《电路--第六章》邱关源版
- 格式:ppt
- 大小:3.22 MB
- 文档页数:64
第6章 角度调制与解调电路6.1 已知调制信号38cos(2π10)V u t Ω=⨯,载波输出电压6o ()5cos(2π10)V u t t =⨯,3f 2π10rad/s V k =⨯,试求调频信号的调频指数f m 、最大频偏m f ∆和有效频谱带宽BW ,写出调频信号表示式[解] 3m 3m 2π108810Hz 2π2πf k U f Ω⨯⨯∆===⨯3m 33632π1088rad2π102(1)2(81)1018kHz()5cos(2π108sin 2π10)(V)f f o k U m BW m F u t t t Ω⨯⨯===Ω⨯=+=+⨯==⨯+⨯6.2 已知调频信号72()3cos[2π105sin(2π10)]V o u t t t =⨯+⨯,3f 10πrad/s V k =,试:(1) 求该调频信号的最大相位偏移f m 、最大频偏m f ∆和有效频谱带宽BW ;(2) 写出调制信号和载波输出电压表示式。
[解] (1) 5f m =5100500Hz=2(+1)2(51)1001200Hzm f f m F BW m F ∆==⨯==+⨯=(2) 因为mf f k U m Ω=Ω,所以352π1001V π10f m fm U k ΩΩ⨯⨯===⨯,故27()cos 2π10(V)()3cos 2π10(V)O u t t u t t Ω=⨯=⨯6.3 已知载波信号m c ()cos()o u t U t ω=,调制信号()u t Ω为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移()t ω∆和瞬时相位偏移()t ϕ∆的波形。
[解] FM ()u t 、()t ω∆和()t ϕ∆波形如图P6.3(s)所示。
6.4 调频信号的最大频偏为75 kHz ,当调制信号频率分别为100 Hz 和15 kHz 时,求调频信号的f m 和BW 。
[解] 当100Hz F =时,37510750100m f f m F ∆⨯===2(1)2(7501)100Hz 150kHz f BW m F =+=+⨯= 当15kHz F =时,33751051510m f f m F ∆⨯===⨯ 32(51)1510Hz 180kHz BW =+⨯⨯=6.5 已知调制信号3()6cos(4π10)V u t t Ω=⨯、载波输出电压8()2cos(2π10)V o u t t =⨯,p 2rad /V k =。
电路答案——本资料由张纪光编辑整理(C2-241内部专用)第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。
【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。
⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。
第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。
第六章 储能元件§6-1 §6-2 §6-3电容元件 电感元件 电容、电感元件的串联和并联z 重点: 重点: z1. 电容元件的特性; 2. 电感元件的特性; 3. 电容、电感元件在串并联时的 等效参数。
§6-1电容器电容元件在外电源作用下,两极板上分 别带上等量异号电荷,并在介质中 建立电场而具有电场能。
撤去电 源,板上电荷仍可长久地集聚下 去,电场继续存在。
q +εq -电容器是一种能存储电荷或存储电场能量的部件。
电容元件就是反映这种物理现象的电路模型。
1. 线性电容元件(1) 电路符号 (2) 库伏特性C q + i + u -q -任何时刻,极板上的电荷q与电压u成正比。
q = CuC称为电容器的电容,是一个正实常数。
单位:F(法),常用µF,pF等表示。
q = Cu线性电容元件的库伏特性( q~u )是过原点的直线。
库伏特性qαOu(3) 线性电容元件的电压、电流关系 电流和电压取关联参考方向C q + i + u -q -dq d (Cu ) du i= = =C dt dt dtCdu 由式 i = C 可知 dtq + i + u-q -(1) 电流与电压的大小无关,而与电压的变化率成正 比。
即电压与电流具有动态关系,电容是动态元件; (2) 当电压不随时间变化,即u为常数(直流)时,电流 为零。
电容相当于开路,电容有隔断直流作用; (3) 实际电路中通过电容的电流i为有限值,则电容 电压u必定是时间的连续函数。
Cdq 由式 i = C 得 dtt t0q + i +t t0-q u tq(t ) = ∫ idξ = ∫ idξ + ∫ idξ = q(t 0) + ∫ idξ−∞ −∞ t0上式的物理意义是:t时刻具有的电荷量等于t0时 的电荷量加以t0到t时间间隔内增加的电荷量。
指定t0为时间起点并设为零( t0=0 ),上式写为q(t ) = q(0) + ∫ idξ0tC因 u = q /C 由i +q + u或t-q t 0q(t) = q(t 0) + ∫ idξt0q(t ) = q(0) + ∫ idξ1 t u(t ) = u(0) + ∫ idξ C 0得1 t u(t) = u(t 0) + ∫ idξ C t0或可见,电容电压除与0到t的电流值有关外,还与 u(0)值有关,因此,电容是一种有“记忆”的元件。
第6章 角度调制与解调电路调制信号38cos(2π10)V u t Ω=⨯,载波输出电压6o ()5cos(2π10)V u t t =⨯,3f 2π10rad/s V k =⨯,试求调频信号的调频指数f m 、最大频偏m f ∆和有效频谱带宽BW ,写出调频信号表示式[解] 3m 3m 2π108810Hz 2π2πf k U f Ω⨯⨯∆===⨯ 3m 33632π1088rad2π102(1)2(81)1018kHz ()5cos(2π108sin 2π10)(V)f f o k U m BW m F u t t t Ω⨯⨯===Ω⨯=+=+⨯==⨯+⨯调频信号72()3cos[2π105sin(2π10)]V o u t t t =⨯+⨯,3f 10πrad/s V k =,试:(1) 求该调频信号的最大相位偏移f m 、最大频偏m f ∆和有效频谱带宽BW ;(2) 写出调制信号和载波输出电压表示式。
[解] (1) 5f m =5100500Hz=2(+1)2(51)1001200Hzm f f m F BW m F ∆==⨯==+⨯=(2) 因为mf f k U m Ω=Ω,所以352π1001V π10f m fm U k ΩΩ⨯⨯===⨯,故27()cos 2π10(V)()3cos 2π10(V)O u t t u t t Ω=⨯=⨯载波信号m c ()cos()o u t U t ω=,调制信号()u t Ω为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移()t ω∆和瞬时相位偏移()t ϕ∆的波形。
[解] FM ()u t 、()t ω∆和()t ϕ∆波形如图P6.3(s)所示。
调频信号的最大频偏为75 kHz ,当调制信号频率分别为100 Hz 和15 kHz 时,求调频信号的f m 和BW 。
[解] 当100Hz F =时,37510750100m f f m F ∆⨯===2(1)2(7501)100Hz 150kHz f BW m F =+=+⨯= 当15kHz F =时,33751051510m f f m F ∆⨯===⨯ 32(51)1510Hz 180kHz BW =+⨯⨯=调制信号3()6cos(4π10)V u t t Ω=⨯、载波输出电压8()2cos(2π10)V o u t t =⨯,p 2rad /V k =。
第6章一阶电路●本章重点1、暂态及其存在原因的理解;2、初值求解;3、利用经典法求解暂态过程的响应;4、利用三要素法求响应;5、理解阶跃响应、冲激响应。
●本章难点1、存在两个以上动态元件时,初值的求解;2、三种响应过程的理解;3、含有受控源电路的暂态过程求解;4、冲激响应求解。
●教学方法本章主要是RC电路和RL电路的分析,本章采用讲授为主,自学为辅的教学方法,共用6课时。
课堂上要讲解清楚零输入响应、零状态响应、全响应、稳态分量、暂态分量、阶跃响应、冲激响应等重要概念,还列举大量例题加以分析和求解。
使学生理解动态电路响应的物理意义并牢固掌握响应的求解方法。
●授课内容6.1 动态电路的方程及其初始条件一、暂态及其存在原因暂态:从一种稳态到达另一种稳态的中间过程(动态过程、过渡过程)。
存在原因:1)含有动态元件⎪⎪⎩⎪⎪⎨⎧==dt di C u C dtdi L u L ::2)存在换路:电路结构或参数发生变化描述方程:微分方程一阶电路:能够用一阶微分方程描述电路; 二阶电路:能够用二阶微分方程描述电路; n 阶电路:能够用n 阶微分方程描述电路。
解决方法:经典法、三要素法。
二、换路:电路中开关的突然接通或断开,元件参数的变化,激励形式的改变等。
换路时刻0t (通常取0t =0),换路前一瞬间:0_t ,换路后一瞬间:0t +。
换路定则 c 0c 0()()u t u t +-= L 0L 0()()i t i t +-= C 0C 0()()i t i t +-≠, L 0L 0()()u t u t +-≠, R 0R 0()()i t i t +-≠, R 0R 0()()u t u t +-≠ 三、初始值的计算: 1. 求C 0L 0(),()u t i t --: ①给定C 0L 0(),()u t i t --;②0t t <时,原电路为直流稳态 : C —断路 L —短路③0t t -=时,电路未进入稳态 : 0C 0C ()()|t t u t u t --==, 0L 0L ()()|t t i t i t --== 2. 画0t +时的等效电路: C 00()()u t u t +-=,L 0L 0()()i t i t +-= C —电压源 L —电流源 3. 利用直流电阻电路的计算方法求初始值。
电路第六版邱关源试读《电路第六版邱关源试读》是一本关于电路学科的教材试读版本。
本书由邱关源编写,旨在帮助读者全面理解电路学科的基本原理和应用技巧。
本文将对这本试读版本进行详细的分析和评论。
首先,本试读版本的内容涵盖了电路学科的许多重要主题。
从基本电路理论到复杂的电子设备设计,本书几乎包含了电路学科的所有方面。
这对于那些有兴趣学习电路并且想要深入了解的读者来说是非常有吸引力的。
无论是初学者还是有一定电路基础的读者,都可以从本书中找到合适的内容。
其次,本书的文字简练明了,逻辑性强。
邱关源在编写本书时,注重用通俗易懂的语言表达深奥的概念和原理。
他采用了一种系统化的方式来组织内容,将相关的主题归类到不同的章节中。
这种逻辑性的安排使读者能够更好地理解和记忆所学的知识。
此外,在本试读版本中,邱关源还提供了大量的例题和习题。
通过这些题目,读者可以更好地巩固所学的知识,并将其应用到实际问题中。
这对于提高学习效果和掌握电路学科至关重要。
此外,书中的答案和解析也非常详细,有助于读者自检和巩固知识。
然而,与以上优点相比,这本试读版本也存在一些不足之处。
首先,本书的篇幅相对较短,无法对某些复杂主题进行深入讲解。
对于一些有经验的读者来说,这可能会让他们感到不够满足。
其次,本书中的图表和图示相对较少,这可能会影响读者对特定概念和原理的理解。
增加更多的图表和图示将有助于读者更好地理解所学的知识。
总的来说,《电路第六版邱关源试读》是一本对电路学科有兴趣的读者非常有价值的学习资料。
它的内容丰富全面,文字简明易懂,适合各个层次的读者使用。
通过学习这本试读版本,读者可以打下坚实的电路理论基础,并学会将其应用到实际问题中。
建议邱关源在后续版本中增加更多的详细例题和图示,以进一步提高读者的学习效果。
《电路》邱关源第五版课后习题答案答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得UAC=-7V。
【题18】:PPII12122222==;故I I1222=;I I12=;⑴ KCL:43211-=I I;I185=A;U I IS=-⨯=218511V或16.V;或I I12=-。
⑵ KCL:43211-=-I I;I18=-A;US=-24V。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。
第六章 一阶电路第一节 动态电路的方程及其初始条件一、动态电路:含有动态元件电容和电感的电路。
1、特点:当动态电路状态发生改变时(换路),需要经历一个变化过程才能达到新的稳定状态,这个变化过程称为电路的过渡过程。
换路:由开关动作引起电路结构或参数的改变。
电容电路:CutS 闭合前,电路处于稳定状态,0C u=S 闭合后很长时间,电容充电完毕,电路达到新的稳定状态,C S u U = 电感电路:tLiS 闭合前,电路处于稳定状态,0L i =S 闭合后很长时间,电路达到新的稳定状态,SL U i R= 2、动态电路的方程CuLi一阶RC 电路(含有电阻和一个电容)一阶电路一阶RL 电路(含有电阻和一个电感) c S Ri u U += c du i Cdt = L L S Ri u U += L L diu L dt= c c S du RCu U dt +=—一阶线性微分方程 L L S diRi L U dt+=二、电路的初始条件及换路定则1、电路的初始条件(初始值):变量(电压或电流)及其(1)n -阶导数在0t +=时的值。
0t -=换路前一瞬间 认为换路在 t =0时刻进行0t +=换路后一瞬间(0)f +)-2、换路定则当电容电流和电感电压为有限值时,则有:(1)(0)(0)C C u u +-=,(0)(0)C C q q +-=;换路前后瞬间电容电压(电荷)保持不变。
(2)(0)(0)L L i i +-=,(0)(0)L L +-ψ=ψ;换路前后瞬间电感电流(磁链)保持不变。
证明:0001111()()d ()d ()d (0)()d t t t C C u t i i i u i C C C C ξξξξξξξξ-----∞-∞==+=+⎰⎰⎰⎰0t +=时刻 001(0)(0)()d C C u u i C ξξ+-+-=+⎰(0)(0)C C u u +-=得证0001111()()d ()d ())d (0)()t t t L L i t u u u i u d L L L L ξξξξξξξξ-----∞-∞==+=+⎰⎰⎰⎰0t +=时刻 001(0)(0)()L L i i u d L ξξ+-+-=+⎰(0)(0)L L i i +-=得证三、初始值的确定(求(0)f +)求初始值的步骤:1由换路前电路求(0)C u -和(0)L i -(换路前电路一般为稳定状态,则C 为开路,L 为短路); 2由换路定则得(0)C u + 和(0)L i +。
第6章 角度调制与解调电路6.1 已知调制信号38cos(2π10)V u t Ω=⨯,载波输出电压6o ()5cos(2π10)V u t t =⨯,3f 2π10rad/s V k =⨯g ,试求调频信号的调频指数f m 、最大频偏m f ∆和有效频谱带宽BW ,写出调频信号表示式[解] 3m 3m 2π108810Hz 2π2πf k U f Ω⨯⨯∆===⨯3m 33632π1088rad2π102(1)2(81)1018kHz ()5cos(2π108sin 2π10)(V)f f o k U m BW m F u t t t Ω⨯⨯===Ω⨯=+=+⨯==⨯+⨯6.2 已知调频信号72()3cos[2π105sin(2π10)]V o u t t t =⨯+⨯,3f 10πrad/s V k =g ,试:(1) 求该调频信号的最大相位偏移f m 、最大频偏m f ∆和有效频谱带宽BW ;(2) 写出调制信号和载波输出电压表示式。
[解] (1) 5f m =5100500Hz=2(+1)2(51)1001200Hzm f f m F BW m F ∆==⨯==+⨯=(2) 因为mf f k U m Ω=Ω,所以352π1001V π10f m fm U k ΩΩ⨯⨯===⨯,故27()cos 2π10(V)()3cos 2π10(V)O u t t u t t Ω=⨯=⨯6.3 已知载波信号m c ()cos()o u t U t ω=,调制信号()u t Ω为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移()t ω∆和瞬时相位偏移()t ϕ∆的波形。
[解] FM ()u t 、()t ω∆和()t ϕ∆波形如图P6.3(s)所示。
6.4 调频信号的最大频偏为75 kHz ,当调制信号频率分别为100 Hz 和15 kHz 时,求调频信号的f m 和BW 。
[解] 当100Hz F =时,37510750100m f f m F ∆⨯===2(1)2(7501)100Hz 150kHz f BW m F =+=+⨯= 当15kHz F =时,33751051510m f f m F ∆⨯===⨯32(51)1510Hz 180kHz BW =+⨯⨯=6.5 已知调制信号3()6cos(4π10)V u t t Ω=⨯、载波输出电压8()2cos(2π10)V o u t t =⨯,p 2rad /V k =。