运筹学 第六章 整数规划 第一讲 整数规划数学模型与纯整数规划的求解
- 格式:ppt
- 大小:1016.00 KB
- 文档页数:48
数学建模作为一种解决实际问题的方法,旨在从实际问题中抽象出数学模型,并运用数学方法来对模型进行分析和求解。
在数学建模过程中,整数规划与混合整数规划是两种常用的数学工具,适用于解决许多实际问题。
整数规划是指在约束条件下,目标函数为整数变量的线性规划问题。
而混合整数规划是在整数规划的基础上,允许部分变量为实数,部分变量为整数。
这两种规划方法可以广泛应用于许多领域,如物流、生产规划、资源分配等。
整数规划的一个经典问题是背包问题。
假设有一个容量为C的背包,有n个物品,每个物品有自己的重量w和价值v。
目标是在不超过背包容量的情况下,选择装入背包的物品,使得背包中的物品总价值最大化。
这个问题可以用整数规划的方式进行建模和求解,将每个物品视为一个二进制变量,表示是否选择该物品,目标函数为物品价值的总和,约束条件为背包容量不能超过C。
通过对目标函数和约束条件的线性化处理,可以得到整数规划模型,并利用整数规划算法进行求解,得到最优解。
混合整数规划在实际问题中更为常见。
一个典型的实际问题是运输网络设计问题。
假设有一组供应地和一组需求地,需要建立供需之间的运输网络,以满足需求地对各种商品的需求,同时要考虑供给地的产能限制和运输成本。
这个问题可以用混合整数规划的方法进行建模和求解。
将供需地视为节点,建立连通性矩阵表示供需之间的运输路径,将路径的运输量作为决策变量,目标函数可以是运输成本的最小化,约束条件可以包括供给地产能限制和需求地需求量的满足。
通过对目标函数和约束条件的线性化处理,可以得到混合整数规划模型,并利用相应的求解算法进行求解,得到最优的运输网络设计方案。
整数规划与混合整数规划在数学建模中起着重要的作用。
它们既具备一般整数规划问题的优点,可以提高问题的精度和可行性,又具备一般线性规划问题的优点,可以通过线性规划算法来求解。
同时,整数规划与混合整数规划也存在一些挑战,如求解时间长、难以处理大规模问题等。
对于这些问题,研究者们一直在不断提出新的算法和优化方法,以提高整数规划与混合整数规划的求解效率。
运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。
1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。
3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。
运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。
它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。
本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。
一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。
它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。
线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。
线性规划的求解方法主要有两类:图形法和单纯形法。
图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。
而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。
二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。
整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。
运筹学习题答案第六章运筹学习题答案第六章第一节:线性规划线性规划是运筹学中的一种重要方法,它通过建立数学模型来解决实际问题。
在第六章中,我们学习了线性规划的基本概念和求解方法。
本节将针对第六章的习题提供详细的解答。
第1题:某公司生产两种产品,产品A和产品B。
每单位产品A的利润为5万元,每单位产品B的利润为4万元。
产品A每单位需要3个工时,产品B每单位需要2个工时。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设产品A的产量为x,产品B的产量为y。
根据题意可得以下线性规划模型:目标函数:Max Z = 5x + 4y约束条件:3x + 2y ≤ 8非负约束:x ≥ 0,y ≥ 0根据图形法,我们可以绘制出约束条件的图形,并找到最优解。
通过计算,我们得到最优解为x = 2,y = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。
第2题:某公司有两个生产车间,分别生产产品A和产品B。
车间1每天可生产产品A 4个单位或产品B 2个单位;车间2每天可生产产品A 3个单位或产品B 6个单位。
产品A的利润为3万元,产品B的利润为2万元。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设车间1生产的产品A的单位数为x1,车间2生产的产品A的单位数为x2。
设车间1生产的产品B的单位数为y1,车间2生产的产品B的单位数为y2。
根据题意可得以下线性规划模型:目标函数:Max Z = 3x1 + 2x2 + 2y1 + 3y2约束条件:4x1 + 3x2 ≤ 82x1 + 6x2 ≤ 8非负约束:x1 ≥ 0,x2 ≥ 0,y1 ≥ 0,y2 ≥ 0通过计算,我们得到最优解为x1 = 2,x2 = 0,y1 = 0,y2 = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。
实验六、用EXCEL 求解整数规划用单纯形法求解线性规划问题,最优解可能是整数,也可能不是整数,但在很多实际问题中,要求全部或部分变量的取值必须是整数,如所求的解是安排上班的人数,按某个方案裁剪钢材的根数,生产设备的台数等等。
对于整数解的线性规划问题,不是用四舍五入或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法加以解决,如分枝定界法和割平面算法。
这些算法比单纯形法更为复杂,因此,一般的学习者要想掌握整数规划的数学算法有一定的困难。
然而事实上,由于Excel 的[工具][规划求解]可以求解整数规划问题,所以,对于一个真正有志于运用运筹学方法解决生产经营中问题的管理者来说,算法将不是障碍因素。
一、实验目的1、 掌握如何建立整数线性规划模型,特别是0~1逻辑变量在模型中的应用。
2、 掌握用Excel 求解整数线性规划模型的方法。
3、 掌握如何借助于Excel 对整数线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。
4、 读懂Excel 求解整数线性规划问题输出的运算结果报告和敏感性报告。
二、 实验内容1、 整数规划问题模型该问题来自于《运筹学基础及应用》(第四版)胡运权主编P126习题4.13,题目如下: 需生产2000件某种产品,该种产品可利用A 、B 、C 、D 设备中的任意一种加工,已知每种设备的生产准备结束费用、生产该产品时的单件成本以及每种设备限定的最大加工数量(件)如表1所示,问企业应该如何安排设备生产该产品才能使得总的生产成本最少,试建立该问题的数学模型并求解。
该产品可以利用四种不同的设备加工,由于采用不同的设备加工需要支付不同的准备结束费用,而如果不采用某种设备加工,是不需要支付使用该设备的准备结束费用的,所以必须借助于逻辑变量来鉴定准备结束费用的支付。
再设,种设备加工的产品数量为利用第设;4,3,2,1=j j x j⎪⎩⎪⎨⎧=>=)种设备生产(即,若不使用第)种设备生产(即若使用第000,1j j i x j x j y 4,3,2,1=j则问题的整数规划模型为:43214321281624207008009801000min x x x x y y y y z +++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≤≤≤≤=+++4,3,2,110,01600120010009002000..443322114321j y x y x y x y x y x x x x x t s j j,或2、 [工具][规划求解]命令求解下面我们用Excel 中的[工具][规划求解]对该问题进行求解。
整数规划教学大纲整数规划是运筹学中的一个重要分支,它在实际问题的建模和求解中有着广泛的应用。
为了有效地教授整数规划知识,制定一份合理的教学大纲是非常必要的。
本文将探讨整数规划教学大纲的设计要点和内容安排。
一、整数规划的基础知识整数规划是线性规划的一种扩展形式,它要求决策变量取整数值。
在教学大纲中,首先要介绍线性规划的基本概念和求解方法,为后续的整数规划知识打下基础。
同时,还应该对整数规划的基本特点进行介绍,如可行解集的离散性和求解难度的增加等。
二、整数规划的建模方法整数规划的建模是整个教学过程中的核心内容。
在教学大纲中,应该详细介绍整数规划的建模方法,包括整数规划模型的一般形式、目标函数和约束条件的设定,以及如何将实际问题转化为整数规划模型。
同时,还可以通过实例分析和练习题来帮助学生掌握建模的技巧和方法。
三、整数规划的求解算法整数规划的求解是整数规划教学中的重点内容。
在教学大纲中,应该介绍整数规划的常见求解算法,如分支定界法、割平面法和启发式算法等。
对于每种算法,要详细介绍其基本原理和具体步骤,并通过实例演示和练习题来帮助学生理解和掌握算法的应用。
四、整数规划的应用领域整数规划在实际问题中有着广泛的应用,如生产调度、物流配送、资源配置等。
在教学大纲中,应该介绍整数规划在不同领域的具体应用案例,以及如何将实际问题转化为整数规划模型。
通过实例分析和讨论,可以帮助学生理解整数规划在实际问题中的价值和作用。
五、整数规划的软件工具随着计算机技术的不断发展,整数规划的求解软件工具也得到了广泛应用。
在教学大纲中,可以介绍一些常用的整数规划求解软件,如LINGO、Gurobi等,并通过实例演示和练习题来帮助学生掌握软件的使用方法和技巧。
同时,还可以引导学生进行课程设计或实验,利用软件工具解决实际问题。
六、整数规划的发展趋势整数规划作为运筹学的重要分支,其研究和应用也在不断发展。
在教学大纲的最后,可以对整数规划的发展趋势进行展望,介绍一些前沿的研究方向和应用领域,激发学生的兴趣和求知欲望。
运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。
其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。
一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。
在生产、运输、选址等问题中,线性规划都有着重要的应用。
其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。
如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。
线性规划的求解方法一般分为单纯形法和内点法两种方法。
单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。
内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。
这种方法对大规模问题求解能力强,使用较多。
二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。
整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。
与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。
因此,通常需要采用分支定界、割平面等方法来求解。
分支定界是一种常用的整数规划求解方法。
它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。
割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。
总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。