低可以极大地降低去除污染物过程中的能耗.由于污染物去除率达到100%所需的时间也是靛蓝胭脂红最短,甲基橙居中,苯酚最长,因此,Ti/SnO2-Sb2O5/PbO2电极降解靛蓝胭脂红所需能耗最低,苯酚最高.具体参见污水宝商城资料或更多相关技术文档。
Electrochimica Acta 125(2014)22–28Contents lists available at ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taEffect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitorsJin Zhang a ,Zhiqiang Shi a ,∗,Chengyang Wang b ,c ,∗aLaboratory of Fiber modification and Functional Fiber,College of Materials Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,PR China bKey Laboratory for Green Chemical Technology of Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,PR China cSynergetic Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,PR Chinaa r t i c l ei n f oArticle history:Received 28November 2013Received in revised form 5January 2014Accepted 5January 2014Available online 21January 2014Keywords:Li-ion capacitorsPre-lithiation degrees Phase transitionMesocarbon microbeads electrode Activated carbon electrodea b s t r a c tLithium ion capacitors are assembled with pre-lithiated mesocarbon microbeads (LMCMB)anode and activated carbon (AC)cathode.The effect of pre-lithiation degrees on the crystal structure of MCMB electrode and the electrochemical capacitance behavior of LIC are investigated by X-ray diffraction (XRD)and the charge-discharge test of three-electrode cell.The structure of graphite still maintained when the pre-lithiation capacity is less than 200mAh g −1,phase transition takes place with the increase of pre-lithiation capacity from 250mAh g −1to 350mAh g −1.Pre-lithiation degrees of MCMB anode greatly affect the charge-discharge process and behavior,which impact on the electrochemical performance of LIC.The LIC with pre-lithiation capacity of 300mAh g −1has the optimal electrochemical performance.The energy density of LIC300is up to 92.3Wh kg −1,the power density as high as 5.5kW kg −1and the capacity retention is 97.0%after 1000cycles.The excellent electrochemical performance benefits from the appropriate pre-lithiation capacity of negative electrode.The appropriate pre-lithiation ensures the working voltage of negative electrode in low and relative stable charge-discharge platform corresponding to the mutual phase transition from the second stage graphite intercalation compound (LiC 12)to the first stage graphite intercalation compound (LiC 6).The stable charge-discharge platform of negative electrode is conductive to the sufficient utilization of AC positive electrode.©2014Elsevier Ltd.All rights reserved.1.IntroductionElectrochemical double-layer capacitor (EDLC)is called super-capacitor,which contained two symmetrical activated carbon electrodes with high surface pared with secondary bat-teries,it generally shows higher specific power,longer cycle life and better stability,which is considered as the most effective high power energy density storage device [1–4].However,the energy storage is based on the double-layer forming at the elec-trode/electrolyte interface,so the energy density is limited by the capacitance and withstanding voltage of activated carbon,which restricts its application in the field of electric vehicles,hybrid elec-tric vehicles and large scale energy storage.Therefore,considerable research is focused on how to improve the energy density of EDLC.According to the relation for energy,E =12CU 2,where C is the capacitance and U working voltage,the energy density increases∗Corresponding author.Tel.:+862283955816;fax:+862283955055.E-mail addresses:shizhiqiang@ (Z.Shi),cywang@ (C.Wang).with the capacitance and working voltage.Applying electrode materials with high specific capacitance, e.g.nanoporous car-bon [5],transition metal oxide [6],conductive polymers [7,8],and improving the working voltage by the usage of the voltage resistance materials or ionic liquids electrolytes [9–11],are the two methods to improve the energy density.In recent years,an advanced energy storage device that provides both high energy density and high power density has been proposed,known as lithium ion capacitor (LIC)[12–14].LIC consists of a lithium-doped negative electrode,an activated carbon (AC)positive electrode and an organic electrolyte containing lithium salt,it is the combina-tion of lithium ion battery anode material and electrochemical capacitor cathode material.In LIC,the negative electrode materi-als that can be doped with lithium ions typically include Li 4Ti 5O 12[15,16],hard carbon [17],graphite [18,19].Among these materi-als,graphite is particularly attractive due to its high theoretical capacity (372mAh g −1),low and stable charge-discharge platform,natural abundance and relatively low cost.Currently,a LIC based on AC/graphite-Li system in the voltage range of 2.0-4.0V could deliver the energy and power density of 10Wh kg −1and 10kW kg −1,and maintain good cycle performance at 10C rate which benefits from0013-4686/$–see front matter ©2014Elsevier Ltd.All rights reserved./10.1016/j.electacta.2014.01.040J.Zhang et al./Electrochimica Acta125(2014)22–2823the pre-lithiation technology of graphite negative electrode[20].A few of companies including Subaru and Fuji Heavy Industries Ltd,ISR Micro/JM Energy and Asahi Kasei Corporations have also vigorously researched the pre-doped LICs in recent years.The pre-lithiation can improve the working voltage,energy den-sity and cycle stability,reduce the irreversible capacity loss and increase Li+concentration of the electrolyte[20].Sivakkumar et al. achieved pre-lithiation of graphite electrode by short-circuiting graphite electrode and Li metal in AC/graphite/Li3-electrode cell, the pre-lithiation capacity was estimated to be equivalent to71% of the theoretical capacity of graphite after10h[20].The LIC deliv-ered energy density of55Wh kg−1and100Wh kg−1(based on active material weight of two electrodes)in a voltage window of3.1-4.1V and2.0-4.1V.However,they only gave cycle perfor-mance of capacitor with several hundred times,and not provided the power performance of the LIC.Graphite was successfully pre-lithiated by successive charge/self-discharge pulses in1mol L−1 LiPF6in EC/DMC and2mol L−1lithium bis(trifluoromethane)sul-fonamide(LiTFSI)organic electrolyte,respectively,in the literature [18,21].The two kinds of LIC delivered high energy density.How-ever,the work of pre-lithiation process didn’t introduce auxiliary lithium electrode and the charge-discharge test was operated in the same cell,which could cause the lithium ion concentration decrease and impact on the electrochemical performance.Besides, they just pre-lithiated the negative electrode with a certain degree and didn’t study the effect of different pre-lithiation degrees on the performance of LIC.Despite several papers published on the LIC with pre-lithiated graphite,very few reports have discussed the effects of pre-lithiation degrees of negative electrode on the LIC’s electrochemical performance in details.Hence,in this work,we use electrochemi-cal method to realize pre-lithiation and undertake a more detailed evaluation of the electrochemical performance of LIC with different pre-lithiation degrees MCMB negative electrode.2.Experimental2.1.Positive electrode preparationThe positive electrode was prepared by coating a mixture of commercial activated carbon(ACP-60,S BET=1604m2g−1,PCT Co. Ltd,Korea),conductive carbon black(VXC72,Carbot Co.,USA),and polytetrafluoroethylene(PTFE)with a mass ratio of85:7:8and then pressed with roller press to control the thickness.The disc positive electrodes of13mm in diameter were prepared by punching the coatingfilm and dried at120◦C overnight in dynamic vacuum.The aluminium foil with conducting resin was used as current collector.2.2.Negative electrode preparationThe electrode was prepared by pasting a10m thick copper foil with mesocarbon microbeads(MCMB,BTR New Energy Material Co. Ltd,China),conductive carbon black(VXC72)and polyvinylidene fluoride(PVDF)dispersed in N-methylpyrrolidone(NMP)in89:3:8 mass ratio.After evaporation of the solvent(NMP),the electrodes were roll-pressed to improve the mechanical strength.Then nega-tive electrodes were cut into a disc of13mm diameter and dried at 120◦C for12h in a dynamic vacuum.2.3.Cell fabricationPre-lithiation process of MCMB electrode was carried out by galvanostatic charging in coin cell(CR2430)which assembled with MCMB working electrode and lithium countering electrode. The pre-lithiation process was terminated once the capacity of the cell reached the definite value.The capacity of pre-lithiation we designed as0,50,100,150,200,250,300,350mAh g−1, respectively.Based on the capacity value,the pre-lithiated MCMB (LMCMB)electrode was signed LMCMB0,LMCMB50,LMCMB100, LMCMB150,LMCMB200,LMCMB250,LMCMB300,LMCMB350,the corresponding LICs were denoted LIC0,LIC50,LIC100,LIC150, LIC200,LIC250,LIC300,LIC350.Two-electrode LIC was assembled with AC working electrode (positive electrode)and LMCMB counter electrode(negative elec-trode),it was used to evaluate the energy density,power density and cycle life.The mass ratio of positive to negative electrode was kept at1.A three-electrode cell with AC as positive elec-trode,LMCMB as negative electrode and lithium metal as reference electrode was charged and discharged in the voltage range of2.0-4.0V to study the variation of potential both the positive electrode and negative electrode.The electrolyte was1.2mol L−1LiPF6in 1:1EC/DEC(ethylene carbonate/diethyl carbonate),and a porous polypropylene microporous sheet was used as the separator.All cells were assembled in an Argon-filled glove box and all poten-tials in this paper were presented vs.Li/Li+.The energy and power density were calculated per active materials mass of two electrodes. The electrochemical tests of the electrodes and capacitors were per-formed by cyclic voltammetry,galvanostatic charging-discharging.3.Results and discussion3.1.Electrochemical performance of activated carbonThe electrochemical properties of the AC were investigated using a lithium-based organic electrolyte(1.2mol L−1LiPF6in EC/DEC).Fig.1(a)shows the cyclic voltammograms obtained with different potential ranges in a three-electrode cell where AC is the working electrode and lithium metal is used as counter and ref-erence electrode.In the range of2.0to4.0V,the voltammogram is excellent rectangle without redox and reduction peaks in AC electrode,showing that the capacitance of the cell mainly depend on non-faradic adsorption/desorption of anion.When the potential range is extended to1.5-4.5V,the appearance of a small distortion makes the curves deviate from the shape of double layer capacitors. Even so,the capacitance characteristics still maintain.While at low potential of1.0V,the appearance of a reduction peak indicates that the electrolyte is decomposed and a solid electrolyte interface(SEI) is formed on the surface of activated carbon[18,22].It seems that the product of SEI blocks the pores of the AC electrode,which limit a further access of the electrolyte ions into the active surface.So it is suggested that the operating potential range for activated car-bon should be higher than2.0V and lower than4.0V in organic Li+ electrolyte.The charge-discharge curve of the AC given in Fig.1(b) is excellent linear.The specific capacity and specific capacitance obtained from the discharge curve of the AC positive electrode is about49.95mAh g−1in potential range from2.0V to4.0V.3.2.Electrochemical performance of MCMBThe cyclic voltammograms of MCMB/Li cell at the scan rate of 0.05mV s−1and0.02mV s−1are shown in Fig.2.During thefirst cathodic scan,two peaks at the potential of about1.2V and0.7V before the intercalation of lithium ion into MCMB indicate that a reductive decomposition of electrolyte occurs and the decompo-sition products form the so-called solid electrolyte interface(SEI)film on MCMB surface[23].The SEI forming mainly on thefirst cycle suggests that the SEIfilm blocks solvent molecules and solvated Li+into MCMB electrode,protecting the electrolyte from continu-ous decomposition during subsequent cycling.Thus,we can believe that the vast majority of the irreversible capacity loss(ICL)is asso-ciated with SEI forming.As we know,there were mainly several24J.Zhang et al./Electrochimica Acta125(2014)22–28Fig.1.(a)Cyclic voltammograms of the AC at5mV s−1and(b)charge-discharge curve of the AC using1.2mol L−1LiPF6in EC/DEC as electrolyte in a three-electrode cell.graphite intercalation compounds(GICs)in the process of inter-calation of lithium ion[23].The graphite intercalation compound forms with the intercalation of Li+,and the type of GIC changes with the Li+intercalation degree.As expected,three stages of Li+inter-calation occurring below0.25V with distinct intercalation steps at 0.17V,0.08V and0.05V are observed from Fig.2(b).Fig.3(a)shows thefirst galvanostatic charge-discharge pro-file of MCMB/Li cell.It is obvious that the charge-discharge curve is relativelyflat with the intercalation/de-intercalation processes occurring on at low potentials(<0.25V).Thefirst intercalation curve has a plateau at about0.8V,which corresponds to the forma-tion of SEIfilm.Thefirst intercalation capacity and the irreversible capacity loss(ICL)of MCMB is about370mAh g−1and30mAh g−1,respectively.The magnification of discharge(intercalation of lithium ion)curve of MCMB/Li cell in the inset of Fig.3(a)shows that three discharge plateau corresponding to the transition pro-cess of GICs appear at0.17V,0.11V,0.07V,respectively,which was almost consistent with the result of Fig.2(b).In order to study the effect of pre-lithiation of graphite anode on the system of LIC,the pre-lithiation curves of MCMB electrode at different degrees by controlling capacity are given in Fig.3(b). The relevant parameters are listed in Table1.It can be seen that the intercalation degree increases from0to94.09%with the increase of pre-lithiation,while the potential of electrode gradually decreases from over2.1V to0.001V.Therefore,pre-lithiation operation for graphite anode will affect different stages of GICs formation and transition in LIC assembled by AC cathode and MCMBanode.Fig.2.Cyclic voltammograms of the MCMB/Li cell at two kind of scan rate(a) 0.05mV s−1;(b)0.02mV s−1.Moreover,it will affect the working potential changes of AC cathode and the electrochemical behavior of LIC.For further investigating the variation of MCMB’s structure after pre-lithiation with different capacity,ex situ XRD measurement was performed as soon as the pre-lithiation processfinished,the results were presented in Fig.4.As can be seen,when the pre-lithiation capacity is lower than200mAh g−1,the002diffraction peak of LMCMB is about26.50◦and maintains symmetrical,which is the characteristic diffraction peak of graphite materials.More-over,the002diffraction peak slightly shifts to lower diffraction angle with the increase in pre-lithiation capacity.It indicates that the layer spacing of graphite slightly increases with the increase of intercalation capacity,but the main structure of graphite still maintains according to the standard PDF41-1487.However,when the pre-lithiation capacity increases to250mAh g−1,the002peak Table1The potentials of MCMB in MCMB/Li cell with different pre-lithiation capacity.Sample Pre-lithiationcapacity(mAh g−1)Degree ofpre-lithiation(%)*Potential vsLi/Li+(V) LMCMB000.00>2.10 LMCMB505013.440.160 LMCMB10010026.880.119 LMCMB15015040.320.103 LMCMB20020053.760.080 LMCMB25025067.200.053 LMCMB30030080.650.043 LMCMB35035094.090.001*Values based on the theoretical discharge capacity(372mAh g−1)of MCMB.J.Zhang et al./Electrochimica Acta 125(2014)22–2825Fig.3.(a)First galvanostatic charge-discharge profile of MCMB at 0.05C rate in 1.2mol L −1LiPF 6in EC/DEC.Inset:The magnification of discharge (intercalation of lithium ion)curve of MCMB/Li cell.(b)The plots of pre-lithiation of MCMB with different capacity.Inset:The magnification profiles of pre-lithiation.intensity obviously wakens,while two new peaks emerge at 25.62◦and 25.32◦,respectively,which can be explained by the forma-tion of the third stage GIC (LiC 24)and the second stage GIC (LiC 12)according to the standard PDF 35-1047and 35-1046card.Fur-thermore,when the pre-lithiation capacity continues to increase,the peak at 26.50◦disappears and the intensity of peak at 25.32◦increases,another new peak appears at 24.20◦attributed to the first stage GIC (LiC 6)according to the PDF 34-1320card.The results indicate that the pre-lithiation capacity of MCMB anode not only affects the potential according to the Table 1,but also correspond to the formation and transition of different GICs which are important to the stability of graphite anode and LIC.3.3.The electrochemical performance of LICFig.5showed the charge-discharge curves of the three-electrode LIC with a potential range of 2.0-4.0V at a current density of 25mA g −1.The potential change of the LMCMB neg-ative electrode and AC positive electrode in LICs are shown in Table 2.When the pre-lithiation capacity of negative electrode is lower than 200mAh g −1,the charge-discharge profiles of LIC and AC positive electrode show a great difference,the discharge potential range of the AC positive electrode is extended to a higher potential region,while the charge-discharge profile of LMCMB shows a typical U of graphite electrode.In the whole rangeofFig.4.Ex situ XRD patterns of MCMB electrode after pre-lithiation with different capacity.charge-discharge,the charge-discharge curves of LIC,AC positive and LMCMB negative electrode are not completely linear with time.Especially in the initial charge and discharge end stage,the potential of LMCMB and LIC drastically change.With the increase of pre-lithiation capacity,the charge-discharge profiles of LIC,AC positive and LMCMB negative electrode show almost linear with time.Meanwhile,the potential variation range of LMCMB grad-ually reduces which is beneficial to fully use the capacity for AC positive electrode and cycle stability of LIC.It is apparent that both the positive electrode and negative electrode exhibit the maximal capacity.All the charge-discharge curves are still linear in the range 2.0-4.0V when the pre-lithiation capacity is 350mAh g −1,but the potential of LMCMB is negative,indicating the overcharge of LMCMB electrode.The overcharge generally causes the decrease of capacity and cycle performance and thus should be avoided.The cycle performance of LIC in the range of 2.0-4.0V at 2C rate is shown in Fig.6.The energy density of LIC0decreases from 30.3to 8.1Wh kg −1during the first 100cycles,remaining slightly energy density fading in the rest of cycling test.By contract,the energy density and cycle stability improve after pre-lithiation of negative electrode.The energy density are about 48.6,51.0,54.6,75.8,63.3Wh kg −1,and the loss of energy density after 1000cycles are about 92.6%,12.5%,6.1%,3.0%,95.3%for LIC50,LIC100,LIC200,LIC300and LIC350,respectively.The increasing of energy density is directly correlated with the increased utilization of the AC posi-tive electrode.The decreasing energy density of LIC350is because during the overcharge process,the products of reaction between the electrolyte and the deposited lithium on the surface of MCMB forms thicker SEI film than other LICs increasing the resistance of lithium ion diffusion [24,25].The film thickening process with cycling consumes large amount of lithium ion,which can explain the poor stability.LIC300has the highest energy density and best cycle performance in all samples.The maximum energy density is about 7times higher than the energy density obtained with the conventional EDLCs.The Ragone plots are illustrated in Fig.7,which were obtained by calculating the energy density and power density at different current densities.With the increase of the pre-lithiation capacity from 0to 300mAh g −1,both the energy density and power density improve.When the pre-lithiation capacity increases to 350mAh g −1,the energy density and power density get worse because the thickening of SEI film in the overcharge process impedes the dif-fusion of lithium ion.It is clearly that LIC300has the maximum energy density of 92.3Wh kg −1and the highest power density of about 5.5kW kg −1,showing that LIC300is the best combination of energy density and power density.The results clearly show that the energy density,power den-sity and cycle performance of the LIC with pre-lithiated negative26J.Zhang et al./Electrochimica Acta 125(2014)22–28Fig.5.Charge-discharge curves of the three-electrode LIC of the AC/LMCMB with Li reference electrode at the current density of 25mA g −1,a:LIC0,b:LIC50,c:LIC100,d:LIC200,e:LIC250,f:LIC300,g:LIC350.electrode improve.With the increase of pre-lithiation capacity,the discharge potential range of activated carbon positive electrode is extended to a higher potential region.Increased utilization of activated carbon is responsible for improving the electrochemicalperformance of the LICs.When the pre-lithiation capacity is up to 300mAh g −1,LIC300exhibits the optimal electrochemical perfor-mance,which attributes to the appropriate pre-lithiation capacity.It guarantees the negative electrode at the stage of low and stableJ.Zhang et al./Electrochimica Acta 125(2014)22–2827Table 2The charge-discharge potentials change of positive/negative electrode and LIC in three-electrode cell.SamplePositive electrodeNegative electrodeLICC p (F g −1)C n (mAh g −1)V c (V)V max (V) V d (V)V c (V)V min (V) V d (V)V c (V)V max (V)V d (V)LIC00.84 4.250.95 1.020.25 1.05 1.85 4.00 2.0145.2120.58LIC50 1.12 4.18 1.130.840.180.87 1.97 4.00 2.0054.5030.89LIC100 1.48 4.11 1.550.460.110.45 1.95 4.00 2.0076.7540.21LIC200 1.83 4.07 1.840.160.070.17 2.00 4.00 2.0089.7049.05LIC250 1.88 4.05 1.920.110.050.08 1.98 4.00 2.01101.0652.78LIC300 1.89 4.03 1.900.090.030.10 2.00 4.00 2.00102.8753.91LIC3501.843.991.860.11-0.030.131.954.002.0089.7246.98V c :the potential change of charging,V max :the highest terminal potential of charging, V d :the potential change of discharging,V min :the highest terminal potential of discharging,C p :the specific capacitance of positive electrode,C n :the specific capacity of negativeelectrode.Fig.6.Cycle life of LICs using 1.2mol L −1LiPF 6in EC/DEC at 2C rate.Voltage range from 2.0to 4.0V.charge-discharge platform corresponding to the phase transition from the second stage GIC (LiC 12)to the first stage GIC (LiC 6).The stable charge-discharge platform of negative electrode is helpful use and stability of AC positive electrode performance.Therefore,we proposed that the optimal pre-lithiation capacity should be controlled to make the negative electrode at the initial stage of the phase transition from the second stage GIC to the first stageGIC.Fig.7.The Ragone plots for the LICs using 1.2mol L−1LiPF 6in EC/DEC.4.ConclusionsLICs have been built by combining the pre-lithiated MCMB neg-ative electrode and AC positive electrode,respectively.From the experimental data,it was found that the MCMB electrode could retain the structure of graphite when the pre-lithiation capacity was lower than 200mAh g −1.While the pre-lithiation capacity con-tinued to increase,the formation and transition of different GICs occurred.The pre-lithiation played a crucial role in improving the electrochemical performance such as the energy density,power density and cycle stability.LIC300exhibited the highest energy density of 92.3Wh kg −1,power density of 5.5kW kg −1and the best cycle life performance of about 97.0%retention after 1000cycles,which make it have a wide potential application for hybrid electric vehicles (HEVs)and electric vehicles (EVs).AcknowledgementsThis research was financially supported by the National High Technology Research and Development Program of China (863)(2011AA11A232,2013AA050905),the National Nature Science Foundation of China (51172160,50902102),Tianjin Municipal Nat-ural Science Foundation (11JCYBJC07500)and Tianjin High School Science &Technology Fund Planning Project (20130307).References[1]L.L.Zhang,X.S.Zhao,Carbon-based materials as supercapacitor electrodes,Chemical Society Reviews 38(2009)2520.[2]A.G.Pandolfo,A.F.Hollenkamp,Carbon properties and their role in supercapa-citors,Journal of Power Sources 157(2006)11.[3]A.Burke,Ultracapacitors:why,how,and where is the technology,Journal ofPower Sources 91(2000)37.[4]E.Frackowiak,F.Béguin,Carbon materials for the electrochemical storage ofenergy in capacitors,Carbon 39(2001)937.[5]V.Khomenko,E.Raymundo-Pi˜nero,F.Béguin,A new type of high energy asym-metric capacitor with nanoporous carbon electrodes in aqueous electrolyte,Journal of Power Sources 195(2010)4234.[6]K.-W.Nam,S.-B.Ma,W.-S.Yoon,X.-Q.Yang,K.-B.Kim,Novel concept of pseudo-capacitor using stabilized lithium metal powder and non-lithiated metal oxide electrodes in organic electrolyte,Electrochemistry Communications 11(2009)1166.[7]G.Gourdin,P.H.Smith,T.Jiang,T.N.Tran,D.Qu,Lithiation of amorphous carbonnegative electrode for Li ion capacitor,Journal of Electroanalytical Chemistry 688(2013)103.[8]J.Li,F.Gao,Analysis of electrodes matching for asymmetric electrochemicalcapacitor,Journal of Power Sources 194(2009)1184.[9]A.Balducci,R.Dugas,P.L.Taberna,P.Simon,D.Plée,M.Mastragostino,S.Passerini,High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte,Journal of Power Sources 165(2007)922.[10]zzari,F.Soavi,M.Mastragostino,High voltage,asymmetric EDLCs basedon xerogel carbon and hydrophobic IL electrolytes,Journal of Power Sources 178(2008)490.[11]zzari,M.Mastragostino,F.Soavi,Capacitance response of carbons insolvent-free ionic liquid electrolytes,Electrochemistry Communications 9(2007)1567.[12]A.Krause,P.Kossyrev,M.Oljaca,S.Passerini,M.Winter,A.Balducci,Electro-chemical double layer capacitor and lithium-ion capacitor based on carbon black,Journal of Power Sources 196(2011)8836.28J.Zhang et al./Electrochimica Acta125(2014)22–28[13]J.-H.Kim,J.-S.Kim,Y.-G.Lim,J.-G.Lee,Y.-J.Kim,Effect of carbon types on theelectrochemical properties of negative electrodes for Li-ion capacitors,Journal of Power Sources196(2011)10490.[14]S.R.Sivakkumar,J.Y.Nerkar,A.G.Pandolfo,Rate capability of graphite materialsas negative electrodes in lithium-ion capacitors,Electrochimica Acta55(2010) 3330.[15]G.G.Amatucci,F.Badway,A.D.Pasquier,T.Zheng,An Asymmetric Hybrid Non-aqueous Energy Storage Cell,Journal of the Electrochemical Society148(2001) A930.[16]A.D.Pasquier,I.Plitz,S.Menocal,G.Amatucci,A comparative study of Li-ionbattery,supercapacitor and nonaqueous asymmetric hybrid devices for auto-motive applications,Journal of Power Sources115(2003)171.[17]W.J.Cao,J.P.Zheng,Li-ion capacitors with carbon cathode and hard car-bon/stabilized lithium metal powder anode electrodes,Journal of Power Sources213(2012)180.[18]V.Khomenko,E.Raymundo-Pi˜nero,F.Béguin,High-energy density graphite/ACcapacitor in organic electrolyte,Journal of Power Sources177(2008)643. [19]F.Wu,H.Lu,Y.Su,S.Chen,Y.Guan,A simple way of pre-doping lithium ion intocarbon negative electrode for lithium ion capacitor,Materials Science Forum 650(2010)142.[20]S.R.Sivakkumar,A.G.Pandolfo,Evaluation of lithium-ion capacitors assembledwith pre-lithiated graphite anode and activated carbon cathode,Electrochimica Acta65(2012)280.[21]C.Decaux,G.Lota,E.Raymundo-Pi˜nero,E.Frackowiak,F.Béguin,Electro-chemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte, Electrochimica Acta86(2012)282.[22]L.N.Ping,J.M.Z,Electrochemical Performance of Lithium Ion CapacitorsUsing Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode,Acta Physico-Chimica Sinica28(2012)1733.[23]J.Shim,K.A.Striebel,The dependence of natural graphite anode per-formance on electrode density,Journal of Power Sources130(2004) 247.[24]P.Arora,M.Doyle,R.E.White,Mathematical modeling of the lithiumdeposition overcharge reaction in lithium-ion batteries using carbon-based negative electrode,Journal of the Electrochemical Society146(1999) 3543.[25]W.Lu,C.M.López,N.Liu,J.T.Vaughey,A.Jansen,D.W.Dees,Overcharge effect onmorphology and structure of carbon electrode for lithium-ion batteries,Journal of the Electrochemical Society159(2012)A566.。
钛镀二氧化铅阳极二氧化铅电极具有耐化学腐蚀性强、氧超电位高、在水溶液里电解时氧化能力强、可通过电流密度大,适合在各种析氧体系条件下的使用。
目前已广泛应用于电镀、湿法冶金、废水处理、阴极防腐等领域。
二氧化铅电极作为贱金属阳极使它较传统的贵金属电极(如MMO电极、钛镀铂电极等)具有特别突出的价格优势。
优越性能1. 析氧电位高、氧化能力强2.能在高电流密度下使用,电流效率高,使用寿命长3. 耐腐蚀性好:在强酸H2S04或HN03中有较高的稳定性4. 钛基二氧化铅电极较传统的石墨电极更容易机械加工、强度更高,耐腐蚀性更强;寿命长、能耗低,不像石墨电极在使用过程中会膨胀脱落,不存在阴极沉积金属产物中碳含量升高的风险。
5.与传统的铅阳极相比,钛基二氧化铅电极的优势在于:(1)强度更大,重量更轻:使用过程中不易变形,可维持相对固定的极间距,降低槽压节省电能,同时电极工作更加稳定避免了频繁维护对客户造成的经济损失,降低工人劳动强度(2)耐腐蚀性强、寿命长,使用过程中二氧化铅溶解速度低,对阴极产品的污染小。
(3)二氧化铅电极同铅阳极腐蚀机理不同。
铅阳极在硫酸体系中使用时,表面生成一层氧化铅薄膜,可减缓阳极的腐蚀。
但是生成的这层膜层比较松散,尤其在含有少量氯离子的电解液中使用,膜层更容易被击穿、冲刷脱落;深层裸漏出来的铅表面继续氧化生成氧化膜,再被击穿,如此循环,加速阳极的腐蚀。
而二氧化铅电极在工作时始终是氧化铅涂层发生电化学腐蚀,故能保持较低的阳极腐蚀速率,因此阳极寿命相对较长。
6.相较传统的MMO电极、钛镀铂电极,性能接近、价格更便宜,初期投入少,维护方便。
应用领域1.湿法冶金行业中存在氯酸盐体系电解、硫酸盐体系电解、氯酸盐硫酸盐混合体系电解等几种作业环境。
二氧化铅电极适用于:(1)在硫酸体系中,电解制备镍、钴、铜、锌、锰、锡等多种有色金属。
(2)在含少量氯离子的硫酸体系中,电解冶炼有色金属。
2.在铬酸等强酸性溶液中镀铬,镀硬铬,钢铁工业中制造无锡薄钢板用。
名称:铅;Lead元素符号pb,原子序数82,原子量207.2,外围电子排布6s26p2,位于第六周期ⅣA族,原子半径146皮米,Pb4+半径84皮米,第一电离能718.96kJ/mol,电负性1.8,主要氧化数+2、+4。
银灰色有光泽的重金属,在空气中易氧化而失去光泽,变灰暗,质柔软,延性弱,展性强。
密度11.34g/cm3,熔点327.5℃,沸点1740℃。
有较强的抗放射性穿透的性能。
有毒。
在常温下在空气中,铅表面易生成一层氧化铅或碱式碳酸铅,使铅失去光泽且防止进一步氧化。
不溶于水。
易和卤素、硫化合,生成PbCl4、PbI2、PbS等。
熔融的铅跟空气反应生成一氧化铅,将铅在纯氧中加热可得二氧化铅。
与盐酸反应放出氢气并生成微溶性的PbCl2,覆盖在铅表面,使反应中止。
与热浓盐酸反应生成HPbCl3和H2。
与稀硫酸反应放出氢并生成难溶的PbSO4覆盖层,使反应中止。
但易溶于热的浓硫酸生成Pb(HSO4)2并放出SO2。
跟稀硝酸或浓硝酸反应都可生成硝酸铅pb(NO3)2。
在有氧存在的条件下可溶于醋酸等有机酸,生成可溶性的铅盐。
跟强碱溶液缓慢的反应放出氢气生成亚铅酸盐,如:Pb+2NaOH=Na2PbO3+H2↑在有氧气条件下跟水反应生成难溶的Pb(OH)2。
铅早在公元前三千年左右就被人类发现并应用。
在地壳中质量百分比为0.0016%。
主要存在于方铅矿(PbS),白铅矿(PbCO3)中。
用作电缆,蓄电池、铸字合金、巴氏合金、金属结构的阴极保护层、防X射线等辐射的材料。
用焦炭还原氧化铅制得。
名称:一氧化铅;氧化铅;黄铅丹;密陀僧;Lead monoxidePbO 分子量223.19性状浅黄色或土黄色四角或斜方晶系结品体,或者无定形粉末。
四角晶系结晶体密度9.53g/cm3,斜方晶系结晶体密度3.0g/cm3,无定形粉末密度9.2~9.5g/cm3。
熔点888℃。
沸点1470℃。
不溶于水和乙醇,溶于硝酸、醋酸或温热的碱液。
双氧水到羟基自由基的标准电位双氧水(H2O2)是一种浓度较高的强氧化剂。
在适当的条件下,双氧水分解产生羟基自由基(•OH),这是一种高度活跃的自由基。
羟基自由基的生成与双氧水的标准电位密切相关。
标准电位是指在标准温度、压力和1M溶液浓度下,氧化还原反应的电极电势。
以二氧化铅电极(PbO2)作为参比电极,羟基自由基的生成反应可以表示为:H2O2 + e- → •OH + •OH E° = 2.24 V其中,E°表示标准电位。
该反应是一个单电子转移的反应,电极电势为2.24 V,属于一种高电位的氧化还原反应。
在实际应用中,羟基自由基是一种十分活跃的化学物质,可以进行多种反应,具有强烈的氧化能力和自由基捕捉能力。
其标准电位较高,说明了其容易发生还原反应。
此外,羟基自由基的生成需要一定的能量输入,因此需要通过某种外界条件(比如光照、催化剂等)来促进双氧水的分解。
羟基自由基的活性使其在许多化学反应和生物体内具有重要的作用。
例如,羟基自由基可以与有机物发生反应,对化学污染物进行降解,因此在环境修复领域具有广泛的应用前景。
羟基自由基还可以与生物分子(如蛋白质、核酸、脂质)发生反应,对细胞进行氧化应激和损伤,因此在生物学和医学研究中也具有重要的意义。
除了羟基自由基的生成反应,双氧水还可以参与其他化学反应。
例如,双氧水可以与过氧化钠反应生成氧气和氢氧化钠:2 NaO2 + 2 H2O2 → O2 + 2 NaOH + 2 H2O这是一种消除过氧化物的方法,常用于处理含有过氧化物的废水或废气。
综上所述,双氧水到羟基自由基的标准电位是2.24 V。
羟基自由基是一种非常活跃的自由基,具有强烈的氧化和自由基捕捉能力,并在化学和生物体系中发挥着重要的作用。
了解双氧水和羟基自由基的电位关系有助于我们理解其反应机理和应用领域,并为设计和优化相关的化学和生物反应提供参考依据。
一种以修饰tio2纳米管阵列为中间层的钛基二氧化铅阳极及其制备方法与应用嘿,朋友们!今天咱来聊聊一种超厉害的东西,那就是以修饰 tio2纳米管阵列为中间层的钛基二氧化铅阳极!这可不是一般的玩意儿哦。
你想想看,二氧化铅,那可是在好多领域都能大显身手的呀!而现在呢,有了这么个特别的修饰,就像是给它穿上了一件超级厉害的铠甲。
就好比一个武林高手,本来就很厉害,现在又有了一把绝世神兵,那岂不是如虎添翼嘛!那这个神奇的阳极是怎么制备出来的呢?这可得好好说道说道。
就像是做菜一样,得有各种材料和步骤。
先得准备好那些关键的玩意儿,然后一步一步精心操作。
这可不是随随便便就能搞定的事儿,得有专业的技术和耐心。
制备的时候,那真的是要特别细心,就跟绣花似的,一点儿差错都不能有。
每一个环节都得拿捏得死死的,不然可就前功尽弃啦!这就好像搭积木,一块没放好,整个就可能垮掉。
那这个厉害的阳极都有啥用呢?哎呀呀,那用处可多了去了!在好多工业领域都能看到它的身影呢。
它就像是一个默默无闻的英雄,在背后为各种重要的过程贡献着自己的力量。
比如说在一些化工生产中,它能发挥出巨大的作用,让反应进行得更高效、更顺利。
这就好比是给生产过程加了一把劲,让一切都变得更加顺畅。
而且哦,随着科技的不断进步,对这种阳极的研究和应用也会越来越深入。
说不定以后还会有更多让人惊叹的发现和应用呢!咱再回过头来看看这个以修饰 tio2 纳米管阵列为中间层的钛基二氧化铅阳极,它真的是凝聚了科研人员的智慧和努力啊。
从最初的构思到一步步的实验,再到最后的成功应用,这中间得经历多少艰辛和努力呀!所以说啊,科技的力量真的是无穷的。
这种创新的成果让我们的生活变得更加美好,更加丰富多彩。
咱可不能小瞧了这些科研成果,它们可都是人类智慧的结晶呢!总之,这个以修饰 tio2 纳米管阵列为中间层的钛基二氧化铅阳极真的是太牛了!它的制备方法和应用都值得我们深入去了解和探索。
相信在未来,它还会给我们带来更多的惊喜和奇迹!让我们一起期待吧!。
二氧化铅电极的改性随着工业和科学技术的不断发展,传统的阳极材料越来越表现出其局限性。
例如,铂金费用太高;石墨在氯碱工业和析氧体系中的耐蚀性不理想,强度较小:铅合金阳极有耐腐蚀性能差,电催化性能低,电力消耗大等缺点。
从节能、降耗、无污染等对于所谓“绿色材料”的要求出发,人们希望寻找到长寿命、电化学催化性能高、无二次污染的新型阳极。
在析氧环境下,人们研制开发了二氧化铅电极,PbO2:是缺氧含过量铅的非化学计量化合物,有多种晶型,用阳极电沉积法镀制的β -PbO2:具有抗氧化、耐腐蚀 ( 在强酸 H2S04或 HN03中有较高的稳定性 ) 、氧超电位高、导电性良好、结合力强、在水溶液里电解时氧化能力强、可通过大电流等特点,很具发展前景。
目前已广泛应用于电镀、冶炼、废水处理、阴极防腐等领域,是许多其它电极材料 ( 如 DSA,铅、钛镀铂 ) 所无法取代的。
二氧化铅电极具有电阻率低、化学性质稳定、耐蚀性好、导电性好、可通过大电流等特性,广泛应用于各类有机物、无机物的电解制备及污水处理和高纯水制备工艺过程中,应用领域十分广泛。
Pb02具有导电性能优越、充放电可逆性好以及价格低廉等优点,广泛用作铅酸电池正极,目前铅酸蓄电池正极活性物质二氧化铅的利用率还不高,一般不超过50%,大电流放电时则更低。
所以,提高正极活性物质二氧化铅利用率对于提高电池比能量具有实际意义。
十九世纪,就已经有人把二氧化铅作为阳极材料来研究,但直到发现了二氧化铅能方便地在硝酸铅溶液里通过阳极电沉积而制得后才得以被运用, 1934 年,Pb02电极曾作为铂电极的代用电极在过氯酸盐生产中使用过,当时二氧化铅的制造方法是,将内径 25cm,长度 120cm 的铁筒内侧作为阳极,电镀液为 230g/L20硝酸铅溶液,阳极电流密度7A/dm,80 C,电沉积2 天.得厚度1cm的二氧化铅。
二氧化铅从铁基体剥离后,经机械加工成宽 5cm,长 35cm,厚 1cm的长方形。
二氧化铅电极的改性随着工业和科学技术的不断发展,传统的阳极材料越来越表现出其局限性。
例如,铂金费用太高;石墨在氯碱工业和析氧体系中的耐蚀性不理想,强度较小:铅合金阳极有耐腐蚀性能差,电催化性能低,电力消耗大等缺点。
从节能、降耗、无污染等对于所谓“绿色材料”的要求出发,人们希望寻找到长寿命、电化学催化性能高、无二次污染的新型阳极。
在析氧环境下,人们研制开发了二氧化铅电极,PbO2:是缺氧含过量铅的非化学计量化合物,有多种晶型,用阳极电沉积法镀制的β-PbO2:具有抗氧化、耐腐蚀(在强酸H2S04或HN03中有较高的稳定性)、氧超电位高、导电性良好、结合力强、在水溶液里电解时氧化能力强、可通过大电流等特点,很具发展前景。
目前已广泛应用于电镀、冶炼、废水处理、阴极防腐等领域,是许多其它电极材料(如DSA,铅、钛镀铂)所无法取代的。
二氧化铅电极具有电阻率低、化学性质稳定、耐蚀性好、导电性好、可通过大电流等特性,广泛应用于各类有机物、无机物的电解制备及污水处理和高纯水制备工艺过程中,应用领域十分广泛。
Pb02具有导电性能优越、充放电可逆性好以及价格低廉等优点,广泛用作铅酸电池正极,目前铅酸蓄电池正极活性物质二氧化铅的利用率还不高,一般不超过50%,大电流放电时则更低。
所以,提高正极活性物质二氧化铅利用率对于提高电池比能量具有实际意义。
十九世纪,就已经有人把二氧化铅作为阳极材料来研究,但直到发现了二氧化铅能方便地在硝酸铅溶液里通过阳极电沉积而制得后才得以被运用,1934年,Pb02电极曾作为铂电极的代用电极在过氯酸盐生产中使用过,当时二氧化铅的制造方法是,将内径25cm,长度120cm的铁筒内侧作为阳极,电镀液为230g/L 硝酸铅溶液,阳极电流密度7A/dm2,800C,电沉积2天.得厚度1cm的二氧化铅。
二氧化铅从铁基体剥离后,经机械加工成宽5cm,长35cm,厚1cm的长方形。
将5—10块二氧化铅板状电极连结起来用在过氯酸盐生产中。
这种无基体的二氧化铅板状电极存在许多问题,虽然坚硬致密,但电积畸变大,具有陶瓷制品特有的脆性,容易损坏:并且机械加工困难,成品率低,成本较高。
于是把β-Pb02电镀到某些材料上制成带有基体的二氧化铅电极便应运而生,能作为二氧化铅电极基体的材料可以是不导电的塑料,陶瓷等;也可以是导电的石墨,金属等。
由于金属有其他材料不可比拟的机械性能使得它在二氧化铅电极基体的选择上最引人注目,但不是所有金属都适宜作为二氧化铅电极基体的,能做为二氧化铅电极基体的必须是具有单向载流性质的阀形金属,如Ti、Ta、Nb、Zr等。
在上述金属中,Ta的耐腐蚀性最佳、电阻率低,从性能上看是用作基体的最佳材料。
然而,由于Ta与氧具有高的亲合能,在阳极的制各中,工艺要求复杂(一般需在缺氧的环境中),而且Ta金属价格昂贵,因此,在实际生产中并不常用。
而Ti价格便宜,密度小,强度大,热膨胀率与二氧化铅的热膨胀率接近,因此一般选择Ti作为二氧化铅电极的基体。
钛基一般采用网状结构,这是因为Ti 网坚韧,与电沉积层结合牢固,以Ti网为基体的二氧化铅电极可以降低电解液流动阻力,提高电流效率,尤其在高电流密度下可以有效防止电极过热,能在100mA/dm2下使用,并且其质量仅为旧式电极的1/10左右。
Ti基二氧化铅电极有化学镀,热分解(涂层热解法)和电沉积三种制各方法。
相比之下,通过电沉积的方法制得的电极性能比较好,中子散射和x射线衍射(XRD)研究显示,电化学方式制各的Pb02电极由于比用化学方法得到的Pb02具有更加均衡的质子分布结构(意味着更好的导电性),因此目前Pb02电极的制备一般采用电化学方法直接在基体或中间层上电沉积得到。
早期只是将Ti板预处理后,直接在Ti板上沉积一层β-Pb02。
这种电极的基体与活性层之间接触电阻较大,并且电极在使用过程中,由于在基体与界面之间形成的TiO2高电阻层,导致阳极电位升高,镀层脱落,很快失去使用价值。
为了保证基体和表面镀层之间良好的结合性能进而保证电极有好的导电性和耐蚀性,学者们开发了新型二氧化铅电极,与旧式二氧化铅电极相比,新型二氧化铅电极主要在基体和β-Pb02镀层之间复合了防钝化的底层,有些还在底层上增设了中间层,新型二氧化铅电极由钛基体、底层、中间层以及表面层组成。
这种结构的二氧化铅电极具有如下优点:(1)能在高电流密度下使用;(2)电流效率高;(3)具有良好的耐腐蚀性和寿命。
基体PbO2电极的基体分为非导体基(陶瓷、塑料等)和导体基(Ti、Pt、Fe、Al、Ta、不锈钢、石墨和玻璃碳等)。
本实验室制备了一种新型的陶瓷基体PbO2电极,效果良好,不存在基体钝化问题。
然而陶瓷本身机械强度低,易破碎,只能制成圆棒状,而不能制成板(片)状,这给大规模生产的电解槽设计带来不便,且高温烧制陶瓷不易,生产周期长,成品率低,致使其成本较高。
因此,人们又考虑采用机械性能良好,化学性能稳定,表面可镀以及质轻、成本低的塑料为基体。
由于非导体基导电性不好,先要用化学镀的方法镀制一层导电基后再电镀,这样就使得工艺相对复杂,并且塑料基PbO2的耐腐蚀性较差,限制了其广泛应用。
目前对于钛金属基体的研究较多。
与其他基体材料相比,钛具有耐腐蚀、重量轻和强度大,涂敷活性层后导电性好,相对比较便宜等特点,可作为许多电催化活性材料的良好载体。
而且钛与PbO2的热膨胀率接近,有利于解决由温度变化引起的电沉积层脱落问题。
然而,钛基PbO2电极由于镀层不可避免有一些晶界缝隙,电解时产生的活性氧会透过镀层的晶界缝隙氧化基体,形成导电性极差的TiO2,恶化电极性能。
底层目前被用来作为底层的材料主要有:铂族金属及其氧化物,银及铅银合金,锡锑氧化物,钛钽复合氧化物底层等,它们的性质如下:(1)铂族金属及其氧化物:该底层有良好的导电性,可大大改善镀层与基体的结合性能,但是,这种底层具有催化活性,如果电解质侵入二氧化铅镀层的针孔时,由于在底层表面处发生电解作用,底层成为释出气体的阳极,而引起二氧化铅镀层的破坏。
(2)银及铅银合金:采用基体上镀银的方法可以提高电极导电性.但是银的价格较贵,用铅银合金代替银镀层,既保持了导电性好的优点,又提高了电极的耐蚀性,同时降低了电极的成本。
资料表明11%的银铅合金较为合适。
(3)锡锑氧化物:通过热分解的方法制得的锡锑氧化物层均匀致密。
有了这种底层后,电解液难以渗透到钛表面,氧原子或02-。
离子向钛基体的扩散也受到了阻挡,从而避免了Ti02的生成。
另外,Ti02是宽禁带N型半导体,掺入Sb后,由于5价的Sb原子取代了Sn02晶格中4价的Sn原子后多余的一个电子进入导带,使导带电子浓度大大增加,但Sb过多时会增加sn02晶格的混乱程度,使sn02的电导下降,因此Sb含量的多少关系着这种底层性能的优劣。
这种底层还有一个作用是可以降低镀层内应力。
(4)钛钽复合氧化物底层:该底层具有导电性、耐蚀性好、电化学活性小的特征。
电解过程中即使露出底层,不会发生电解反应,因此不存在由此引起镀层剥落的问题。
除了Ti基体表面形成的高阻层是造成二氧化铅电极寿命较短的一个因素外,β-Pb02内部存在的电积畸变也是造成电极寿命较短和镀层容易剥离的一个主要原因,由于α-Pb02的氧-氧原子间距离处于钛基氧化产物Ti02和β-Pb02之间。
因此有学者提出,用它作中间层可以增强二氧化铅镀层和电极基体结合的牢固度、缓和电积畸变的产生,还可以使β-PbO2分布均匀。
中间层为了克服长时间电解生产过程中Ti基体的钝化,增强PbO2镀层与基体的结合力,防止镀层脱落,提高PbO2电极的工作稳定性和使用寿命,以及提电极的导电性,往往在镀层与基体之间添加中间层。
采用基体上涂铂、钯、钌等贵金属及其氧化物的方法,可以提高电极的导电性,增加镀层与基体的结合力,但是价格昂贵,不适合工业应用。
钽复合氧化物镀层导电性、腐蚀性好,电化学活性小的特征。
这种电极材料在电解过程中即使暴露,也只会钝化,不会发生电解反应,因此不存在由此引起镀层剥落的问题。
锡锑氧化物涂层由于SnO2属于金红石型晶系,而且晶格尺寸和单元晶胞体积界于TiO2和PbO2之间,以它作中间层可缓和TiO2和PbO2之间的晶格不匹配因素,降低了电极内应力;同时由于它们晶格尺寸相近,容易生成固溶体,涂层比较致密,在相界面上可阻止纯TiO2的析出,有效阻止钛基体的钝化;掺杂Sb后涂层导电性显著提高。
因此,以锡锑氧化物涂层为中间层目前备受人们的关注。
PbO2表面活性层PbO2表面活性层一般通过电沉积法制备。
它有α、β2种晶型,β-PbO2耐腐蚀性和导电性较好,通常用作电极的表面活性层。
但α-PbO2结合力较强,且它的O—O原子间距介于“底层”与β-PbO2之间,能起一个缓冲融合的作用,减小电沉积畸变,增加表面与底层的亲和力。
所以可在电镀过程中,先在强碱性条件下沉积的α型PbO2,后在酸性条件下沉积β型PbO2,以提高电极的使用寿命。
许多研究表明,电沉积的条件(如电流密度、酸度、温度、电镀液的组分和浓度等)对PbO2电极的性能有一定影响。
此外,在镀制表面活性层β-PbO2时,掺入少量的某种添加剂,可以改善电极表面微观结构,减小镀层内应力,影响电极的催化活性。
如添加金属离子(如Bi3+,As3+,Fe3+)、非金属离子(如F-)、金属氧化物微粒及表面活性物质(如PTFE,SDS)。
掺杂主要从以下几方面来提高其性能:较高的析氧过电位和催化活性;较高的稳定性(使用寿命)和抗腐蚀性;较高的电导率,这些都是研究和改善二氧化铅电极性能的重点。
常见的掺杂方法有以下三种:(1)掺杂离子在电沉积二氧化铅过程中加入离子,得到的氧化物镀层是通过含Pb2+的溶液阳极氧化生成的纯PbO2以及掺杂外来元素的PbO2构成,其目的是改善镀层的性能,扩宽其应用领域。
Velichenko等用电沉积法制备钴掺杂PbO2电极,指出掺杂Co2+离子对二氧化铅电沉积过程影响不是很明显,但却显著增强电催化活性;Leonardo等用含有1mmol/L Fe3+和30mmol/L F-镀液中电沉积制得的二氧化铅电极用来对有机物电解,其OCC(Organic carbon content)减少95%,而纯β-PbO2和Nb/BDD电极分别减少84%和82%;但Fe3+和F-掺杂的PbO2的耐蚀性不及纯二氧化铅电极的耐蚀性;曹江林等研究了F-掺杂对PbO2二氧化铅电极稳定性及电催化性能的影响,指出F-掺杂不仅提高了PbO2稳定性,也提高了其对4-CP的去除效率,显示了良好的应用前景。
(2)掺杂金属氧化物颗粒Bertoncello等进一步以Ti作基体,在不同的镀液研究其析氧活性,并与PbO2+RuOx作对比,然后通过在不同的镀液制备PbO2+RuO2复合镀层,比较其使用寿命,结果表明:在醋酸+硝酸的镀液体系中获得活性最好的复合镀层。